
Sun Microsystems, Inc.
www.sun.com

Submit comments about this document at: http://www.sun.com/hwdocs/feedback

OpenSPARC™ T2 System-On-Chip
(SOC) Microarchitecture

Specification

Part No. 820-2620-11
December 2007, Revision A

Copyright © 2007 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

Use is subject to license terms.

This distribution may include materials developed by third parties.

Sun, Sun Microsystems, the Sun logo, Solaris, OpenSPARC T1, OpenSPARC T2 and UltraSPARC are trademarks or registered trademarks of
Sun Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

The Adobe logo is a registered trademark of Adobe Systems, Incorporated.

Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject to the
export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether
direct or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion
lists, including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

Sun makes no representation that the OpenSPARC T2 design model or its implementation does not infringe any third party patents or other
intellectual property rights.

DOCUMENTATION AND REGISTER TRANSFER LEVEL (RTL) ARE PROVIDED "AS IS", AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE
HELD TO BE LEGALLY INVALID.

Copyright © 2007 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs à la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plus des brevets américains listés à
l’adresse http://www.sun.com/patents et un ou les brevets supplémentaires ou les applications de brevet en attente aux Etats - Unis et dans les
autres pays.

L’utilisation est soumise aux termes de la Licence.

Cette distribution peut comprendre des composants développés par des tierces parties.

Sun, Sun Microsystems, le logo Sun, Solaris, OpenSPARC T1, OpenSPARC T2 et UltraSPARC sont des marques de fabrique ou des marques
déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.
aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.

UNIX est une marque déposée aux Etats-Unis et dans d’autres pays et licenciée exlusivement par X/Open Company, Ltd.

Le logo Adobe. est une marque déposée de Adobe Systems, Incorporated.

Les produits qui font l’objet de ce manuel d’entretien et les informations qu’il contient sont regis par la legislation americaine en matiere de
controle des exportations et peuvent etre soumis au droit d’autres pays dans le domaine des exportations et importations. Les utilisations
finales, ou utilisateurs finaux, pour des armes nucleaires, des missiles, des armes biologiques et chimiques ou du nucleaire maritime,
directement ou indirectement, sont strictement interdites. Les exportations ou reexportations vers des pays sous embargo des Etats-Unis, ou
vers des entites figurant sur les listes d’exclusion d’exportation americaines, y compris, mais de maniere non exclusive, la liste de personnes qui
font objet d’un ordre de ne pas participer, d’une facon directe ou indirecte, aux exportations des produits ou des services qui sont regi par la
legislation americaine en matiere de controle des exportations et la liste de ressortissants specifiquement designes, sont rigoureusement
interdites.

LA DOCUMENTATION EST FOURNIE "EN L’ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFACON.

Contents

1. OpenSPARC T2 Basics 1–1

1.1 Background 1–1

1.2 OpenSPARC T2 Overview 1–3

1.3 OpenSPARC T2 Components 1–4

1.3.1 SPARC Physical Core 1–5

1.3.2 SPARC System-On Chip (SoC) 1–5

1.3.3 L2 Cache 1–5

1.3.4 Memory Control Unit (MCU) 1–5

1.3.5 Test Control Unit (TCU) 1–6

1.3.6 Clock Control Unit (CCU) 1–6

1.3.7 System Interface Unit (SIU) 1–6

1.3.8 Non-Cacheable Unit (NCU) 1–7

1.3.9 Data Management Unit (DMU) 1–7

1.3.10 Miscellaneous Input/Output (MIO) 1–7

1.3.10.1 Network Interface Unit (NIU) 1–8

1.3.10.2 SSI ROM Interface (SSI) 1–8

1.3.11 Debug 1–8

1.3.12 eFuse 1–8

1.3.13 Reset 1–9
iii

2. Level 2 Cache 2–1

2.1 L2-Cache Functional Description 2–1

2.1.1 L2-Cache Overview 2–1

2.1.2 L2-Cache Block Functional Description 2–3

2.1.2.1 L2 Cache Interface Description 2–7

2.1.2.2 MCU Interface: 2–12

2.1.3 L2 Pipeline 2–14

2.1.4 L2 Interactions with Core 2–16

2.1.4.1 Load Hit 2–16

2.1.4.2 Store Hit 2–19

2.1.4.3 Partial Store 2–21

2.1.4.4 Ifetch Hit 2–23

2.1.4.5 Miss 2–25

2.1.4.6 Eviction (Clean or Dirty) 2–26

2.1.4.7 Fill 2–27

2.1.4.8 Atomics LDSTUB/SWAP 1st Pass 2–30

2.1.4.9 Atomics CAS 2–30

2.1.4.10 Prefetch Invalidate Cache Entry (ICE) 2–31

2.1.4.11 L2 Interactions with SIU (System Interface Unit) 2–43

2.1.4.12 L2 Pipeline Stalls 2–44

2.1.5 Functional Description of Sub-blocks 2–44

2.1.5.1 L2 Tags 2–45

2.1.5.2 L2 VUAD 2–46

2.1.5.3 L2 VUAD ECC 2–47

2.1.5.4 L2 Data 2–48

2.1.5.5 L2 Directory 2–49

2.1.5.6 Directory Organization 2–49

2.1.5.7 SIU Queue (SIUQ) 2–51
iv OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • July 2007

2.1.5.8 Input Queue (IQ) 2–51

2.1.5.9 Output Queue (OQ) 2–52

2.1.5.10 Arbiter 2–52

2.1.5.11 Miss Buffer (MB) 2–53

2.1.5.12 Fill Buffer (FB) 2–54

2.1.5.13 Writeback Buffer (WBB) 2–54

2.1.5.14 I/O Write Buffer (IOWB) 2–54

2.1.6 Unit-level Interface Signals 2–56

2.1.7 RAS 2–57

2.1.7.1 General Overview 2–57

2.1.7.2 RAS support in L2 sub-blocks 2–58

2.1.7.3 NotDATA in L2 (new feature in OpenSPARC T2) 2–61

2.1.7.4 Error reporting by L2 2–64

2.1.8 VDFT Features 2–65

2.1.9 Critical Path Analysis 2–65

2.1.10 Performance 2–66

2.2 Appendix 2–67

2.2.1 Debug mode/initialization mode 2–67

2.2.2 Reset sequence for L2 cache 2–68

3. Memory Control Unit (MCU) 3–1

3.1 Overview 3–2

3.1.1 Changes from OpenSPARC T1 MCU design 3–2

3.1.2 Changes to OpenSPARC T2 MCU to support FBD 3–3

3.2 Terminology and Configuration 3–5

3.2.1 DRAM Terminology 3–5

3.2.2 FBD Terminology 3–5

3.2.3 DDR Branch Configuration 3–6

3.2.3.1 Physical Address Mapping 3–8
Contents v

3.2.4 FBD Channel Configuration 3–10

3.3 DDR2 FBD Usage 3–11

3.3.1 FBD Channel Initialization 3–11

3.3.2 FBD Commands 3–13

3.3.2.1 FBD Frame Formats 3–14

3.3.3 SDRAM Initialization 3–23

3.3.4 DDR2 SDRAM Commands 3–24

3.4 MCU-L2 Cache Interface 3–26

3.4.1 MCU Read Transaction 3–27

3.4.2 MCU Write Transaction 3–29

3.5 DDR2 SDRAM Transaction Timing 3–30

3.5.1 Memory Read 3–30

3.5.2 Memory Write 3–32

3.5.3 SERDES (I/O) Timing 3–34

3.5.3.1 Single Lane Symbol Alignment Logic 3–36

3.5.3.2 Frame Lane Alignment Logic across all 14 Northbound
Lanes 3–37

3.5.3.3 Channel Alignment Logic across all Two FBDIMM
Channels. 3–44

3.6 Memory Latencies 3–44

3.6.1 Read Latency 3–44

3.6.2 Write Latency 3–46

3.7 Multiple Clock Domains 3–47

3.8 Functional Description 3–49

3.8.1 MCU Datapaths 3–51

3.8.1.1 Request Address Datapath 3–51

3.8.1.2 Read and Write Data Datapaths 3–53

3.8.1.3 FBD Write and Read Datapaths (FBDWR_DP,
FBDRD_DP) 3–56

3.8.1.4 FSR to MCU Cross-Domain FIFO (FBD_DP) 3–58
vi OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • July 2007

3.8.2 MCU Control Logic 3–59

3.8.2.1 MCU - L2 Cache Interface Control (L2IF_CTL) 3–60

3.8.2.2 MCU Request Queue Control (DRQ_CTL) 3–61

3.8.2.3 Write Ordering Queue (WOQ) 3–62

3.8.2.4 MCU - DDR2 Interface Control (DRIF_CTL) 3–63

3.8.2.5 FBD Interface Control (FBDIC_CTL) 3–66

3.8.2.6 MCU Read Datapath Control (RDPCTL_CTL) 3–67

3.8.2.7 MCU Read Data Control (RDATA_CTL) 3–68

3.8.3 UCB CSR Interface 3–68

3.9 SDRAM Power Reduction and Reduced-Configuration Operating Modes
3–70

3.9.1 Single Channel Mode 3–70

3.9.2 MCU Programmable Power Throttle 3–70

3.9.3 SDRAM Self-Refresh Mode 3–71

3.9.4 FBD L0s State 3–71

3.9.5 Power Down Mode 3–72

3.9.6 Partial Bank Mode 3–72

3.10 RAS Features 3–72

3.10.1 SDRAM ECC 3–72

3.10.2 Memory Scrubbing 3–73

3.10.3 Data Poisoning 3–73

3.10.4 ECC Error Handling 3–73

3.10.5 FBD Channel Errors 3–74

3.10.6 Interrupts 3–75

3.11 Test Features 3–76

3.11.1 DFT Features 3–76

3.11.1.1 Debug Reset 3–76

3.11.2 Deterministic Test Mode (DTM) 3–77

3.11.2.1 Debug Signals 3–77
Contents vii

3.11.2.2 Initialization for Testing 3–77

3.11.3 SERDES Blunt-End Loopback 3–78

3.12 MCU Level I/O 3–79

3.13 MCU Registers 3–83

3.13.1 Control and Status Registers 3–84

3.13.1.1 Changes to DIMM Initialization Register-
0x84_0000_01A0 3–85

3.13.1.2 Single Channel Mode Regiser - 0x84_0000_0148 3–86

3.13.1.3 Four Activate Window Register 3–86

3.13.2 Error Registers 3–86

3.13.2.1 Changes to Error Status Regiser - 0x84_0000_0280 3–86

3.13.2.2 Error Retry Register - 0x84_0000_02a8 3–88

3.13.3 Power Management Registers 3–88

3.13.3.1 Power Down Mode Register - 0x84_0000_0238 3–88

3.13.4 Performance Registers 3–89

3.13.5 Changes to Debug Trigger Enable Register 3–89

3.13.6 State Registers for FBD Branch 3–89

3.13.6.1 Channel State Register - 0x84_0000_0800 3–90

3.13.6.2 Fast Reset Flag - 0x84_0000_0808 3–90

3.13.6.3 Channel Reset (Initialization) Flag - 0x84_0000_0810 3–
91

3.13.6.4 TS1 Southbound to Northbound Mapping Register -
0x84_0000_0818 3–91

3.13.6.5 TS1 Test Paramater Register - 0x84_0000_0820 3–91

3.13.6.6 TS3 Failover Configuration Register - 0x84_0000_0828
3–92

3.13.6.7 Electical Idle Detected Register - 0x84_0000_0830 3–92

3.13.6.8 Disable State Period Register - 0x84_0000_0838 3–92

3.13.6.9 Disable State Period Done Register - 0x84_0000_0840
3–93
viii OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • July 2007

3.13.6.10 Calibrate State Period Register - 0x84_0000_0848 3–93

3.13.6.11 Calibrate State Period Done Register - 0x84_0000_0850
3–93

3.13.6.12 Training State Minimum Time Register -
0x84_0000_0858 3–94

3.13.6.13 Training State Done Register - 0x84_0000_0860 3–94

3.13.6.14 Training State Timeout Register - 0x84_0000_0868 3–94

3.13.6.15 Testing State Done Register - 0x84_0000_0870 3–95

3.13.6.16 Testing State Timeout Register - 0x84_0000_0878 3–95

3.13.6.17 Polling State Done Register - 0x84_0000_0880 3–95

3.13.6.18 Polling State Timeout Register - 0x84_0000_0888 3–96

3.13.6.19 Config State Done Register - 0x84_0000_0890 3–96

3.13.6.20 Config State Timeout Period Register -
0x84_0000_0898 3–96

3.13.6.21 Per Rank CKE Register - 0x84_0000_08A0 3–96

3.13.6.22 L0s Duration - 0x84_0000_08A8 3–98

3.13.6.23 Sync Frame Frequency Register - 0x84_0000_08B0 3–98

3.13.6.24 Channel Read Latency Register - 0x84_0000_08B8 3–99

3.13.6.25 Channel Capability Register - 0x84_0000_08C0 3–99

3.13.6.26 Loopback Mode Control Register - 0x84_0000_08C8 3–
99

3.13.6.27 SERDES Configuration Bus Register -
0x84_0000_08D0 3–100

3.13.6.28 SERDES Tranmitter and Receiver Differential Pair
Inversion Register - 0x84_0000_08D8 3–100

3.13.6.29 SERDES Test Configuration Bus Register -
0x84_0000_08E0 3–101

3.13.6.30 SERDES PLL Status Register - 0x84_0000_08E8 3–102

3.13.6.31 SERDES Test Status Register - 0x84_0000_08F0 3–102

3.13.6.32 Configuration Register Access Address Register -
0x84_0000_0900 3–102
Contents ix

3.13.6.33 Configuration Register Access Data Register -
0x84_0000_0908 3–103

3.13.6.34 FBD Thermal Trip Status Register - 0x84_0000_0A00 3–
103

3.13.6.35 MCU Syndrome Register - 0x84_0000_0C0 3–105

3.13.6.36 Injected Error Source Register - 0x84_0000_0C08 3–105

3.13.6.37 MCU FBR Count Register - 0x84_0000_0C10 3–106

3.14 Other Registers 3–106

3.14.1 Self-Refresh Registers 3–106

4. Test Control Unit (TCU) 4–1

4.1 Introduction 4–2

4.1.1 Features 4–2

4.2 JTAG 4–3

4.2.1 Instruction Register 4–4

4.2.2 Reset State and TRST_L 4–4

4.2.3 Instruction Summary 4–4

4.2.4 Data Registers 4–9

4.2.4.1 Boundary Scan 4–12

4.2.4.2 Bypass Register 4–12

4.2.4.3 ID Code Register 4–12

4.2.4.4 CMP Data Registers 4–12

4.2.5 JTAG SCK Bypass 4–13

4.2.6 JTAG Access to SerDes STCI 4–13

4.2.7 JTAG Errata 4–14

4.3 UCB Interface 4–17

4.3.1 UCB Simple Block Diagram 4–18

4.3.2 JTAG Instructions used to Access the UCB 4–18

4.3.3 Expected Data and Address Format 4–20

4.3.4 TCU as a Slave for UCB 4–20
x OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • July 2007

4.3.5 UCB Erratum 4–21

4.4 L2 Access via SIU 4–22

4.4.1 JTAG L2 Access Registers 4–22

4.4.2 Write 4–22

4.4.3 Read 4–23

4.4.4 Diagram 4–23

4.5 Scan 4–26

4.5.1 Manufacturing Scan 4–26

4.5.2 MacroTest Scan 4–27

4.5.3 Serial Scan 4–29

4.5.3.1 Chain Select Register 4–31

4.5.3.2 Logic Included in JTAG Serial Scan 4–33

4.5.3.3 Protecting TCU During Serial Scan: Test Protect Mode
4–34

4.5.4 SerDes Scan 4–34

4.6 Clock Stop 4–35

4.6.1 Serial and Parallel Clock Stop Modes 4–35

4.6.2 Hard Clock Stop 4–36

4.6.3 Soft Clock Stop 4–36

4.6.4 Stop Domains 4–38

4.6.5 FBD Logic in MCU 4–42

4.6.6 Clock Stopping and Core/L2 Available and Disable Controls 4–43

4.6.6.1 Core and L2 Available Control 4–43

4.6.6.2 Core and L2 Disabling Control 4–43

4.7 Transition Testing 4–44

4.7.1 Operation and Constraints During Transition Test 4–46

4.7.2 Procedure for Entering Transition Test 4–49

4.7.3 SerDes Transition Test 4–49

4.8 Boundary Scan 4–50
Contents xi

4.9 TCU Debug Interface to SPC Cores 4–52

4.9.1 Clock Interface 4–52

4.9.1.1 Tcu_spc_clk_stop 4–53

4.9.1.2 Core_available & Core_enabled 4–53

4.9.1.3 Core_running & Core_running_status 4–53

4.9.1.4 Scan_enable 4–53

4.9.1.5 Hardstop_request & Softstop_request 4–53

4.9.2 Debug Event Interface 4–54

4.9.2.1 Trigger_event 4–54

4.9.3 Scan Interface 4–54

4.9.3.1 Scan_in & Scan_out 4–54

4.9.3.2 Shadow_scan_in 4–55

4.9.3.3 Shadow_scan_cntrl[n:0] 4–55

4.9.3.4 Shadow_scan_out 4–55

4.9.4 Single Step Mode 4–55

4.9.5 Disable Overlap Mode 4–56

4.9.6 Cycle Step Mode 4–57

4.9.7 JTAG Priority for Debug 4–58

4.10 TCU Debug Interface to SOC Logic 4–58

4.10.1 Clock Interface 4–59

4.10.2 Debug Event Interface 4–59

4.11 TCU Debug Registers 4–60

4.11.1 Cycle Counter 4–60

4.11.2 Debug Event Counter 4–60

4.11.3 TCU Debug Control Register 4–61

4.11.3.1 Watchpoint 4–61

4.11.3.2 Hard Stop 4–61

4.11.3.3 Clock Stretch 4–62
xii OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • July 2007

4.11.3.4 Clock Stretch then Hard Stop 4–62

4.11.4 Erratum #34 TRIGOUT (Watchpoint) Events 4–62

4.12 Memory BIST Control 4–63

4.12.1 Overview 4–63

4.12.2 Memory BIST Operation 4–64

4.12.3 Serial Mode 4–66

4.12.4 Parallel Mode 4–66

4.12.5 Diagnostic Mode 4–67

4.12.6 Abort Mode 4–67

4.12.7 MBIST Engine Ordering 4–68

4.12.8 Notes 4–69

4.12.9 JTAG MBIST Data Registers 4–69

4.12.10 MBIST Clock Stop and Scan Dump 4–70

4.12.11 MBIST DMO - Direct Memory Observe 4–70

4.12.11.1 MBIST Done and Fail Observability at Pins 4–72

4.12.12 Scanning of MBIST Engines via JTAG 4–74

4.12.13 Effect of Unavailable or Disabled Cores and Banks 4–74

4.12.14 BIST During Reset 4–74

4.13 Logic BIST Control 4–75

4.13.1 JTAG Logic BIST Instructions 4–77

4.13.2 Accessing Pass/Fail Signature 4–77

4.13.3 Logic BIST Interface 4–78

4.14 Shadow Scan 4–78

4.14.1 Core Shadow Scan 4–78

4.14.2 SOC Shadow Scan 4–80

4.14.3 Shadow Scan Operation 4–81

4.15 Array Guidelines to Support Scan Test 4–83

4.15.1 Flop (Clock) Headers 4–84
Contents xiii

4.15.2 Write Inhibit and Bypass 4–84

4.15.3 Scan Modes 4–86

4.15.4 Scan Cell Ordering Guidelines 4–86

4.15.5 Reset 4–86

4.16 Reset Sequencing 4–87

4.16.1 JTAG Access During POR 4–90

4.16.2 ASIC Reset 4–91

4.17 EFuse 4–92

4.17.1 POR Mode 4–92

4.17.2 JTAG Read Access 4–92

4.17.3 Program Mode 4–92

4.17.4 Bypass Mode 4–93

4.17.5 Sample Mode 4–93

4.17.6 Redundancy Value Clear 4–93

4.18 TCU Local CSR Assignments 4–94

4.18.1 Memory BIST Registers 4–94

4.18.2 Logic BIST Registers 4–96

4.18.3 Debug Control Registers 4–97

5. Clock Control Unit (CCU) 5–1

5.1 Overview 5–1

5.1.1 System Block Diagram 5–2

5.1.2 CCU Block Diagram and Description 5–3

5.2 CCU Port List 5–4

5.2.1 Clock Generation and Distribution 5–7

5.2.1.1 Generation 5–7

5.2.2 PLL Programming 5–8

5.2.3 PLL Mux Control 5–12

5.2.4 Distribution 5–13
xiv OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • July 2007

5.3 Clock and Reset Inside CCU 5–15

5.3.1 Clock Domains 5–15

5.3.2 Reset Scheme 5–16

5.3.3 Initialization Sequence 5–16

5.4 SYNC Pulses 5–20

5.4.1 Proposed Scheme 5–20

5.4.2 Sync Pulse Distribution 5–22

5.4.3 CMP to IO/IO2X Waveforms 5–23

5.4.4 CMP/DR Pulses 5–24

5.4.5 CMP/SYS Pulses 5–26

5.5 RNG Description 5–27

5.6 CSR Block 5–29

5.6.1 PLL_CTL (0x83_0000_0000) 5–31

5.6.2 RNG_CTL (0x83_0000_0020) 5–32

5.6.3 RNG_DATA (0x83_0000_0030) 5–32

5.7 CCU TESTABILITY 5–32

5.7.1 CCU ATPG 5–33

5.8 Full Chip Testability 5–34

5.8.1 Full Chip ATPG 5–34

5.8.2 Transition Fault Test 5–34

5.8.3 Clock Stretch 5–35

5.8.3.1 Clock Stretch Requirements 5–35

5.8.3.2 PLL Support for Pulse Stretching 5–35

5.8.3.3 Timing Diagrams 5–36

5.8.3.4 Programmability 5–37

5.8.4 SerDes Deterministic Test Mode (DTM) 5–38

5.8.4.1 Basic Requirements 5–38

5.8.4.2 Supported Clock Frequencies 5–38
Contents xv

5.8.4.3 Clocking Scheme 5–39

5.8.4.4 Programmation and Sequencing 5–40

5.9 Appendix A.1 – Sync Pulse Design Procedure 5–42

5.10 Appendix A.2 – Sync Pulse Timing Analysis 5–45

5.10.1 Fast to Slow Clock Synchronization 5–45

5.10.2 Slow to Fast Clock Synchronization 5–45

5.10.3 Modifications for Non-Ideal Scenario 5–46

5.10.4 Computation and Selection of Sync Pulses 5–46

6. System Interface Unit (SIU) 6–1

6.1 Overview 6–1

6.2 Terminology 6–2

6.3 SIU Top Level Logical Block Diagram 6–4

6.4 Logical Subblocks 6–7

6.4.1 Clocks 6–8

6.4.2 Interface Datapath Access Mechanism 6–9

6.4.3 Inbound 6–9

6.4.4 Interface Timing Diagrams and Protocols 6–11

6.4.4.1 From NIU to SIU 6–12

6.4.4.2 From a Fire-PCI Express-DMU to SIU 6–15

6.4.4.3 From SIU to L2 6–22

6.4.4.4 From SIU to NCU 6–25

6.4.4.5 From TCU to SIU 6–25

6.4.5 SIU's Inbound Pipeline 6–26

6.4.5.1 Major Pipeline Stages 6–26

6.4.6 Block Diagrams of SIU Inbound 6–29

6.4.6.1 Top 6–29

6.4.6.2 Sub-Blocks - ILD 6–30

6.4.6.3 Sub-Block - IND 6–31
xvi OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • July 2007

6.4.6.4 Sub-Block Descriptions 6–32

6.4.6.5 RAS 6–36

6.5 Outbound 6–37

6.5.1 Interface Timing Diagrams 6–37

6.5.1.1 From L2 to SIU 6–37

6.5.1.2 From SIU to NIU 6–41

6.5.1.3 From SIU to DMU 6–42

6.5.1.4 From SIO to TCU 6–42

6.5.2 Outbound Pipeline 6–43

6.5.2.1 From L2 6–43

6.5.3 SIU Outbound Block Diagram 6–45

6.5.3.1 OPD : Outbound Packet Datapath 6–45

6.5.3.2 OLD : Outbound L2 Datapath 6–46

6.5.4 SIU Outbound Subunit Descriptions 6–46

6.5.4.1 Datapath 6–46

6.5.4.2 Control Path 6–47

6.6 Packet Formats 6–47

6.6.1 Inbound To L2 6–47

6.6.1.1 WRI Packet 6–47

6.6.1.2 WR8 Packet 6–49

6.6.1.3 RDD Packet 6–51

6.6.2 Outbound from L2 6–52

6.6.2.1 RDD Response Packet 6–52

6.6.2.2 Write Invalidate Response Packet 6–54

6.6.2.3 Write 8 Response Packet 6–55

6.6.2.4 DMA Read Request Packet from NIU to SIU 6–56

6.6.2.5 DMA Write Request Packet from NIU to SIU 6–57

6.6.3 Outbound to NIU 6–59
Contents xvii

6.6.3.1 DMA Write Response Packet from SIU to NIU 6–59

6.6.3.2 DMA Read Response packet from SIU to NIU 6–60

6.6.4 Inbound from DMU 6–61

6.6.4.1 Packet from =Fire-DMU to SIU 6–61

6.6.5 Outbound to DMU 6–68

6.6.5.1 Packet from SIU to Fire-DMU 6–68

6.6.6 Inbound to NCU 6–70

6.6.6.1 Packet from SIU to NCU 6–70

6.7 CSR 6–71

6.8 Unit Level Signals 6–73

6.8.1 SIU-L2 Interface List 6–73

6.8.2 SIU-NCU Interface List 6–77

6.8.3 SIU-NIU Interface List 6–79

6.8.4 SIU-DMU Interface List 6–81

6.8.5 SIU-TCU Interface List 6–82

7. Non-Cacheable Unit (NCU) 7–1

7.1 Overview 7–1

7.1.1 Changes from OpenSPARC T1 IOB 7–3

7.2 Clock Domains 7–5

7.3 Data Flow 7–5

7.3.1 Downstream Path Block Diagrams 7–6

7.3.2 Upstream Path Block Diagrams 7–8

7.4 Interface Signals, Protocols, and Timing Diagrams 7–10

7.4.1 XBAR Interface 7–23

7.4.1.1 NCU / XBAR PCX Interface (Downstream) 7–23

7.4.1.2 NCU / XBAR CPX Interface (Upstream) 7–24

7.4.2 NCU / MCU Interface 7–25

7.4.3 Boot ROM Interface (NCU/SSI)) 7–27
xviii OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • July 2007

7.4.4 NCU / CCU Interface 7–28

7.4.5 NCU / RST Interface 7–28

7.4.6 NCU / DMUCSR Interface 7–28

7.4.7 NCU / DBG Interface 7–29

7.4.8 NCU / TCU Interface 7–29

7.4.9 NCU / DMUPIO Interface 7–30

7.4.10 NCU / DMU Mondo Response Interface 7–31

7.4.11 NCU / SII Interface 7–32

7.4.12 EFUSE Interface 7–33

7.4.13 Packet Format 7–34

7.4.13.1 UCB (Unit Control Block) Data Packet Format 7–34

7.4.13.2 UCB (Unit Control Block) Interrupt Packet Format 7–
36

7.4.13.3 SII to NCU Header Format 7–37

7.4.13.4 NCU to DMUPIO Header Format 7–37

7.4.13.5 DMUPIO Read Request Address and Data Format 7–
38

7.4.13.6 DMUPIO Write Request Address and Data Format 7–
40

7.5 Interrupts 7–42

7.5.1 Mondo Interrupt Path (External Interrupts) 7–42

7.5.2 Non Mondo Interrupt (On Chip Interrupt) 7–44

7.6 NCU Global Physical Address (PA) Assignments 7–45

7.6.1 Global Physical Address Assignments 7–46

7.6.2 NCU Local CSR Assignments 7–47

7.6.2.1 NCU Management 7–47

7.6.2.2 RAS Related Registers 7–51

7.6.2.3 Mondo Table Access 7–59

7.6.3 ASI Registers 7–61
Contents xix

7.6.3.1 Core Available Register – ASI_CORE_AVAILABLE
(0x90_0104_0000) 7–62

7.6.3.2 Core Enable Status Register – ASI_CORE_ENABLE
STATUS (0x90_0104_0010) 7–62

7.6.3.3 Core Enable Register – ASI_CORE_ENABLE
(0x90_0104_0020) 7–63

7.6.3.4 XIR Steering Register – ASI_XIR_STEERING
(0x90_0104_0030) 7–64

7.6.3.5 Core Running RW Register –
ASI_CORE_RUNNING_RW(0x90_0104_0050) 7–64

7.6.3.6 Core Running Status Register –
ASI_CORE_RUNNING_STATUS (0x90_0104_0058) 7–
65

7.6.3.7 Core Running W1S Register –
ASI_CORE_RUNNING_W1S (0x90_0104_0060) 7–66

7.6.3.8 Core Running W1C Register –
ASI_CORE_RUNNING_W1C (0x90_0104_0068) 7–66

7.6.3.9 Interrupt Vector Dispatch Register – INT_VEC_DISP
(0x90_01CC_0000) 7–66

7.6.3.10 RAS Error Steering Register – RAS_ERR_STEERING
(0x90_0104_1000) 7–67

7.6.3.11 ASI CMP Tick Enable Register –
ASI_CMP_TICK_ENABLE(0x90_0140_0038) 7–67

7.6.3.12 ASI Warm Reset Vector Mask Register –
ASI_WMR_VEC_MASK(0x90_0114_0018) 7–68

7.7 Appendix A 7–69

7.8 Appendix B 7–72

8. Data Management Unit (DMU) 8–1

8.1 Overview 8–2

8.1.1 DMC Block Diagram 8–3

8.1.2 Abbreviation 8–4

8.1.3 General DMC IP Ingress Pipeline Operations 8–4

8.1.4 General Egress Pipeline Operations 8–5
xx OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • July 2007

8.2 Functional Description of DMC Sub-blocks 8–6

8.3 Transaction Manager Unit (TMU) 8–6

8.3.1 TMU Function Description: 8–6

8.3.1.1 Data Ingress Manager (DIM) 8–6

8.3.1.2 Data Egress Manager (DEM) 8–7

8.3.1.3 MSI-X Support: 8–7

8.4 Interrupt Message Unit (IMU) 8–7

8.4.1 IMU Function Description: 8–7

8.4.1.1 Definition of Terms 8–7

8.4.1.2 IMU Functional Descriptions 8–8

8.4.1.3 IMU Mondo State Machine 8–9

8.4.1.4 PCI-Express/PCI-X/PCI MSI Capability Structure 8–
10

8.4.1.5 IMU Mondo INO Mapping Table 8–12

8.4.1.6 IMU CSRs Change List 8–13

8.5 Record Management Unit 8–31

8.5.1 RMU Function Description 8–31

8.5.1.1 Link Receive Manger (LRM) 8–31

8.5.1.2 Schedule Records Manager (SRM) 8–31

8.5.1.3 Retire Record Manager (RRM) 8–32

8.6 Transaction Scoreboard Unit (TSB) 8–32

8.6.1 TSB Function Description 8–32

8.7 Memory Management Unit (MMU) 8–32

8.7.1 IOMMU Description 8–32

8.7.1.1 Required – IOMMU Bounds Check for Bypass Mode
8–33

8.7.1.2 Required – Customized Virtual Tag Buffer Design 8–33

8.7.1.3 Required – Customized Physical Tag Buffer Design 8–
34
Contents xxi

8.7.1.4 Required - Add a SUN4V Mode to support the
hypervisor features: 8–34

8.8 Context Manager Unit (CMU) 8–34

8.8.1 CMU Function Description 8–34

8.8.1.1 Receive Context Manager (RCM) 8–34

8.8.1.2 Receive Context Entries 8–35

8.8.1.3 Transmit Context Manager (TCM) 8–35

8.8.1.4 Transmit Context Entries 8–35

8.8.1.5 Context Block (CTX) 8–35

8.9 Packet Manager Unit (PMU) 8–36

8.9.1 PMU Function Description 8–36

8.9.1.1 Packet Receive Manager (PRM) 8–36

8.10 Packet Scoreboard (PSB) 8–36

8.10.0.1 Required, add jtag to thread id 8–37

8.11 Cache Line Unit (CLU) 8–37

8.11.1 CLU Function Description 8–37

8.11.1.1 Cacheline Transmit Manager (CTM) 8–37

8.11.1.2 Cacheline Receive Manager (CRM) 8–37

8.11.1.3 Mondo Interrupt -> One Data Beat 8–38

8.12 Data In Unit (DIU) 8–38

8.12.1 DIU Function Description 8–38

8.13 Data Out Unit (DOU) 8–39

8.13.1 DOU Function Description 8–39

8.13.2 SRAM 8–39

8.13.2.1 Adding Test Features 8–39

8.14 DSN Overview 8–40

8.15 DSN Block Diagrams 8–41

8.16 DSN Detailed Block Diagram 8–42

8.17 DSN Interface Descriptions 8–43
xxii OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • July 2007

8.17.1 DSN-SIU Interface 8–43

8.17.1.1 DSN-SIU Interface List 8–45

8.17.1.2 SIU to DSN Egress Commands 8–46

8.17.1.3 SIU to DSN Outbound Header sent by SIU
(DMA rd cpl’s only) 8–48

8.17.1.4 Bit Mapping from DSN to SII for DMA rd/wrt
Requests 8–48

8.17.1.5 Bit Mapping from NCU/SIU Header to DMC for
DMA/Int ack/nack 8–49

8.17.1.6 DMC to SIU Ingress Commands 8–50

8.17.1.7 DSN to SII Header as sent by DSN 8–52

8.17.1.8 DSN-SII Header RAS 8–53

8.17.1.9 DSN-SII Interface Timing Diagrams 8–55

8.17.2 DSN-NCU Interface 8–56

8.17.2.1 DSN-NCU Interface Description 8–56

8.17.2.2 DSN-NCU Interface Pin List 8–58

8.17.2.3 NCU-DSN Egress PIO Commands 8–59

8.17.2.4 Bit Mapping from NCU Header to DMC for PIO
rd/wrts 8–60

8.17.2.5 NCU-DSN Timing Diagram 8–62

8.17.2.6 NCU to DSN Command Header Info 8–63

8.17.2.7 NCU to DSN Header for MMU Invalidates 8–63

8.17.3 DSN-DMU Interface 8–64

8.18 Pin Mapping 8–66

8.19 RAS 8–67

8.19.1 DSN/SII-SIO RAS Interface 8–67

8.19.2 DSN/NCU RAS Interface 8–68

8.19.3 DMC Internal RAS 8–68

8.19.4 RAS Interface Signals 8–69

8.19.5 Error Cases 8–71
Contents xxiii

8.19.6 IOMMU RAS 8–72

8.19.7 Why is there no Syndrome Register in DSN? 8–72

8.20 Resets 8–73

8.21 CSR’s 8–74

8.21.1 CSR Address Decoding 8–74

8.21.2 CSR Related Pins 8–76

8.21.3 CSR Block Diagram 8–76

8.22 Transaction Ordering 8–77

8.23 DEBUG Features 8–78

8.23.1 Quiescing DMU/SII/SIO Interface 8–78

8.23.2 Debug Busses 8–79

8.23.3 All PCI-Ex Error Output 8–79

8.23.4 Debug Interface Signals 8–80

8.23.5 DSN Debug Signals 8–81

9. Miscellaneous I/O (MIO) Specification 9–1

9.1 Overview 9–1

9.1.1 MIO Interface with System and Rest of OpenSPARC T2 9–1

9.1.2 Internal Pullups/Pulldowns in MIO for Inputs 9–10

9.1.3 MIO Floorplan in OpenSPARC T2 9–11

9.1.4 MIO Clocking 9–11

9.1.5 DFT Support for MIO 9–15

9.2 Debug Port 9–17

9.2.1 DTM Support in MIO 9–20

9.2.2 Timing Spec for Debug Port Signals for Reliable LA Sampling 9–
20

9.3 MIO RTL Hierarchy 9–21

10. Debug 10–1

10.1 Overview 10–1
xxiv OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • July 2007

10.1.1 Additional Relevant Documents 10–1

10.2 OpenSPARC T2 Debug Features 10–2

10.2.1 Observability 10–2

10.2.1.1 CLK/PLL Observability 10–2

10.2.1.2 Debug Port 10–3

10.2.2 Repeatability 10–7

10.2.2.1 FBDIMM Link training after Debug Reset 10–10

10.2.2.2 I/O Quiescing in OpenSPARC T2 During Checkpoint
10–12

10.2.3 Debug Events 10–13

10.2.3.1 Debug Events in SPARC Cores 10–13

10.2.3.2 Debug Events in SOC 10–14

10.2.4 JTAG Access 10–15

10.2.4.1 JTAG Scan out 10–17

10.2.4.2 JTAG Shadow Scan 10–17

10.2.4.3 JTAG Boundary Scan 10–19

10.2.4.4 JTAG CREG/UCB Access 10–20

10.2.4.5 Clock Stretch 10–21

10.2.4.6 Clock Stop 10–21

10.2.4.7 Single Stepping,Disable Overlap,Cycle Step, Run N
Instructions : 10–25

10.2.5 Fatal Error Indication on Pin 10–26

10.2.6 TRIGIN and TRIGOUT pins 10–26

10.2.7 DTM Support in DB1,MIO modules 10–26

10.2.7.1 MCU DTM Mode Signals 10–30

10.3 OpenSPARC T2 Core Debug Features 10–30

10.3.1 Basic Features 10–32

10.3.2 Enhanced Features 10–33

10.3.3 Details of the OpenSPARC T2 Core Debug Features 10–37
Contents xxv

10.3.3.1 Instruction Breakpoints 10–37

10.3.3.2 Instruction and Data Address Watchpoints 10–38

10.3.3.3 Trap on Taken Control Transfer 10–40

10.3.3.4 Single Instruction Step 10–40

10.3.3.5 Disable Overlap 10–41

10.3.3.6 Soft-Stop Request from TCU to Core 10–41

10.3.3.7 Shadow Scan 10–41

10.3.3.8 Debug Event Control Register 10–42

10.4 Core Interface with the TCU 10–43

10.4.1 Clock Interface 10–43

10.4.1.1 Tcu_spc_clk_stop 10–44

10.4.1.2 Core_available & Core_enabled 10–44

10.4.1.3 Core_running[7:0] & Core_running_status[7:0] 10–44

10.4.1.4 Scan_enable 10–45

10.4.1.5 Spc_hardstop_request[7:0] &
Spc_softstop_request[7:0] 10–45

10.4.2 Debug Event Interface 10–45

10.4.2.1 spc_trigger_pulse[7:0] 10–45

10.4.3 Scan Interface 10–45

10.4.3.1 Scan_in 10–46

10.4.3.2 Scan_out 10–46

10.4.3.3 Shadow_scan_in 10–46

10.4.3.4 Shadow_scan_cntrl[n:0] 10–46

10.4.3.5 Shadow_scan_out 10–47

10.4.4 Single Step Mode Signals (and Single Step Usage Model) 10–47

10.4.5 Disable Overlap Mode Signals (and Usage Model) 10–48

10.5 Debug Block Interface Signals 10–51

10.6 Debug Blocks (dbg0.v and dbg1.v) 10–61

10.6.1 OpenSPARC T2 Debug Port 10–63
xxvi OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • July 2007

10.6.2 CSR Block in debug.v 10–73

10.7 APPENDIX 10–74

10.7.1 Checkpoint Sequence (SW-HW interaction) 10–74

10.7.2 SW Visible State Lost on Debug Reset 10–77

10.7.3 Registers to Support Debug 10–80

10.7.3.1 Debug Port Configuration Register 10–80

10.7.3.2 RESET_GEN Register 10–81

10.7.3.3 RESET_SOURCE Register 10–82

10.7.3.4 ASI_WMR_VEC_MASK Register 10–82

10.7.3.5 MCU Channel Read Latency Register 10–83

10.7.3.6 MCU Sync Frame Frequency Register 10–83

10.7.3.7 Subsystem Reset Register 10–83

10.7.3.8 I/O Quiesce Control Register 10–84

10.7.3.9 Core DECR Register 10–85

10.7.3.10 SOC DECR Register 10–86

10.7.3.11 L2 Mask Register 10–87

10.7.3.12 L2 Compare Register 10–87

10.7.3.13 DMC Core and Block Interrupt Enable Register 10–88

10.7.3.14 DRAM Debug Trigger Enable Register 10–88

10.7.3.15 NCU Debug Trigger Enable Register 10–89

10.7.3.16 L2 Error Enable Register 10–90

10.7.3.17 ASI_OVERLAP_MODE Register 10–90

10.7.3.18 PEU Debug Select A Register 10–91

10.7.3.19 PEU Debug Select B Register 10–92

10.7.3.20 DMU Debug Select Register for DMU Debug Bus A
10–93

10.7.3.21 DMU Debug Select Register for DMU Debug Bus B
10–94

11. Electronic Fuse Unit (EFU) 11–1
Contents xxvii

11.1 Overview 11–1

11.1.1 Definitions of Terms Used 11–3

11.2 EFU Block Diagram 11–4

11.2.1 Unit Functional Description of EFU 11–4

11.2.1.1 Efuse Array (EFA) 11–5

11.2.1.2 Efuse Controller (FCT) 11–6

11.2.1.3 TCU Interface 11–7

11.3 EFU Logical Implementation 11–8

11.3.1 Efuse Modes of Operations 11–8

11.3.1.1 Power On Reset Read Mode 11–8

11.3.1.2 JTAG Read Access 11–11

11.3.1.3 Fuse Programming Mode 11–13

11.3.1.4 JTAG Fuse Bypass Mode 11–14

11.3.1.5 Fuse Sample Mode 11–16

11.3.2 Interface with NCU, SRAM Header Flops and TCU Destinations
11–19

11.3.2.1 EFU to SRAM Header Flops 11–19

11.3.2.2 SRAM to EFU Interface : 11–19

11.3.2.3 EFU to NCU Interface : 11–19

11.3.2.4 TCU to EFU Transfers 11–20

11.3.2.5 EFU to TCU : 11–20

11.3.3 Register Formats 11–20

11.3.3.1 RV REGISTER CLEAR ID 11–20

11.3.3.2 Block ID 11–22

11.3.3.3 SRAM Redundancy Register Formats : 11–24

11.3.3.4 L2 Data Array EFA Entry Definition 11–25

11.3.3.5 L1 INSTRUCTION CACHE (ICD) EFA Entry
Definition 11–27

11.3.3.6 L1 data cache array redundancy register (DCD)
definition 11–27
xxviii OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • July 2007

11.3.3.7 Core Available 11–28

11.3.3.8 L2 Bank Available 11–28

11.3.3.9 FSR SERDES Trimming Registers 11–28

11.3.3.10 DMU DATA Registers 11–29

11.3.3.11 SER_NUM Programming 11–30

11.4 Unit-Level Interface Signals 11–32

11.5 Misc/Multiple Clock Domains 11–40

11.6 Efuse Array Specification 11–41

11.6.1 Efuse Array Organization 11–41

11.6.2 Efuse Array Functions 11–41

11.6.3 Timing Diagrams 11–42

11.6.4 Interface Table 11–45

12. Reset Unit Specification 12–1

12.1 OpenSPARC T1 and OpenSPARC T2 Partitioning 12–2

12.2 Reset Overview 12–2

12.2.1 Goals 12–2

12.2.2 Nomenclature 12–3

12.2.3 Priority 12–3

12.2.4 OpenSPARC T2 Structures that Hold State 12–5

12.2.5 E-Fuse destination Flops and Latches 12–6

12.2.6 Latches 12–7

12.2.7 Flip-flops Outside of SRAMs 12–8

12.2.8 SRAM Input flops 12–10

12.2.9 SRAM Output Flops 12–10

12.2.10 Core Array Contents 12–11

12.2.11 NIU, DMU-PEU, RST, and TAP Reset Implementations Differ 12–
11

12.2.12 Eliminating Clock Contention 12–12
Contents xxix

12.2.12.1 Before gclk starts 12–12

12.2.12.2 After gclk starts, Asic SE deasserts, and Asic clk_ctop
deasserts 12–12

12.2.12.3 Two Signals RequireAsynchronous Assert, Synchronous
Deassert. 12–13

12.3 Types of Reset 12–14

12.3.1 TRST_ 12–14

12.3.2 POR 12–14

12.3.3 DBR 12–14

12.3.4 WMR 12–15

12.3.4.1 A Fatal Error causes a WMR 12–15

12.3.4.2 Conflicting Demands placed on WMR 12–16

12.3.5 WMR Trap and SPARC-V9 POR Trap 12–17

12.3.5.1 How OpenSPARC T1 Starts its Virtual Cores at Reset
12–17

12.3.5.2 How OpenSPARC T2 Starts its Virtual Cores at Reset
12–18

12.3.6 XIR 12–18

12.3.6.1 JTag can cause XIR 12–19

12.3.7 WDR 12–20

12.3.7.1 Tomatillo SouthBridge System_watchdog Timer
Signal 12–20

12.3.7.2 CMP Watchdog Reset, WDR 12–20

12.3.8 XIR, WDR, and SIR Perform No Reset 12–21

12.4 Machine State after Each Kind of Reset 12–21

12.4.1 Venn Diagram 12–22

12.4.2 Reset Signals Asserted for each Kind of Reset 12–23

12.4.3 POR Clears the Valid Bits in the L2T Directory of L1 Tags CAM
12–26

12.5 OpenSPARC T2 is a System On a Chip 12–29

12.5.1 System On a Board 12–29
xxx OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • July 2007

12.5.2 System On a Chip 12–30

12.5.3 Serial System Interface, SSI 12–31

12.5.4 Connections between RST and Other Clusters 12–33

12.6 Registers 12–34

12.6.1 (0x89-0000-0808) Reset Generation Register, RESET_GEN 12–34

12.6.2 (0x89-0000-0818) Reset Source Register, RESET_SOURCE 12–35

12.6.3 (0x89-0000-0838) Subsystem Reset Register, SSYS_RESET 12–36

12.6.4 (0x89-0000-0810) Reset Status Register, RSET_STAT 12–37

12.6.5 (0x89-0000-0820) Fatal Error Enable Register, RESET_FEE 12–38

12.6.6 (0x89-0000-0860) Clock Control Unit Time Register, CCU_TIME
12–39

12.6.7 (0x89-0000-0870) Lock Time Register, LOCK_TIME 12–40

12.6.8 (0x89-0000-0880) Propagation Time Register, PROP_TIME 12–41

12.6.9 (0x89-0000-0890) NIU Time Register, NIU_TIME 12–43

12.7 Power-On Reset Sequence Overview 12–44

12.7.1 Power-On Reset Duration in a System 12–46

12.7.2 Power-On Reset Duration on a Tester 12–47

12.7.3 Warm Reset Duration in a System 12–48

12.7.4 Warm Reset Duration on a Tester 12–50

12.8 Deterministic Behavior 12–51

12.9 Power-On Reset Sequence 12–52

12.9.1 During PWRON_RST_L (including POR1) 12–53

12.9.2 After PWRON_RST_L (including POR2) 12–56

12.9.3 Pre-WMR Boot Code 12–59

12.9.4 During WMR1 12–61

12.9.5 After WMR 12–63

12.9.6 Post-WMR boot code 12–64

12.10 Warm Reset Sequence 12–64

12.10.1 Before rst_mwr_ 12–64
Contents xxxi

12.10.2 During rst_wmr_ 12–65

12.10.3 After rst_wmr_ 12–65

12.10.4 Post-WMR boot code 12–66

12.11 Reset Sequence for DBG 12–67

12.12 Reset Sequence for NIU 12–67

12.13 Reset Sequence for XIR 12–67

12.14 Reset and Scan of the Reset Unit 12–68

12.14.1 tcu_rst_clk_stop 12–68

12.14.2 tcu_rst_io_clk_stop 12–69

12.15 Reset Unit Ports 12–69

12.15.1 Input Ports 12–69

12.15.2 Output Ports 12–72

12.16 Appendices 12–74

12.16.1 Appendix I: Glossary 12–74

12.16.2 Appendix II: Glossary of shadow terms 12–74

12.16.3 Appendix III: Promotion among Core Available, Enable, and Status
registers 12–75
xxxii OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • July 2007

Figures

FIGURE 1-1 Differences Between TLP and ILP 1–2

FIGURE 1-2 OpenSPARC T2 Chip Block Diagram 1–4

FIGURE 2-1 OpenSPARC T2 Processor Block Diagram 2–3

FIGURE 2-2 L2-Cache Organization 2–6

FIGURE 2-3 Input Queue Pipeline Data Path Diagram 2–7

FIGURE 2-4 Timing Diagram for a Single Load from PCX 2–8

FIGURE 2-5 IQ written from PCX, PCX stall from IQ 2–9

FIGURE 2-6 SIU Queue Pipeline Data path Diagram 2–10

FIGURE 2-7 Timing Diagram showing RDD request and read data return 2–10

FIGURE 2-8 Read Request from L2 Cache to MCU and Read Data Return 2–13

FIGURE 2-9 MCU Write Transaction 2–14

FIGURE 2-10 Load Hit 2–18

FIGURE 2-11 Store Hit 2–20

FIGURE 2-12 Ifetch Hit 2–24

FIGURE 2-13 Read Miss and Read Data Fill from DRAM 2–27

FIGURE 2-14 Evict and Write back to DRAM 2–29

FIGURE 3-1 OpenSPARC T2 System Overview 3–4

FIGURE 3-2 DDR Branch Configuration 3–7

FIGURE 3-3 L2 Cache Banks Memory Branch Mapping 3–10

FIGURE 3-4 Idle Frame LFSR Counter 3–19
xxxiii

FIGURE 3-5 MCU-L2 Cache Interface Signals 3–27

FIGURE 3-6 Read Request Timing 3–29

FIGURE 3-7 Read Data Return Timing 3–29

FIGURE 3-8 Write Request Timing 3–30

FIGURE 3-9 Memory Burst Read with AutoPrechare, same bank reactivated 3–31

FIGURE 3-10 Memory Burst Read with AutoPrecharge with multiple banks activated 3–32

FIGURE 3-11 Memory Burst Write with AutoPrecharge and same bank activate 3–33

FIGURE 3-12 Memory Burst Write with AutoPrecharge and multiple banks activated 3–34

FIGURE 3-13 Dual FBDIMM Channel Receiver 3–35

FIGURE 3-14 Symbol Alignment Logic 3–37

FIGURE 3-15 Lane Alignment Logic 3–38

FIGURE 3-16 Odd Ratio (13:2) Clock from the On-chip PLL Block 3–48

FIGURE 3-17 Even Ratio (12:2) Clock from the On-chip PLL Block 3–48

FIGURE 3-18 Example of Synchronizing between l2clk and iol2clS 3–49

FIGURE 3-19 MCU Block Diagram 3–51

FIGURE 3-20 MCU Request Address Queue datapath 3–52

FIGURE 3-21 Read and Write Datapaths Block Diagram 3–54

FIGURE 3-22 FBD Write Datapath 3–57

FIGURE 3-23 FBD Read Datapath 3–58

FIGURE 3-24 FBD Cross Domain Logic 3–59

FIGURE 3-25 MCU Control Logic Block Diagram 3–60

FIGURE 4-1 SerDes STCI Bus Control 4–14

FIGURE 4-2 UCB Interface Inside the TCU 4–18

FIGURE 4-3 TCU Interface with SIU 4–24

FIGURE 4-4 JTAG Write to L2 via SIU - Waveform 4–25

FIGURE 4-5 Signals Controlled for Macrotest (in TCU) 4–28

FIGURE 4-6 JTAG Serial Scan Sample Waveform 4–30

FIGURE 4-7 TCU Clock Sequencer 4–39

FIGURE 4-8 Clock Stop Sequencing through Clock Domains 4–42

FIGURE 4-9 Transition Test Sample Vector 4–45
xxxiv OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • July 2007

FIGURE 4-10 TCU to Boundary Scan Interface 4–51

FIGURE 4-11 TCU to SPC Core Debug Interface 4–52

FIGURE 4-12 TCU to SPC Core Debug Interface 4–59

FIGURE 4-13 Overview of MBIST Control via TCU/JTAG 4–64

FIGURE 4-14 Conceptual Look at TCU/JTAG MBIST Control 4–65

FIGURE 4-15 Sample: MBIST DMO data coming from CMP clock domain 4–73

FIGURE 4-16 Conceptual look at TCU/JTAG Logic BIST control 4–76

FIGURE 4-17 Logic BIST Controller Interface with TCU 4–78

FIGURE 4-18 Core Shadow Scan Architecture 4–79

FIGURE 4-19 L2 Tag Shadow Scan Architecture 4–81

FIGURE 4-20 JTAG Shadow Scan Sample Waveform 4–82

FIGURE 4-21 Array Flop Header Guidelines 4–85

FIGURE 4-22 Power-On Reset Sequence 4–88

FIGURE 5-1 System Block Diagram 5–2

FIGURE 5-2 CCU Block Diagram 5–3

FIGURE 5-3 PLL Clock Generation during Mission Mode 5–8

FIGURE 5-4 PLL Clocking Waveforms 5–12

FIGURE 5-5 Simplified Global Distribution of CMP Clock 5–14

FIGURE 5-6 Global Distribution of the DR Clock 5–15

FIGURE 5-7 CCU Clock Domains and Function 5–18

FIGURE 5-8 Align Detection Circuitry 5–19

FIGURE 5-9 Initialization Sequence for CCU Clocks 5–19

FIGURE 5-10 CMP to DR Synchronization 5–21

FIGURE 5-11 DR to CMP Synchronization 5–21

FIGURE 5-12 Logical Representation of Sync Pulse Global Distribution 5–22

FIGURE 5-13 Actual Usage of Sync Pulses at Enable Pin of Transfer Flops (all transfer arrows not shown)
5–23

FIGURE 5-14 Sync Enable Positions at the Outputs of Cluster Headers (prior to being latched) 5–24

FIGURE 5-15 Sync Pulse Example for fCMP:fDR = 11:4 5–25

FIGURE 5-16 Domain Crossing using Sync Pulses in RST 5–26
Figures xxxv

FIGURE 5-17 Read Access Operation of rng_data via Memory Mapped Address 5–28

FIGURE 5-18 Entropy Generator Design 5–29

FIGURE 5-19 Clock Stretching Capability in PLL 5–36

FIGURE 5-20 Clock Stretch Timing Events 5–37

FIGURE 5-21 CCU PLL Configuration for DTM 5–39

FIGURE 5-22 Chip Level DTM Clocking Scheme 5–40

FIGURE 5-23 New Sync Pulse Positions for DTM (All locations are at final destination after being flopped
once in cluster) 5–42

FIGURE 5-24 Synchronization from Fast to Slow Clock 5–44

FIGURE 5-25 Synchronization from Slow to Fast Clock 5–44

FIGURE 6-1 SIU Top Level Block Diagram 6–2

FIGURE 6-2 SIU Logical Block Diagram 6–4

FIGURE 6-3 Inbound Packet Interface Timing Diagram 6–11

FIGURE 6-4 Timing Diagram for SIU Inbound Packet from DMU 6–15

FIGURE 6-5 Timing Diagram for SIU Inbound Packet from DMU 6–17

FIGURE 6-6 SIU to L2 : Back to Back Reads 6–23

FIGURE 6-7 SIU to L2 : Back to Back Writes (WR8 followed by WRI) 6–24

FIGURE 6-8 Timing Diagram for Packet from SIU to NCU (Back to Back Transfer) 6–25

FIGURE 6-9 Inbound Pipeline Diagram 6–28

FIGURE 6-10 SIU Inbound Top Level 6–29

FIGURE 6-11 SIU Inbound L2 Datapath (ILD) Subunit 6–30

FIGURE 6-12 SIU Inbound NCU Datapath (IND) Subunit 6–31

FIGURE 6-13 L2 Read Data Return Timing Diagram (Fastest case is shown) 6–38

FIGURE 6-14 L2 Write 8 Acknowledgement Timing Diagram 6–39

FIGURE 6-15 L2 Write Invalidate Acknowledgement Timing Diagram 6–40

FIGURE 6-16 SIU Outbound Packet Datapath (OPD) Subunit 6–45

FIGURE 6-17 SIU Outbound L2 Datapath (OLD) Subunit 6–46

FIGURE 6-18 Write Invalidate Request 6–48

FIGURE 6-19 Write 8 Bytes Request 6–50

FIGURE 6-20 RDD Requests 6–51
xxxvi OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • July 2007

FIGURE 6-21 RDD Response Packet when PA[5:0] is not all zeros. 6–53

FIGURE 6-22 WRI Response Packet 6–54

FIGURE 6-23 WR8 Response Packet 6–55

FIGURE 7-1 NCU Connectivity 7–2

FIGURE 7-2 NCU Internal Logical Block Diagram 7–4

FIGURE 7-3 Downstream Path Logic Block Diagram 7–7

FIGURE 7-4 Downstream Data Path Block Diagram 7–7

FIGURE 7-5 Upstream Path Logic Block Diagram 7–9

FIGURE 7-6 Upstream Data Path Block Diagram 7–9

FIGURE 7-7 Downstream PCX Interface Timing 7–24

FIGURE 7-8 Upstream PCX Interface Timing 7–25

FIGURE 7-9 NCU to MCU/SSI/RNG/CCU/RST Downstream Timing Diagram (back-to-back case) 7–26

FIGURE 7-10 MCU/SSI/RNG/CCU/RST to MCU Upstream Timing Diagram
(back-to-back read ack return of IFIKK return with 8B payload)) 7–27

FIGURE 7-11 NCU / DMUPIO Interface Timing Diagram 7–31

FIGURE 7-12 NCU / DMU Mondo Response Interface Timing Diagram (from NCU to DMU.) 7–32

FIGURE 7-13 NCU / SIU Interface Timing Diagram (from SIU to NCU) 7–33

FIGURE 7-14 EFU / NCU Interface Timing Diagram. 7–34

FIGURE 7-15 Mondo Interrupt Path 7–43

FIGURE 7-16 Non Mondo Interrupt Path 7–45

FIGURE 7-17 SII to NCU Eror Strobe 7–73

FIGURE 7-18 Sii to NCU Error Syndrome 7–74

FIGURE 7-19 SII to NCU Error Strobe and Syndrome Transfer Example 7–74

FIGURE 8-1 DMC Block Diagram 8–3

FIGURE 8-2 IMU Mondo State Machine 8–10

FIGURE 8-3 IMU Block Diagram 8–12

FIGURE 8-4 Interface Block Diagram 8–41

FIGURE 8-5 Detailed Block Diagram 8–42

FIGURE 8-6 Ingress Interface Timing Diagram 8–55

FIGURE 8-7 Egress Interface Timing Diagram 8–56
Figures xxxvii

FIGURE 8-8 NCU-DSN Timing Diagram 8–62

FIGURE 8-9 CSR Block Diagram 8–77

FIGURE 9-1 IO2X Sync Enable Timing w.r.t l2clk 9–12

FIGURE 9-2 Global Clock and sync enable distribution to DB1/TCU and MIO 9–13

FIGURE 9-3 Data Transfer from DB1 to MIO 9–14

FIGURE 9-4 MIO's Boundary Scan Cell (cl_sc1_bs_cell2_4x) Schematic 9–16

FIGURE 9-5 OpenSPARC T2 Debug Port Layout across DBG0,DBG1 and MIO 9–19

FIGURE 10-1 Core Shadow Scan Architecture 10–18

FIGURE 10-2 .TCU Clock Stop Logic 10–24

FIGURE 10-3 Clock Stop Sequencing through Clock Domains 10–25

FIGURE 10-4 DTM Mode 1 Configuration for db1,mio in OpenSPARC T2 10–28

FIGURE 10-5 DTM Mode 2 Configuration for db1,mio in OpenSPARC T2 10–29

FIGURE 10-6 OpenSPARDC T2 Core to TCU Debug Interface 10–44

FIGURE 10-7 DBG0 and DBG1 in OpenSPARC T2 Floorplan 10–63

FIGURE 10-8 OpenSPARC T2 Debug Port layout across DBG0,DBG1 and MIO 10–71

FIGURE 10-9 Rate Conversion from iol2clk to io2xclk 10–72

FIGURE 10-10 Rate Conversion from l2clk to io2xclk 10–73

FIGURE 11-1 EFU Top Level Diagram 11–4

FIGURE 11-2 Timing Diagram showing Power On Reset Read Mode 11–10

FIGURE 11-3 JTAG Read Access Timing Diagram. 11–13

FIGURE 11-4 Fuse Programming Mode Timing Diagram. 11–14

FIGURE 11-5 JTAG Fuse Bypass Mode 11–16

FIGURE 11-6 Destination Sample Mode Timing Diagram 11–18

FIGURE 11-7 SRAM to EFU Data Transfer Timing Diagram 11–19

FIGURE 11-8 EFU to NCU Interface Timing Diagram 11–20

FIGURE 11-9 EFA Row Read Access 11–42

FIGURE 11-10 EFA Supply Detect Access 11–43

FIGURE 11-11 EFA Program Access 11–44

FIGURE 12-1 Venn Diagram 12–23

FIGURE 12-2 Reset Signals 12–24
xxxviii OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • July 2007

FIGURE 12-3 System On a Board 12–30

FIGURE 12-4 System On a Chip 12–31

FIGURE 12-5 Connections between RST and Other Clusters 12–33

FIGURE 12-6 Clock Cycles 12–51

FIGURE 12-7 Power-On Reset Sequence - Start of POR1 12–54

FIGURE 12-8 Power-On Reset Sequence - End of POR1 12–57

FIGURE 12-9 Power-On Reset Sequence - POR2 12–60

FIGURE 12-10 Power-On Reset Sequence - Warm Reset: WMR1+WMR2 12–62
Figures xxxix

xl OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • July 2007

Tables

TABLE 2-1 Pipeline Diagram: Load Hit 2–16

TABLE 2-2 Pipeline Diagram: Store Hit 2–19

TABLE 2-3 Timing Diagram: Partial Store 2–22

TABLE 2-4 Timing Diagram: Ifetch Hit 2–23

TABLE 2-5 Timing Diagram: Miss 2–25

TABLE 2-6 Timing Diagram: Eviction 2–26

TABLE 2-7 Timing Diagram: Fill 2–27

TABLE 2-8 Timing Diagram: Atomics LDSTUB/SWAP 1st Pass: 2–30

TABLE 2-9 Timing Diagram: Prefetch ICE First Pass (Miss in L2): 2–32

TABLE 2-10 Timing Diagram:2nd Pass of Prefetch ICE (Eviction plus Delete from Miss Buffer) 2–33

TABLE 2-11 Timing Diagram: Diagnostic Read of Data Array 2–34

TABLE 2-12 Timing Diagram: Diagnostic Write of Data Array 2–34

TABLE 2-13 Timing Diagram: Diagnostic Read of Tag Array 2–35

TABLE 2-14 Timing Diagram: Diagnostic Write of Tag Arra 2–35

TABLE 2-15 Timing Diagram: Diagnostic Read of VD/UA Array 2–36

TABLE 2-16 Timing Diagram: Diagnostic Write of VD/UA Array: 2–36

TABLE 2-17 Timing Diagram: Fill 2–38

TABLE 2-18 Timing Diagram: Data Scrub 2–38

TABLE 2-19 Timing Diagram: Tag Scrub Operation 2–39

TABLE 2-20 Timing Diagram: VUAD SBE Error Detection and Correction 2–41
xli

TABLE 2-21 Timing Diagram: Block Reads 2–43

TABLE 2-22 Physical Address Mapping for the L2 Cache 2–45

TABLE 2-23 Input Queue Pipeline 2–52

TABLE 2-24 Unit Level Interface Signals 2–56

TABLE 3-1 Supported Memory Organization 3–8

TABLE 3-2 Read Data Return Order for BL=4 3–9

TABLE 3-3 Read Data Return Order for BL=8 3–9

TABLE 3-4 FBD DRAM Commands 3–13

TABLE 3-5 FBD Channel Commands 3–13

TABLE 3-6 Common Features of Normal Southbound Frames 3–15

TABLE 3-7 Southbound Frame Type Encoding 3–15

TABLE 3-8 Command Frame Format 3–16

TABLE 3-9 Command Frame with Data Format 3–16

TABLE 3-10 WData Address Delivery 3–17

TABLE 3-11 Command+Wdata Frame Format (4-bit Device) 3–17

TABLE 3-12 First Northbound Idle Frame Format 3–19

TABLE 3-13 Alert Frame Replacing First Idle Frame 3–20

TABLE 3-14 Northbound Data Frame Format 3–20

TABLE 3-15 Northbound Register Data Frame Format 3–21

TABLE 3-16 Status Frame Format 3–22

TABLE 3-17 Status Bit Description 3–22

TABLE 3-18 SDRAM Power Up and Initialization Sequence 3–23

TABLE 3-19 DDR2 SDRAM Command Truth Table 3–24

TABLE 3-20 Memory Read Pipeline and Latency 3–45

TABLE 3-21 Memory write pipeline and latency 3–46

TABLE 3-22 MCU Level I/O 3–79

TABLE 3-23 Control and Status Registers 3–84

TABLE 3-24 DRAM Initialization Register 3–85

TABLE 3-25 Single Channel Mode Register 3–86

TABLE 3-26 Four Activate Window Register 3–86
xlii OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • July 2007

TABLE 3-27 Error Registers 3–86

TABLE 3-28 MCU Error StatusRegister 3–87

TABLE 3-29 Error Entry Register 3–88

TABLE 3-30 Power Management Registers 3–88

TABLE 3-31 Power Down Mode Register 3–88

TABLE 3-32 Performance Registers 3–89

TABLE 3-33 Debug Trigger Enable Register 3–89

TABLE 3-34 Channel State Register 3–90

TABLE 3-35 Fast Reset Flag 3–90

TABLE 3-36 Channel Reset (Initialization) Flag 3–91

TABLE 3-37 TS1 Southbound to Northbound Mapping Register 3–91

TABLE 3-38 TS1 Test Paramater Register 3–91

TABLE 3-39 TS3 Failover Configuration Registers 3–92

TABLE 3-40 Electrical Idle Detected Registers 3–92

TABLE 3-41 Disable State Period Registers 3–92

TABLE 3-42 Disable State Period Done Registers 3–93

TABLE 3-43 Calibrate State Period Registers 3–93

TABLE 3-44 Calibrate State Period Registers 3–93

TABLE 3-45 Training State Minimum Time Registers 3–94

TABLE 3-46 Training State Done Registers 3–94

TABLE 3-47 Training State Timeout Registers 3–94

TABLE 3-48 Testing State Done Registers 3–95

TABLE 3-49 Testing State Timeout Registers 3–95

TABLE 3-50 Polling State Done Registers 3–95

TABLE 3-51 Polling State Timeout Registers 3–96

TABLE 3-52 Config State Done Registers 3–96

TABLE 3-53 Config State Timeout Period Registers 3–96

TABLE 3-54 Per Rank CKE Registers 3–97

TABLE 3-55 L0s Duration 3–98

TABLE 3-56 Sync Frame Frequency Registers 3–98
Tables xliii

TABLE 3-57 Channel Read Latency Registers 3–99

TABLE 3-58 Channel Capability Registers 3–99

TABLE 3-59 Loopback Mode Control Registers 3–99

TABLE 3-60 SERDES Configuration Bus Registers 3–100

TABLE 3-61 SERDES Transmitter and Receiver Differential Pair Inversion Registers 3–100

TABLE 3-62 SERDES Test Configuration Bus Registers 3–101

TABLE 3-63 SERDES PLL Status Registers 3–102

TABLE 3-64 SERDES Test Status Registers 3–102

TABLE 3-65 Configuration Register Access Address Registers 3–102

TABLE 3-66 Configuration Register Access Data Registers 3–103

TABLE 3-67 FBD Thermal Trip Status Registers 3–103

TABLE 3-68 MCU Syndrome Registers 3–105

TABLE 3-69 Injected Error Source Registers 3–105

TABLE 3-70 MCU FBR Count Registers 3–106

TABLE 4-1 JTAG Instruction Register 4–4

TABLE 4-2 JTAG Public Instructions 4–4

TABLE 4-3 JTAG Private Instructions 4–5

TABLE 4-4 JTAG Data Registers 4–9

TABLE 4-5 ID Code Register 4–12

TABLE 4-6 L2 Access Registers 4–22

TABLE 4-7 Manufacturing Parallel Scan Chains 4–26

TABLE 4-8 Chain Select Register 4–32

TABLE 4-9 Clock Domain Register 4–40

TABLE 4-10 TCU Debug Control Register Field Definitions 4–61

TABLE 4-11 MBIST Engine Ordering 4–68

TABLE 4-12 JTAG MBIST Registers 4–69

TABLE 4-13 JTAG DMO Configuration Register accessed via TAP_DMO_CONFIG 4–71

TABLE 4-14 JTAG Logic BIST Registers 4–77

TABLE 4-15 Array Control Signals During Scan Modes 4–86

TABLE 4-16 EFUSE Redundancy Value Clear Register 4–93
xliv OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • July 2007

TABLE 4-17 MBIST Mode Register (0x00) 4–94

TABLE 4-18 MBIST Bypass Register (0x08) 4–94

TABLE 4-19 MBIST Start Register (0x10) 4–95

TABLE 4-20 MBIST Abort Register (0x18) 4–95

TABLE 4-21 MBIST Result Register (0x20) 4–95

TABLE 4-22 MBIST Done Register (0x28) 4–95

TABLE 4-23 MBIST Fail Register (0x30) 4–96

TABLE 4-24 MBIST Start WMR Register (0x38) 4–96

TABLE 4-25 LBIST Mode Register (0x40) 4–96

TABLE 4-26 LBIST Bypass Register (0x48) 4–96

TABLE 4-27 LBIST Start Register (0x50) 4–97

TABLE 4-28 LBIST Done Register (0x60) 4–97

TABLE 4-29 Cycle Counter Register (0x100) 4–97

TABLE 5-1 CCU Port Listing 5–4

TABLE 5-2 PLL Divider Programmation for Mission Mode 5–9

TABLE 5-3 Clock Frequency Table in Mission Mode 5–10

TABLE 5-4 CCU and PLL Mapping 5–13

TABLE 5-5 Key Parameters in Initialization Sequence 5–17

TABLE 5-6 DR<->CMP Sync Pulse Positions 5–25

TABLE 5-7 Encoding for Noise Cell Selection 5–27

TABLE 5-8 PLL Control Register 5–31

TABLE 5-9 RNG Control Register 5–32

TABLE 5-10 RNG Data Register 5–32

TABLE 5-11 Clock stretch fields in CSR block 5–37

TABLE 5-12 Waveform Parameters for Ideal Case 5–43

TABLE 5-13 Additional Parameters for Non-ideal Scenario 5–46

TABLE 6-1 Supported Packet Types from NIU and DMU 6–5

TABLE 6-2 Partial L2 Bank Mapping 6–6

TABLE 6-3 Interface Datapath Access Mechanism 6–9

TABLE 6-4 NIU to SIU : DMA Read Request Header Format 6–57
Tables xlv

TABLE 6-5 NIU to SIU Write Request Packet Format 6–58

TABLE 6-6 NIU to SIU : DMA Write Request Header Format 6–58

TABLE 6-7 SIU to NIU : DMA Write Response Header Format 6–59

TABLE 6-8 SIU to NIU : DMA Read Response Packet Format 6–60

TABLE 6-9 SIU to NIU Read Response Header Format 6–60

TABLE 6-10 Fire-DMC Tag 6–62

TABLE 6-11 Fire-DMU to SIU : DMA Read Request Header Format 6–63

TABLE 6-12 Fire-DMU to SIU Write Request Packet Format 6–64

TABLE 6-13 Fire-DMU to SIU : DMA Write Request Header Format 6–65

TABLE 6-14 Fire-DMU to SIU : Interrupt Write Request Packet Format 6–66

TABLE 6-15 Fire-DMU to SIU : Interrupt Write Request Header Format 6–66

TABLE 6-16 Fire-DMU to SIU : PIO Read Completion Response Packet Format 6–67

TABLE 6-17 Fire-DMU to SIU : PIO Read Completion Packet Header Format 6–67

TABLE 6-18 SIU to Fire-DMU : DMA Read Response Packet Format 6–69

TABLE 6-19 SIU to Fire-DMU : Outbound Packet Header Format 6–69

TABLE 6-20 SIU to NCU : Inbound Packet Header Format 6–70

TABLE 6-21 SIU-L2 Interface List 6–73

TABLE 6-22 SIU-NCU Interface List 6–77

TABLE 6-23 SIU-NIU Interface List 6–79

TABLE 6-24 SIU-DMU Interface List 6–81

TABLE 6-25 SIU-TCU Interface List 6–82

TABLE 7-1 NCU / UCB Communication Type and Bus Size 7–2

TABLE 7-2 NCU / XBAR(CCX)IInterface Signals 7–10

TABLE 7-3 NCU / MCU0 Interface Signals 7–10

TABLE 7-4 NCU / MCU1 Interface Signals 7–11

TABLE 7-5 NCU / MCU2 Interface Signals 7–11

TABLE 7-6 NCU / MCU3 Interface Signals 7–12

TABLE 7-7 NCU / SSI Interface Signals 7–13

TABLE 7-8 NCU / DBG1 Interface Signals 7–13

TABLE 7-9 NCU / CCU Interface Signals 7–13
xlvi OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • July 2007

TABLE 7-10 NCU / TCU Interface Signals 7–14

TABLE 7-11 NCU / RST Interface Signals 7–14

TABLE 7-12 NCU / DMU CSR Interface Signals 7–15

TABLE 7-13 NCU / DMU PIO and Mondo Interface 7–15

TABLE 7-14 NCU / SII Interface Signals 7–16

TABLE 7-15 SIO/NCU Interface Signals 7–18

TABLE 7-16 EFUSE / NCU Interface Signals 7–18

TABLE 7-17 CCU / NCU Interface Signals 7–19

TABLE 7-18 Global Signals 7–19

TABLE 7-19 Signals to L2T 7–20

TABLE 7-20 Signals to all SPC 7–20

TABLE 7-21 SPC 0 7–21

TABLE 7-22 SPC1 7–21

TABLE 7-23 SPC2 7–21

TABLE 7-24 SPC3 7–21

TABLE 7-25 SPC4 7–22

TABLE 7-26 SPC5 7–22

TABLE 7-27 SPC6 7–22

TABLE 7-28 SPC7 7–23

TABLE 7-29 UCB Packet Types supported on TCU / NCU interface 7–30

TABLE 7-30 UCB Data Packet Format 7–34

TABLE 7-31 UCB Interrupt Packet Format 7–36

TABLE 7-32 SIU to NCU Header Format 7–37

TABLE 7-33 NCU to DMUPIO Header Format. 7–37

TABLE 7-34 PIO Read Address and Data Format 7–39

TABLE 7-35 PIO Write Address and Data Format 7–41

TABLE 7-36 Device ID Assignments 7–44

TABLE 7-37 Global Physical Address Assignments 7–46

TABLE 7-38 Interrupt Management – INT_MAN (0x80_0000_0000) (count 128 step 8) 7–47

TABLE 7-39 Mondo Interrupt Vector Register – MONDO_INT_VEC (0x80_0000_0a00) 7–47
Tables xlvii

TABLE 7-40 Processor Serial Number – SER_NUM (0x80_0000_1000) 7–47

TABLE 7-41 EFUSE Status – EFU_STAT (0x80_0000_1008) 7–48

TABLE 7-42 Core Available – CORE_AVAIL (0x80_0000_1010) 7–48

TABLE 7-43 Bank Available – BANK_AVAIL (0x80_0000_1018) 7–48

TABLE 7-44 Bank Enable – BANK_ENABLE (0x80_0000_1020) 7–49

TABLE 7-45 Illegal Case Mapping 7–49

TABLE 7-46 Bank Enable Status – BANK_ENABLE_STATUS (0x80_0000_1028) 7–50

TABLE 7-47 L2 Index Hash Enable – L2_IDX_HASH_EN (0x80_0000_1030) 7–50

TABLE 7-48 L2 Index Hash Enable Status – L2_IDX_HASH_EN_STATUS (0x80_0000_1038) 7–51

TABLE 7-49 NCU/SSI SCK clock select – NCU_SCKSEL (0x80_0000_3040) 7–51

TABLE 7-50 NCU Response to Error 7–52

TABLE 7-51 Error Status Register - ESR (0x80_0000_3000) 7–53

TABLE 7-52 Error Log Enable - ELE (0x80_0000_3008) 7–56

TABLE 7-53 Error Interrupt Enable - EIE (0x80_0000_3010) 7–56

TABLE 7-54 Error Injection Register - EJR (0x80_0000_3018) 7–57

TABLE 7-55 Fatal Error Enable - FEE (0x80_0000_3020) 7–57

TABLE 7-56 Pending Error Register - PER (0x80_0000_3028) 7–57

TABLE 7-57 SII Error Syndrome - SIISYN (0x80_0000_3030) 7–58

TABLE 7-58 NCU Error Syndrome - NCUSYN (0x80_0000_3038)
If bit[62] is 0: format 1 7–58

TABLE 7-59 NCU Error Syndrome - NCUSYN (0x80_0000_3038)
If bit[62] is 1 7–59

TABLE 7-60 DBG1 Error Event Trigger Enable - NCU_CREG_DBGTRIG_EN (0x80_0000_4000) 7–59

TABLE 7-61 Mondo Interrupt Data0 – MONDO_INT_DATA0 (0x80_0004_0000) (Count 64 Step 8) 7–60

TABLE 7-62 Mondo Interrupt Data1 – MONDO_INT_DATA1 (0x80_0004_0200) (Count 64 Step 8) 7–60

TABLE 7-63 Alias Mondo Interrupt Data0 – MONDO_INT_ADATA0 (0x80_0004_0400) 7–60

TABLE 7-64 Alias Mondo Interrupt Data1 – MONDO_INT_ADATA1 (0x80_0004_0600) 7–60

TABLE 7-65 Mondo Interrupt Busy – MONDO_INT_BUSY(0x80_0004_0800) (Count 64 Step 8) 7–61

TABLE 7-66 Alias Mondo Interrupt Busy – MONDO_INT_ABUSY(0x80_0004_0a00) 7–61

TABLE 7-67 Core Available Register 7–62

TABLE 7-68 Core Enable Status Register 7–63
xlviii OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • July 2007

TABLE 7-69 Core Enable Register 7–63

TABLE 7-70 XIR Steering Register 7–64

TABLE 7-71 Core Running RW Register 7–65

TABLE 7-72 Core Running Status Register 7–66

TABLE 7-73 Core Running W1S Register 7–66

TABLE 7-74 Core Running W1C Register 7–66

TABLE 7-75 Interrupt Vector Dispatch Register 7–67

TABLE 7-76 RAS Error Steering Register 7–67

TABLE 7-77 ASI CMP Tick Enable Register 7–68

TABLE 7-78 ASI Warm Reset Vector Mask Register 7–68

TABLE 7-79 SSI Error Handling 7–69

TABLE 7-80 SII/NCU Interface Data Format 7–72

TABLE 8-1 IMU Mondo INO Mapping 8–12

TABLE 8-2 Interrupt Mapping Registers 8–13

TABLE 8-3 Interrupt Clear Registers (0x601400 – 0x601440) 42 consecutive registers, one for each
Mondo 8–14

TABLE 8-4 Interrupt Retry Timer Register (0x601A00) 8–14

TABLE 8-5 Interrupt State Status Register I (0x601A10) 8–14

TABLE 8-6 Interrupt State Status Register II (0x601A18) 8–15

TABLE 8-7 INTX Status Register (0x0060B000) 8–15

TABLE 8-8 INT A Clear Register (0x0060B008) 8–15

TABLE 8-9 INT B Clear Register (0x0060B010) 8–16

TABLE 8-10 INT C Clear Register (0x0060B018) 8–16

TABLE 8-11 INT D Clear Register (0x6010B018) 8–16

TABLE 8-12 Event Queue Base Address Register (0x00610000) 8–17

TABLE 8-13 Event Queue Control Set Registers (0x00611000 – 0x00611118) - 36 consecutive registers,
one for each EQ 8–17

TABLE 8-14 Event Queue Control Clr Registers (0x00611200 – 0x00611318) 36 consecutive registers,
one for each EQ 8–18

TABLE 8-15 Event Queue State Register (0x00611400 – 0x00611518) - 36 consecutive registers, one for
each EQ 8–18
Tables xlix

TABLE 8-16 Event Queue Tail Register – (0x00611600 – 0x00611718) - 36 consecutive registers, one for
each EQ 8–19

TABLE 8-17 Event Queue Head Registers – (0x00611800 – 0x611918) - 36 consecutive registers, one for
each EQ 8–19

TABLE 8-18 MSI Mapping Registers - (0x00620000 – 0x006207f8) - 256 consecutive registers, one for
each MSI 8–19

TABLE 8-19 MSI Clear Registers – (0x00628000 – 0x006287f8) - 256 consecutive registers, one for each
MSI 8–20

TABLE 8-20 Interrupt Mondo Data 0 Register – (0x0062c000) 8–20

TABLE 8-21 Interrupt Mondo Data 1 Register – (0x0062c008) 8–20

TABLE 8-22 ERR COR Mapping Register (0x00630000) 8–20

TABLE 8-24 ERR FATAL Mapping Register (0x00630010) 8–21

TABLE 8-23 ERR NONFATAL Mapping Register (0x00630008) 8–21

TABLE 8-25 PM PME Mapping Register (0x00630018) 8–22

TABLE 8-26 PME To ACK Mapping Register (0x00630020) 8–22

TABLE 8-27 IMU Error Log Enable Register (0x00631000) 8–22

TABLE 8-28 IMU Interrupt Enable Register (0x00631008) 8–23

TABLE 8-29 IMU Interrupt Status Register – (0x00631010) 8–24

TABLE 8-30 IMU Error Status Clear Register (0x00631018) 8–26

TABLE 8-31 IMU Error Status Set Register (0x00631020) 8–28

TABLE 8-32 IMU RDS Error Log Register (0x00631028) 8–29

TABLE 8-33 IMU SCS Error Log Register (0x00631030) 8–30

TABLE 8-34 IMU EQS Error Log Register (0x00631038) 8–31

TABLE 8-35 DSN-SIU Interface List 8–45

TABLE 8-36 SIU to DSN Egress Commands 8–46

TABLE 8-37 DMC_TAG Field Definitions 8–46

TABLE 8-38 SIU to DSN Header Bit Definitions 8–48

TABLE 8-39 DMC to SIU Ingress Command Bit Definitions 8–51

TABLE 8-40 DSN to SII Header Bit Definitions 8–52

TABLE 8-41 DSN to NCU Interface Pin List 8–58

TABLE 8-42 NCU to DSN PIO Command Bit Definitions 8–59

TABLE 8-43 jbc_tag[10:0] Descriptions 8–60
l OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • July 2007

TABLE 8-44 NCU to DSN Command Header Bit Definitions 8–63

TABLE 8-45 NCU to DSN Header Bit Definitions 8–64

TABLE 8-46 DSN-DMC Interface Pins 8–64

TABLE 8-47 Pin Mappings from Existing DMC to DSN 8–66

TABLE 8-48 RAS Signals 8–69

TABLE 8-49 DSN Error Cases 8–71

TABLE 8-50 IOMMU Error Cases 8–72

TABLE 8-51 CSR Related Pins 8–76

TABLE 8-52 Debug Ports 8–80

TABLE 8-53 DSN Debug Signals 8–81

TABLE 9-1 MIO Pinlist 9–2

TABLE 9-2 Sharing of Debug Pins with Other Pins 9–6

TABLE 9-3 Shared Pins Functionality and Frequencies 9–8

TABLE 10-1 CMP PLL pll_char_out[1:0] 10–2

TABLE 10-2 MCU/DRAM PLL pll_char_out[1:0] 10–3

TABLE 10-3 Domain Stopping Order 10–24

TABLE 10-4 OpenSPARC T2 DTM Modes 10–27

TABLE 10-5 ASI_INST_MASK_REG Contents 10–37

TABLE 10-6 ASI_WATCHPOINT Contents 10–38

TABLE 10-7 ASI_LSU_CONTROL_REG Contents 10–39

TABLE 10-8 Debug Block Interface Signal 10–51

TABLE 10-9 Mapping 10–68

TABLE 10-10 State that Loses Value over debug_reset (excluding NIU and PCI_EX) 10–77

TABLE 10-11 Debug Port Configuration Register 10–80

TABLE 10-12 Reset Generation Register RESET_GEN (0x89-0000-0808) 10–81

TABLE 10-13 Reset Source Register RESET_SOURCE (0x89-0000-0818) 10–82

TABLE 10-14 ASI_WMR_VEC_MASK Reg Format 10–82

TABLE 10-15 MCU Channel Read latency Register Format 10–83

TABLE 10-16 MCU Sync Frame Frequency Register 10–83

TABLE 10-17 Subsystem Reset Register 10–83
Tables li

TABLE 10-18 I/O Quiesce Control Register Format 10–84

TABLE 10-19 ASI_DECR Format 10–85

TABLE 10-20 ASI_DECR bit-pair settings to achieve Debug 10–85

TABLE 10-21 SOC_DECR Format 10–86

TABLE 10-22 ASI_DECR bit-pair settings to achieve Debug 10–86

TABLE 10-23 L2 Mask reg Format 10–87

TABLE 10-24 L2 Compare Reg Format 10–87

TABLE 10-25 DMC Core and Block Interrupt Enable register Format 10–88

TABLE 10-26 DRAM Debug Trigger Enable Register 10–88

TABLE 10-27 NCU Debug Trigger Enable Register 10–89

TABLE 10-28 L2 Error Enable Register 10–90

TABLE 10-29 ASI_OVERLAP_MODE Register 10–90

TABLE 10-30 PEU Debug Select A Register (0x000683000/0x0) 10–92

TABLE 10-31 PEU Debug Select B Register (0x000683008/0x0) 10–92

TABLE 10-32 DMU Debug Select A Register (0x000653000/0x0) 10–93

TABLE 10-33 DMU Debug Select B Register (0x000653008/0x0) 10–94

TABLE 11-1 Terms 11–3

TABLE 11-2 Fields in the Efuse Array Data[31:0] 11–5

TABLE 11-3 TAP Private Instructions for Fuse Functionality 11–7

TABLE 11-4 6 Bit Block ID for Memories 11–20

TABLE 11-5 6 Bit Block ID for Memories 11–22

TABLE 11-6 L2 Data Array Entry Description 11–25

TABLE 11-7 Readback 11–25

TABLE 11-8 L2 Tag Array RID/RV Field dDescription 11–25

TABLE 11-9 L2 Tag Array RID/RV Field Description 11–26

TABLE 11-10 Readback 11–26

TABLE 11-11 L1 ICD RID/RV Field Descriptions 11–27

TABLE 11-12 L1 DCD RID/RV Field Descriptions for Column Repair 11–27

TABLE 11-13 Core Available 11–28

TABLE 11-14 L2 Bank Available 11–28
lii OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • July 2007

TABLE 11-15 DMU WRITE DATA FORMAT 11–29

TABLE 11-16 DMU READ DATA FORMAT 11–29

TABLE 11-17 Efuse Row SERNUM0 Format 11–30

TABLE 11-18 Efuse Row SERNUM1 Format 11–30

TABLE 11-19 Proposed Efuse Row SERNUM2 Format 11–31

TABLE 11-20 Unit-Level Interface Signal s 11–32

TABLE 11-21 Interface Table for EFA 11–45

TABLE 12-1 OpenSPARC Partitioning 12–2

TABLE 12-2 Reset Actions 12–3

TABLE 12-3 Trap Types 12–4

TABLE 12-4 Preemption 12–5

TABLE 12-5 Destination of Information from the EFU 12–6

TABLE 12-6 Latch Kind 12–7

TABLE 12-7 Flip-Flop Kinds 12–8

TABLE 12-8 SRAM Input Flops 12–10

TABLE 12-9 SRAM Output Flops 12–10

TABLE 12-10 Core Array Contents 12–11

TABLE 12-11 Chip Reset 12–16

TABLE 12-12 Machine State 12–21

TABLE 12-13 Cleared Arrays 12–22

TABLE 12-14 Initialize Arrays 12–26

TABLE 12-15 CPU State after Reset 12–28

TABLE 12-16 Reset Generation Register 12–34

TABLE 12-17 Reset Source Register 12–35

TABLE 12-18 Subsystem Reset Register 12–37

TABLE 12-19 Reset Status Register 12–38

TABLE 12-20 Fatal Error Enable Register 12–39

TABLE 12-21 Clock Control Unit Time Register 12–39

TABLE 12-22 Lock Time Register 12–40

TABLE 12-23 Propagation Time register 12–41
Tables liii

TABLE 12-24 NIU Time Register 12–43

TABLE 12-25 Structures that Hold State 12–44

TABLE 12-26 Power-On Reset Sequence Duration 12–46

TABLE 12-27 Power-On Reset Duration on Tester 12–47

TABLE 12-28 Maximum Delay Warm Reset Sequence 12–49

TABLE 12-29 Minimum Warm Reset Duration 12–50

TABLE 12-30 Inport Ports Clocks 12–70

TABLE 12-31 Output Ports Clocks 12–72

TABLE 12-32 Register Abbreviations 12–75

TABLE 12-33 Power-On Reset sequence of Events 12–75

TABLE 12-34 Warm reset Sequence of Events 12–76
liv OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • July 2007

Preface

This OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification includes
detailed functional descriptions of the OpenSPARC T2 System-on-Chip I/O
components.

This manual also provides I/O signal list for each component. This processor
expands Sun’s throughput computing initiative by doubling the number of threads
from the OpenSPARC T1 processor and adding support for industry standard I/O
interfaces like PCI-Express and 10Gigabit Ethernet.

How This Document Is Organized
Chapter 1 describes the overall OpenSPARC T2

Chapter 2 describes the L2 Cache

Chapter 3 describes the Memory Control Unit (MCU)

Chapter 4 describes the Test Control Unit (TCU)

Chapter 5 describes the Clock Control Unit (CCU)

Chapter 6 describes System Interface Unit (SIU)

Chapter 7 describes the Non-Cacheable Unit (NCU)

Chapter 8 describes the Data Management Unit (DMU)

Chapter 9 describes the Miscellaneous I/O (MIO)

Chapter 10 describes the Debug Functions

Chapter 11 describes the Electronic Fuse Unit (EFU)
lv

Chapter 12 describes the Reset Functions

Using UNIX Commands
This document might not contain information about basic UNIX® commands and
procedures such as shutting down the system, booting the system, and configuring
devices. Refer to the following for this information:

■ Software documentation that you received with your system

■ Solaris™ Operating System documentation, which is at:

http://docs.sun.com
lvi OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

http://docs.sun.com

Shell Prompts

Typographic Conventions

Shell Prompt

C shell machine-name%

C shell superuser machine-name#

Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #

Typeface*

* The settings on your browser might differ from these settings.

Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your.login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when contrasted
with on-screen computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized.
Replace command-line variables
with real names or values.

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.
To delete a file, type rm filename.
Preface lvii

Related Documentation
The documents listed as online are available at:

http://www.opensparc.net/

Documentation, Support, and Training

Third-Party Web Sites
Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content,
advertising, products, or other materials that are available on or through such sites
or resources. Sun will not be responsible or liable for any actual or alleged damage
or loss caused by or in connection with the use of or reliance on any such content,
goods, or services that are available on or through such sites or resources.

Application Title Part Number Format Location

Documentation OpenSPARC T2 Core
Microarchitecture
Specification

820-2545 PDF Online

Documentation OpenSPARC T2 System-
On-Chip (SoC)
Microarchitecture
Specification

820-2620 PDF Online

Sun Function URL

OpenSPARC T2 http://www.opensparc.net/

Documentation http://www.sun.com/documentation/

Support http://www.sun.com/support/

Training http://www.sun.com/training/
lviii OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

http://www.sun.com/training/
http://www.sun.com/support/
http://www.sun.com/documentation/
http://www.opensparc.net/
http://www.opensparc.net/

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. You can submit your comments by going to:

http://www.sun.com/hwdocs/feedback

Please include the title and part number of your document with your feedback:

OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification, part number 820-
2620-10.
Preface lix

http://www.sun.com/hwdocs/feedback

lx OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

CHAPTER 1

OpenSPARC T2 Basics

1.1 Background

OpenSPARC T2 is the follow-on chip multi-threaded (CMT) processor to
the highly successful OpenSPARC T1 processor. The product line fully
implements Sun’s Throughput Computing initiative for the horizontal
system space. Throughput Computing is a technique that takes advantage
of the thread-level parallelism that is present in most commercial
workloads. Unlike desktop workloads, which often have a small number of
threads concurrently running, most commercial workloads achieve their
scalability by employing large pools of concurrent threads.

Historically, microprocessors have been designed to target desktop workloads, and
as a result have focused on running a single thread as quickly as possible. Single
thread performance is achieved in these processors by a combination of extremely
deep pipelines (over 20 stages in Pentium 4) and by executing multiple instructions
in parallel (referred to as instruction-level parallelism or ILP). The basic tenet behind
Throughput Computing is that exploiting ILP and deep pipelining has reached the
point of diminishing returns, and as a result current microprocessors do not utilize
their underlying hardware very efficiently. For many commercial workloads, the
processor will be idle most of the time waiting on memory, and even when it is
executing it will often be able to only utilize a small fraction of its wide execution
width. So rather than building a large and complex ILP processor that sits idle most
of the time, a number of small, single-issue processors that employ multithreading
are built in the same chip area. Combining multiple processors on a single chip with
1-1

multiple strands per processor, allows very high performance for highly threaded
commercial applications. This approach is called thread-level parallelism (TLP), and
the difference between TLP and ILP is shown in the FIGURE 1-1.

FIGURE 1-1 Differences Between TLP and ILP

The memory stall time of one strand can often be overlapped with execution of other
strands on the same processor, and multiple processors run their strands in parallel.
In the ideal case, shown in FIGURE 1-1, memory latency can be completely
overlapped with execution of other strands. In contrast, instruction-level parallelism
simply shortens the time to execute instructions and does not help much in
overlapping execution with memory latency.1

Given this ability to overlap execution with memory latency, why don’t more
processors utilize TLP? The answer is that designing processors is a mostly
evolutionary process, and the ubiquitous deeply pipelined, wide ILP processors of
today are the evolutionary outgrowth from a time when the processor was the
bottleneck in delivering good performance. With processors capable of multiple GHz
clocking, the performance bottleneck has shifted to the memory and I/O
subsystems, and TLP has an obvious advantage over ILP for tolerating the large I/O
and memory latency prevalent in commercial applications. Of course, every
architectural technique has its advantages and disadvantages. The one disadvantage
to employing TLP over ILP is that execution of a single thread will be slower on the
TLP processor than an ILP processor. With processors running well over a GHz, a

1. Processors that employ out-of-order ILP can overlap some memory latency with execution. However, this
overlap is typically limited to shorter memory latency events such as L1 cache misses that hit in the L2 cache.
Longer memory latency events such as main memory accesses are rarely overlapped to a significant degree
with execution by an out-of-order processor.

Strand 1

Strand 2

Strand 3

Strand 4

Executing Stalled on Memory

TLP

ILP
Single strand
executing two
instructions per
cycle
1-2 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

strand capable of executing only a single instruction per cycle is fully capable of
completing tasks in the time required by the application, making this disadvantage a
nonissue for nearly all commercial applications.

1.2 OpenSPARC T2 Overview
OpenSPARC T2 is a single chip multi-threaded (CMT) processor. OpenSPARC T2
contains eight SPARC physical processor cores. Each SPARC physical processor core
has full hardware support for eight strands, two integer execution pipelines, one
floating-point execution pipeline, and one memory pipeline. The floating-point and
memory pipelines are shared by all eight strands. The eight strands are hard-
partitioned into two groups of four, and the four strands within a group share a
single integer pipeline.

While all eight strands run simultaneously, at any given time at most two strands
will be active in the physical core, and those two strands will be issuing either a pair
of integer pipeline operations, an integer operation and a floating-point operation,
an integer operation and a memory operation, or a floating-point operation and a
memory operation. Strands are switched on a cycle-by-cycle basis between the
available strands within the hard-partitioned group of four using a least recently
issued priority scheme. When a strand encounters a long-latency event, such as a
cache miss, it is marked unavailable and instructions will not be issued from that
strand until the long-latency event is resolved. Execution of the remaining available
strands will continue while the long-latency event of the first strand is resolved.

Each physical core has a 16 KB, 8-way associative instruction cache (32-byte lines), 8
Kbytes, 4-way associative data cache (16-byte lines), 64-entry fully-associative
instruction TLB, and 128-entry fully associative data TLB that are shared by the eight
strands. The eight physical cores are connected through a crossbar to an on-chip
unified 4 Mbyte, 16-way associative L2 cache (64-byte lines). The L2 cache is banked
eight ways to provide sufficient bandwidth for the eight physical cores. The L2 cache
connects to four on-chip DRAM controllers, which directly interface to a pair of fully
buffered DIMM (FBD) channels. In addition, an on-chip PCI-EX controller, two 1-
Gbit/10-Gbit Ethernet MACs, and several on-chip I/O-mapped control registers are
accessible to the SPARC physical cores. Traffic from the PCI-EX port coherently
interacts with the L2 cache.

Note – OpenSPARC T2 currently does not include PCI-Express and 10Gigabit
Ethernet design implementation due to current legal restrictions. Equivalent models
may be available in the subsequent releases of OpenSPARC T2.
Chapter 1 OpenSPARC T2 Basics 1-3

A block diagram of the OpenSPARC T2 chip is shown in FIGURE 1-2

FIGURE 1-2 OpenSPARC T2 Chip Block Diagram

1.3 OpenSPARC T2 Components
This section describes each component in OpenSPARC T2.

Cache
Crossbar

(CCX)

CCU

SIU

SSI ROM IntfFCRAM Intf

NIU
10 Gb MAC

eFuse

PCI-EX

L2 Bank0

L2 Bank1

MCU 0SPARC Core

10 Gb MAC

OpenSPARCT2

PCI-EX

Fully Buffered
DIMMs (FBD)

TCU

MCU 1

MCU 2

MCU 3

10

14

10

10

10

L2 Bank0

L2 Bank1

L2 Bank0

L2 Bank1

L2 Bank0

L2 Bank1

64

64

128

64

64

128

64

64

128

64

64

128

1.4Ghz1.4Ghz 800Mh 4.8Ghz

DIMMs
Ranks

1
1 or 2 per DIMM

2 3 8

10

10

10

10

Optional dual Channel Mode

10

10

10

DIMMs 1 2 3 8

10

10

10

10

14

14

14

14

14

14

14

SPARC Core

SPARC Core

SPARC Core

SPARC Core

SPARC Core

SPARC Core

SPARC Core
1-4 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

1.3.1 SPARC Physical Core
Each SPARC physical core has hardware support for eight strands. This support
consists of a full register file (with eight register windows) per strand, with most of
the ASI, ASR, and privileged registers replicated per strand. The eight strands share
the instruction and data caches and Translation Lookaside Buffers (TLBs). An auto-
demap feature is included with the TLBs to allow the multiple strands to update the
TLB without locking.

There is a single floating-point unit within each SPARC physical core for a total of 8
on a T2 chip. Each floating-point unit is shared by all eight strands and is fully
pipelined. The theoretical floating-point bandwidth is 11 Giga Floating Point Ops
(GFlops) per second making the T2 an excellant floating-point processor.

Detailed information on the core processor is provided in OpenSPARC T2 Core
Microarchitecture Specification.

1.3.2 SPARC System-On Chip (SoC)
Each SPARC physical core is supported by system on chip hardware components.

Information on each of the functioning units of the system on chip of OpenSPARC
T2 are provided in the following chapters of OpenSPARC T2 System-On Chip (SoC)
Microarchitecture Specification (this manual).

1.3.3 L2 Cache
The L2 cache is banked eight ways. To provide for better partial-die recovery,
OpenSPARC T2 can also be configured in 4-bank and 2-bank modes (with 1/2 and
1/4 the total cache size respectively). Bank selection based on physical address bits
8:6 for 8 banks, 7:6 for 4 banks, and 6 for 2 banks. The cache is 4 Mbytes, 16-way set
associative with pseudo-LRU replacement (replacement is based on a used bit
scheme). The line size is 64 bytes. Unloaded access time is 26 cycles for an L1 data
cache miss and 24 cycles for an L1 instruction cache miss.

1.3.4 Memory Control Unit (MCU)
OpenSPARC T2 has four MCUs, one for each memory branch with a pair of L2
banks interacting with exactly one Dynamic Random-Access Memory (DRAM)
branch. The branches are interleaved based on physical address bits 7:6, and support
Chapter 1 OpenSPARC T2 Basics 1-5

1–16 Double Data Rate (DDR)2 DIMMs. Each memory branch is two Fully Bufered
DIMM (FBD) channels wide. A branch may use only one of the FBD channels in a
reduced power configuration.

Each DRAM branch operates independently and can have a different memory size
and a different kind of DIMM (for example, a different number of ranks or different
CAS latency). Software should not use address space larger than four times the
lowest memory capacity in a branch because the cache lines are interleaved across
branches. The DRAM controller frequency is the same as that of the DDR data buses,
which is twice the DDR frequency. The FBD links run at six times the frequency of
the DDR data buses.

1.3.5 Test Control Unit (TCU)
The TCU is the OpenSPARC T2 Test Control Unit and provides access to the chip
test logic. It also participates in Reset, EFuse programming, clock stop/start
sequencing, and chip debug. The TCU including JTAG is completely stuck-fault
testable via ATPG manufacturing scan

1.3.6 Clock Control Unit (CCU)
The Clock Control Unit encompasses the following functions:

■ PLL to drive the core and memory clocks

■ Interfacing with random number generator

■ UCB interface for programming the PLL's/RNG and reading RNG data

■ Provide sync pulses for deterministic clock domain crossing

■ Clock stretch and other test clocking mechanisms such as SerDes testing (via
DTM) for OpenSPARC T2 .

1.3.7 System Interface Unit (SIU)
The System Interface Unit connects the NIU, DMU and L2 Cache. SIU is the L2
Cache access point for the Network and PCI-Express subsystems. The SIU-L2 Cache
interface is also the ordering point for PCI-Express ordering rule.
1-6 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

1.3.8 Non-Cacheable Unit (NCU)
The NCU performs an address decode on I/O-addressable transactions and directs
them to the appropriate block (for example, NIU, DMU, CCU). In addition, the NCU
maintains the register status for external interrupts.

1.3.9 Data Management Unit (DMU)
The DMU manages Transaction Layer Packet (TLP) to/from the PCI-Express Unit
(PEU) and maintains the same ordering as from the PCI-Express Unit (PEU) and
then to the SIU. For maintaining ordering between PEU and SIU, the DMU requires
the policy that has Programmable Input/Output (PIO) reads pulling Direct Memory
Access (DMA) writes to completion. When the PEU issues complete TLP
transactions to the DMU, the DMU segments the TLP packet into multiple cacheline-
oriented SIU commands and issues them to the SIU. The DMU also queues the
response cachelines from SIU, reassembles the multiple cachelines into one TLP
packet with maximal payload size. Furthermore, the DMU accepts and queues the
PIO transactions requests from NCU, and coordinates with the appropriate
destination, to which the address and data will be sent.

The DMU encapsulates the functions necessary to resolve a virtual PCI-Express
packet address into a L2 cacheline physical address which can be presented on the
SIU interface. The DMU also encapsulates the functions necessary to interpret PCI-
Express message signaled interrupts, emulated INTX interrupts and provides the
functions to post interrupt events to queues managed by software in main memory
and generates the Solaris Interrupt Mondo to notify software. The DMU decodes
INTACK and INTNACK from interrupt targets and conveys the information to the
interrupt function so that it can move on to service the next interrupt if any (for
INTACK) or replay the current interrupt (for INTNACK).

1.3.10 Miscellaneous Input/Output (MIO)
MIO holds majority of non-Serdes I/O's of OpenSPARC T2 . The I/O's in MIO block
fall broadly under the functional categories of clock, reset, test (scan and ramtest),ssi
interface, process control (PCM) , efuse program enable and debug. Most of the
I/O's in MIO are on Boundary Scan chain under control of TCU. All the functional
flops in MIO are connected on regular scan chain with scanin,scanout and flush
reset capabilities under the control of TCU.
Chapter 1 OpenSPARC T2 Basics 1-7

1.3.10.1 Network Interface Unit (NIU)

The NIU connects a pair of on-chip 10 Gb/s Ethernet MACs to the rest of the system.
The NIU also contains the registers to control Ethernet traffic.

Note – The NIU microarchitecture description is not included in this document.

1.3.10.2 SSI ROM Interface (SSI)

OpenSPARC T2 has a 50 Mb/s serial interface (SSI), which connects to an external
field-programmable gate array (FPGA) that interfaces to the boot ROM. In addition,
the SSI supports Programmable Input/Output (PIO) accesses across the SSI, thus
supporting optional Control and Status registers (CSRs) or other interfaces within
the Field Programmable Gate Array (FPGA).

Note – The SSI microarchitecture description is not included in this document.

1.3.11 Debug
This chapter describes OpenSPARC T2 HW features for post silicon debugability
which involves debugging any issues that interfere with early bringup as well as
debugging the difficult, complex bugs that eluded pre-silicon verification, and are
unexpected or unusual corner cases. The overall goal of implementing these features
is to make silicon debug more efficient, shortening the time to root cause complex
bugs and thereby reducing time to remove and replace.

1.3.12 eFuse
The Efuse (electronic fuse) unit (EFU) contains an Efuse array macro (EFA), TCU
interface and an Efuse controller(FCT). In a broad sense, the Efuse array is a non-
volatile memory used to store information that needs to be programmed at the
factory and used in the field.

The eFuse (Electronic Fuse) unit contains configuration information that is
electronically burned in as part of manufacturing, including part Serial Number and
Strand_Available information.
1-8 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

1.3.13 Reset
The Reset Unit asserts signals that cause other units to immediately revert to the
initial state defined by the Programmer’s Reference Manual.

The OpenSPARC T2 team has endeavored to keep OpenSPARC T2 as much the same
as OpenSPARC T1 as possible. One major difference is that OpenSPARC T2
conforms to the CMP Programming Model.
Chapter 1 OpenSPARC T2 Basics 1-9

1-10 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

CHAPTER 2

Level 2 Cache

This chapter contains the following sections:

■ Section 2.1, “L2-Cache Functional Description” on page 2-1

■ Section 2.2, “Appendix” on page 2-67

2.1 L2-Cache Functional Description
The following sections describe the OpenSPARC T2 processor level 2 cache
(L2-cache):

■ Section 2.1.1, “L2-Cache Overview” on page 2-1

■ Section 2.1.2, “L2-Cache Block Functional Description” on page 2-3

■ Section 2.1.3, “L2 Pipeline” on page 2-14

■ Section 2.1.4, “L2 Interactions with Core” on page 2-16

■ Section 2.1.5, “Functional Description of Sub-blocks” on page 2-44

2.1.1 L2-Cache Overview
The OpenSPARC T2 L2 cache is 4 MB in size and is composed of 8 symmetrical
banks interleaved on a 64 B boundary. Each bank operates independently of all
others. Banks are 16 way set associative and 512KB in size. Block (line) size is 64 B.
Each L2 bank has 512 sets.

The L2 cache accepts requests from the SPARC cores on the processor to cache
crossbar (PCX) and responds on the cache to processor crossbar (CPX). The L2 is also
responsible for maintaining on-chip coherency across all L1 caches on the chip by
keeping a copy of all L1 tags in a directory structure. Since OpenSPARC T2
implements system on a chip with single memory interface and no L3 cache, there is
2-1

no off-chip coherency requirement for OpenSPARC T2 L2 cache other than being
coherent with main memory. The L2 cache is a writeback cache and has lines in one
of three states - invalid, clean, or dirty.

Each L2 bank has a 128b Fill interface and a 64b write interface with the dram
controller.

Requests arriving on the I/O interface are sent to the L2 from the System Interface
Unit.

The L2 cache unit works at the same frequency as the core (1.4 Ghz).
2-2 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 2-1 OpenSPARC T2 Processor Block Diagram

2.1.2 L2-Cache Block Functional Description
The L2 cache is organized into 8 identical banks as shown in the FIGURE 2-1. Each
bank has its own interface with SIU,MCU and Crossbar.

Each L2 cache bank interfaces with the 8 cores through a Processor Cache Crossbar.
The crossbar routes the L2 request (loads, ifetches, stores, atomics, asi accesses) from
all 8 cores to the appropriate L2 bank. The crossbar also accepts read return
data,invalidation packets and store ack packets from each L2 bank and forwards
them to the appropriate core(s).

Cache
Crossbar

(CCX)

CCU

SIU

SSI ROM IntfFCRAM Intf

NIU
10 Gb MAC

eFuse

PCI-EX

L2 Bank0

L2 Bank1

MCU 0SPARC Core

10 Gb MAC

OpenSPARCT2

PCI-EX

Fully Buffered
DIMMs (FBD)

TCU

MCU 1

MCU 2

MCU 3

10

14

10

10

10

L2 Bank0

L2 Bank1

L2 Bank0

L2 Bank1

L2 Bank0

L2 Bank1

64

64

128

64

64

128

64

64

128

64

64

128

1.4Ghz1.4Ghz 800Mh 4.8Ghz

DIMMs
Ranks

1
1 or 2 per DIMM

2 3 8

10

10

10

10

Optional dual Channel Mode

10

10

10

DIMMs 1 2 3 8

10

10

10

10

14

14

14

14

14

14

14

SPARC Core

SPARC Core

SPARC Core

SPARC Core

SPARC Core

SPARC Core

SPARC Core
Chapter 2 Level 2 Cache 2-3

Every 2 L2 cache banks interface with one MCU to issue reads and evictions to
DRAM on misses in the L2. Writebacks get issued 64bits at a time to MCU. Fills
happen 128 bits at a time from MCU to L2.

For 64 byte I/O writes from SIU, L2 does not allocate, but issues the writes to DRAM
through a 64 bit interface with MCU. There is a single 64 bit interface with MCU for
writebacks and I/O writes, and hence round robin arbitration is used between the
Writeback Buffer and the I/O Write Buffer for access to MCU.

Each L2 cache banks also accepts RDD (read to discard), WRI (block write
invalidate) and WR8 (partial write with random byte enables) packets from SIU over
a 32 bit interface and queues the packet in the SIU Q. RDD and WRI do not allocate
in the L2. On a hit, WRI invalidates in the L2 and issues a 64 B block write to DRAM.
On a hit, RDD gets back 64 B of data from L2. On a miss, RDD fetches data from
DRAM but does not install in L2, while WRI (on a miss) issues a 64 B block write to
DRAM. WR8 packets cause partial stores to happen in L2 like regular CPU stores
with random byte enables.

Each L2 cache bank is composed of the following sub-blocks:

■ IQ: The input queue is a 16 entry FIFO which queues packets arriving on the PCX
when they cannot be immediately accepted into the L2 pipe. Each entry in the IQ
is 130 bits wide.

■ SIUQ (SIU queue): Accepts RDD,WRI and WR8 packets from the SIU and issues
them to the pipe after arbitrating against other requests.

■ Arbiter: The arbiter manages access to the L2 pipeline from the various sources
which request access. The IQ, MB, SIUQ, FB and stalled instruction in pipe all
need access to the L2 pipe.

■ L2 Tag: holds the L2 tag array and associated control logic. Tag is protected by
SEC ECC

■ L2 VUAD: contains the Valid, Dirty, Used and Allocated bits for the tags in L2
organized in an array structure. There is one array for Valid and Dirty bits and a
separate array for Used and Allocate bits. Each array is protected by SEC DED
ECC.

■ L2 Data: Contains 512 KB of L2 Data storage and associated control logic. Data is
protected by SEC DED ECC on a 32/7 boundary.

■ L2 Directory: The directory maintains a copy of the L1 tags for coherency
management and also ensures that the same line is not resident in both the icache
and dcache (across all cores). The directory is split into an icache directory (icdir)
and a dcache directory (dcdir), which are similar in size and functionality.

■ Miss Buffer: The Miss Buffer (MB) has 32 entries and stores instructions which
cannot be processed as a simple cache hit. This includes true L2 cache misses (no
tag match), instructions that have the same cache line address as a previous miss
or an entry in the Writeback Buffer, instructions requiring multiple passes
through the L2 pipeline (atomics and partial stores), unallocated L2 misses, and
accesses causing tag ECC errors.
2-4 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

■ Fill Buffer: The Fill Buffer is an 8 entry buffer used to temporarily store data
arriving from DRAM on an L2 miss request. Data arrives from DRAM in four 16B
quad-words starting with the critical quad-word.

■ Write Back Buffer: The Writeback Buffer is an 8 entry buffer used to store dirty
evicted data from the L2 on a miss. Evicted lines are streamed out to DRAM
opportunistically.

■ I/O Write Buffer: The I/O Write Buffer is a 4 entry buffer which stores incoming
data from the PCI-EX interface in the case of a 64 B write operation. Since the PCI-
EX interface bus width is only 32 bits wide, the data must be collected over 16
cycles before writing to DRAM

FIGURE 2-2 shows a diagram of the major components of the L2 cache.
Chapter 2 Level 2 Cache 2-5

FIGURE 2-2 L2-Cache Organization

Core0 Core1 Core2 Core3 Core4 Core6Core5 Core7

Processor Cache Crossbar

M C U

L2 Tag

 Arbiter

 IQSIU
 Q

L2 Data

Miss
Buffer

Fill
Buffer

Write back
buffer

IO Write
Buffer

L2
VUAD

L2 Dir

 OQ

L2 Bank0

130
146

32

32

L2 Tag

 Arbiter

 IQSIU
 Q

L2 Data

Miss
Buffer

Fill
Buffer

Write back
buffer

IO Write
Buffer

L2
VUAD

L2 Dir

 OQ

L2 Bank1

130
146

32

32

IO
 w

rit
e/

w
rit

e
ba

ck
 d

at
a

64
b

IO
 w

rit
e/

w
rit

e
ba

ck
 d

at
a

64
b

rd
 r

eq
 +

 a
dd

r[
39

:6
]

fil
l d

at
a

12
8b

rd
 r

eq
 +

 a
dd

r[
39

:6
]

fil
l d

at
a

12
8b

in
va

lid
at

e/
w

rit
ea

ck
/d

at
a

re
tu

rn

14
0b

 R
ep

la
ye

d
in

st
ru

ct
io

n
12

8b
 F

ill
 d

at
a

in
va

lid
at

e/
w

rit
ea

ck
/d

at
a

re
tu

rn

S
IU

14
0b

 R
ep

la
ye

d
in

st
ru

ct
io

n
12

8b
 F

ill
 d

at
a

2-6 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

2.1.2.1 L2 Cache Interface Description

L2 cache interfaces with Crossbar, SIU and DRAM.

Crossbar

L2 cache receives requests from the core through the crossbar. These requests are
received, decoded and forwarded to the arbiter logic by the Input queue (IQ)
depending on the status of the arbiter block. The Input queue pipe line data path
diagram is shown in FIGURE 2-3.

FIGURE 2-3 Input Queue Pipeline Data Path Diagram

The timing diagram for a single load from PCX is shown in FIGURE 2-4.

The protocol for receiving a request from the crossbar is as follows:

The Input queue receives (pcx_l2t_data_rdy_px1) data valid signal followed by the
data (pcx_l2t_data_px2) in the next cycle. Along with the data valid signal, the
crossbar also dispatches a signal indicating if the instruction is atomic in
nature(pxc_l2t_atm_px1). The request thus received is decoded into address, data
and instruction fields in PX2 stage and forwarded to the arbiter logic to request
access to L2 cache to process the request. If the arbiter accepts the request, it gets
forwarded to L2 in the next clock, at which point the instruction reaches its C1 stage.
If the arbiter is busy then it can either be sent after one or two clocks or recorded in
the IQ array and dispatched later to the L2 pipe.

C
ro

ss
 B

ar

 pcx_sctag_atm_px1

 IQ

 pcx_l2t_data_px2[129:0] Inst[129:0]

PX1 C2PX2 C1
Chapter 2 Level 2 Cache 2-7

FIGURE 2-4 Timing Diagram for a Single Load from PCX

The protocol for L2 cache to send back a packet to the crossbar is as follows:

The L2 cache sends a request (l2t_cpx_req_cq) out in C7 of the pipeline if it has a
packet to be dispatched. The packet may be return data for load/ifetch requests,
acknowledgments for stores and invalidates for evictions and stores. The packet is
dispatched in C8 (through l2t_cpx_data_ca). If the packet is consumed by the
crossbar, an (cpx_l2t_gnt_cx) ack is received in C9. If an ack is not received from the
crossbar within 1 or 2 cycles from C8, it gets retried from the flops at the input and
output of the OQ respectively; if the ack gets received after 2 cycles, it gets retried
from the OQ. In case the ack does not come for a long time, the new packets coming
from the L2 pipe get accumulated in OQ until OQ fills up at which point the L2 pipe
gets stalled.

The Input queue is 16 deep. PCX packets get written to IQ only when the L2 pipeline
is stalled or busy and the PX2 arbiter does not accept any new PCX requests. IQ
asserts l2t_pcx_stall_pg to crossbar when it is 5 short of being full. This is shown in
FIGURE 2-5. These 5 cycles covers the packet shut off latency from core assuming the
worst case latency of the core shutting off packet dispatch after dispatching an
atomic packet.

Load data return

pcx_l2t_data_rdy_px1

pcx_l2t_data_px2[129:0]

Load hit

0

L2t_cpx_req_cq[7:0]

cpx_l2t_gnt_cx[7:0]

L2t_cpx_data_ca[145:0]

PX1 PX2 C1 C2 C3 C4 C5 C52 C6 C7 C8 C9
2-8 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 2-5 IQ written from PCX, PCX stall from IQ

SIU Interface

Requests from I/O’s are received by L2 cache through SIU Queue block. There are 3
kinds of requests that can be received from the SIU: RDD (Read 64B), WRI (write
64B) and WR8 (write 8Bytes). FIGURE 2-6 shows the pipeline data path diagram for
the SIU Queue Block.

pcx_l2t_data_rdy_px1

Pcx_l2t_data_px2[129:0]

L2t_pcx_stall_pg

0 9 101 2 3 4 5 6 7 8 11 12 13 14 15

 PQ PA PX1 PX2

Core shuts off dispatch of
new packets

5 clocks
Chapter 2 Level 2 Cache 2-9

FIGURE 2-6 SIU Queue Pipeline Data path Diagram

SIU dispatches requests to L2 cache through an unified address, data and instruction
bus called sii_l2t_req. This bus is 32 bits wide.

FIGURE 2-7 Timing Diagram showing RDD request and read data return

The FIGURE 2-7 shows a typical RDD hit in L2.

The protocol to receive a request from SIU is as follows:

sii_l2t_req[29:8]

snpq_arbdp_inst_px2 [25:0]

(RDD, WRI, WR8)

 Inst0[21:0]

sii_l2t_req[30] Inst0[25]

 sii_l2t_req[7:0] addr0[39:32]

 sii_l2t_req[31:0] addr0[31:0]

 sii_l2t_req[31:0] data0[63:32]

 sii_l2t_req[31:0] data0[31:0]

 Inst0[24:22]r_dmard_wr_entry[1:0]
(from rdma fifo)

Snpq_arbdp_addr[39:0]

(RDD, WRI, WR8)

snpq_arbdp_data_px2[63:0]

(WR8)

rdmatag_wr_addr_s2[39:6]

(WRI)

FIFO location 0

FIFO location 1

Sii_l2t_req[31:0] bypassed to IOW buffer from data0 cycle for WRI

req_vld addr0 addr1 data0 data1
sii_l2t_req[29:8] Inst1[21:0]

sii_l2t_req[30] Inst1[25]

 sii_l2t_req[7:0] addr1[39:32]

 sii_l2t_req[31:0] addr1[31:0]

 sii_l2t_req[31:0] data1[63:32]

 sii_l2t_req[31:0] data1[31:0]

 Inst1[24:22]

req_vld addr0 addr1 data0 data1

r_dmard_wr_entry[1:0]
(from rdma fifo)

D16 D1

l2t_sii_iq_dequeue

Ctag ---l2b_sio_data[31:0]

l2b_sio_ue_err

l2b_sio_ctag_vld

 PX1 PX2 C1 C2 C3 C4 C5 C52 C6 C7 C8 C9 C10 C11 C16

Addr, tag dummy
 data

3210sii_l2t_data[31:0]

RDD access

sii_l2t_req_vld
2-10 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

A valid signal (sii_l2t_req_vld) is sent along with the request to L2 cache. This signal
is used to qualify a valid request transfer from the SIU block. Once the request is
received by L2 cache, the instruction is registered and decoded into address, data
and instruction fields as shown in FIGURE 2-7.

L2 SIU Queue block can record up to 2 requests in it’s 2 deep fifo. Each fifo entry
registers the incoming packet from SIU over 4 groups of registers as shown in
FIGURE 2-7 for WR8 and RDD transactions and into 2 groups (address and tag) for
WRI transaction.For RDD, SIU will issue two dummy (pad) cycles on the
sii_l2t_data[31:0] bus, so that the RDD and WR8 pipeline within SIU Queue can stay
the same

The requests are received serially. There are 2 counters on the SIU side for flow
control. One counter tracks the number of transaction dispatched to L2 cache and
the other tracks the number of WRIs issued to L2 cache. The transaction counter is
maintained in the SIU side incrementing on a transaction dispatch to L2 cache and
decrementing upon receiving l2t_sii_iq_dequeue. WRI counter is incremented on
dispatching a WRI transaction to L2 cache and decremented upon receiving
l2t_sii_wib_dequeue signal. I/O Write Buffer can hold up to 4 cache lines. The
transaction counter would block issue of any more transactions that the 2 deep fifo
in the L2 SIU queue block can hold, while the WRI counter will keep a track of
overall number of WRI’s issued (cannot exceed 4). Thus as long as the WRI’s are
issued without violating the transaction count specified by the transaction counter,
and the WRI count of the WRI counter, there can be 4 WRI’ s outstanding to DRAM
at any point of time though the SIU queue is 2 deep only.

l2t _sii_iq_dequeue signal is asserted when an instruction is issued down the L2 pipe
(WR8,WRI & RDD transactions) in C1 stage. l2t_sii_wib_dequeue is asserted when
the contents of an I/O Write Buffer entry are streamed to DRAM (only WRI
transaction).

1. RDD: 64 byte read request is received by L2 cache over 5 clocks. During the data
cycle, dummy data is driven. The 64byte data from L2 is returned to SIU over 16
cycles with ctag_vld information.

2. WR8: 8 Byte writes are received by L2 cache over 5 clocks. The L2 treats this
instruction in exactly the same way as a store. When the write data gets written
into the L2 Data Array, an encoded 32 bit ack is sent out to SIU by asserting
ctag_vld in the same clock.

3. WRI: 64 byte write is received by L2 cache over 19 clocks. The line being written
is not allocated in the L2 cache. However if the write hits in the L2 cache, it
invalidates the L2 cache entry and also copies of the line in L1 caches. The WRI
packet gets written into the I/O Write Buffer from where the data gets written to
DRAM opportunistically. l2t_sii_iq_dequeue signal is asserted when the write
instruction is issued down the L2 pipe, and l2t_sii_wib_dequeue is asserted when
Chapter 2 Level 2 Cache 2-11

the contents of an I/O Write Buffer entry are streamed to DRAM. Also an
encoded write ack is sent out to SIU on l2b_sio_data[31:0] by asserting ctag_vld
indicating completion of the WRI.

Ordering of SIU Transactions in L2 (Data Returns and Write Acks from
L2 to SIU):

1. For same address to the same L2 bank, read returns and write acks will be always
in transaction order from SIU

2. For different addresses to the same L2 bank, depending on hit or miss, RDD’s can
send back data out of order.

3. For different addresses to the same L2 bank, WR8’s (partial writes with byte
masks) can send back acks out of order, depending on hit or miss. (WR8’s do read
modify writes, and WR8 ack gets sent only in the store update phase of the WR8).
So if there are two back to back WR8’s, and the first one misses, the second one
hits: ack will get sent for the second one before the ack for the first one, while the
first one is still waiting to fetch the data from memory.

4. For different addresses to the same L2 bank, WRI’s will send back acks in
transaction order from SIU as WRI’s go straight to memory and do not update L2.

2.1.2.2 MCU Interface:

L2 cache issues read and write requests to MCU. All instructions which do not hit in
L2 cache are recorded in the Miss Buffer (MB). Miss Buffer evaluates and sets a
(dram_pick) bit if it needs to be issued to MCU.

Reads which need to be dispatched to MCU should satisfy the following criteria:

■ Win arbitration among all pending reads (with the dram_pick bit set for reads).

■ Should have no pending (read or write) transactions to MCU waiting for an ack.

■ Should have enough place in the Fill Buffer for the read data to return.
2-12 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 2-8 Read Request from L2 Cache to MCU and Read Data Return

The protocol for sending out a read request is as follows:

A read request is dispatched to MCU by asserting a a read request (l2t_mcu_rd_req)
signal. Along with the read request the address and a read request ID
(l2t_mcu_rd_req_id) is dispatched in the same cycle. The read address is also
recorded in the Fill Buffer. MCU records and processes the read request. A read ack
(mcu_l2t_rd_ack) is sent back indicating that the read request was recorded.

When the data is ready, MCU returns the data to the L2 cache. The data is returned
with the data_valid (mcu_l2t_data_vld_r0) being sent first. Data (128 bits wide
mcu_l2t_data_r2), the read request id (mcu_l2t_qword_id[1:0]) and ECC information
(mcu_l2t_ecc_r2 [27:0]) related to the data is sent after 3 clocks. The read data
returned by the MCU gets recorded by the Fill Buffer. Upon receiving the data, the
missed load/ifetch from the Miss Buffer gets replayed through the L2 pipe and reads
the data from the Fill Buffer itself (critical 16B or 32B first) and sends data to
requesting core. After this, the Fill Buffer requests arbiter to complete the fill. The
qword data arrives from MCU in 4 packets. There is no relationship between the
dispatch of packets.

Also in case of a miss in L2 for a Block Init Store with PA[5:0] = 0, L2 will issue a
dummy read request to DRAM (l2t_mcu_rd_dummy_req), but MCU will send back
all 0’s in 4 packets. L2 will install the line with all 0’s in the data.

Writes to the MCU get issued when a request is recorded in the I/O Write Buffer
(IOWB) or Write back Buffer (WBB).

The following condition needs to be satisfied for a write to be dispatched to MCU:

■ Win arbitration among all pending writes. Writes can be in IOWB (WRI from SIU)
or WBB (eviction).

■ There should be no pending (read or write) transactions to MCU waiting for an
ack.

l2t_mcu_rd_req

l2t_mcu_addr[39:5]

l2t_mcu_rd_req_id[2:0]

mcu_l2t_rd_ack

mcu_l2t_data_vld_r0

mcu_l2b_data_r2[127:0] 0

mcu_l2b_ecc_r2[27:0]

mcu_l2t_chunk_id[2:0] 0 1 2 3

3 clk
1 32 3

1 32 30
Chapter 2 Level 2 Cache 2-13

FIGURE 2-9 MCU Write Transaction

The protocol is similar for writes:

A write request (l2t_mcu_wr_req) is sent to MCU along with the address for the
write data. Upon receiving a write request, DRAM sends a acknowledge back
indicating it is ready for receiving the write data. L2 cache takes 5 clocks upon
receiving the ack to the time it starts to send data to DRAM in sizes of 8Byte.

2.1.3 L2 Pipeline
The L2 pipeline has 9 stages, the details of which are described below.

■ Arbitration (PX2):

■ Mux between PCX, IQ, I/O, MBF and FBF and C1 (stalled) instructions

■ Tag Access (C1):

■ Tag access, VUAD Read and Bypass

■ Tag Compare

■ Miss Buffer CAM Operation in Phase1.

■ Miss Buffer Hit logic

■ Generation of ECC for store data

■ Generation & check of ECC for the access address

■ WBB and Fb CAM in Phase 2.

■ Way Sel Generation (C2):

■ Tag Hit logic

■ Replacement way logic (pseudo LRU)

■ Miss Buffer Hit generation and 2 cyc bypass.

■ Way select logic

■ Set, index, col, way sel, rd/wr, word enables xmit to the data array

5 clk

l2t_mcu_wr_req

l2t_mcu_addr[39:5]

mcu_l2t_wr_ack

l2b_mcu_data_vld_r5

l2b_mcu_wr_data[63:0] 0 1 2 3 4 5 6 7
2-14 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

■ Stall for mutlicycle operations (For e.g. Eviction, Fill etc.) or column offset
collision.

■ Way Sel Xmit (C3):

■ Set, index, col, way sel, rd/wr, word enables xmit in the data array

■ Evict way sel generation and eviction logic

■ MB tag write, MB Valid bit setting

■ Fb hit entry xmit to FB Data array (in l2b)

■ Data Access cyc1 (C4):

■ Data array read/write cycle 1 (for load/store hit)

■ Fb data buffer read.

■ Way sel transmit to data array for Fill only

■ Setup directory inputs for CAM/write operations.

■ Data Access cyc2 (C5):

■ Data array read/write cycle 2 (for load/store hit)

■ Data array read cyc 1 for eviction

■ WB tag write in the case of a dirty eviction

■ VUAD array Write

■ Way sel transmit within data array for Fill only

■ Stage Fb data

■ Write/CAM directory

■ Data Access cyc3 (C52):

■ Data array read/write cycle 3 (for load/store hit), 4:1 mux for L2 data

■ FB and L2 data mux

■ Data array read cyc 2 for eviction

■ Data array write cyc 1 for Fill

■ Data Return xmit (C6):

■ 16B data xmit to tag block

■ Data array read cyc 3 for eviction

■ Invalidation vector processing.

■ Request vector generation logic

■ Data array write cyc 2 for Fill

■ Error Correction (C7):

■ Error Correction/Detection

■ Request vector to OQ/CPX

■ Data array write cyc 3 for Fill
Chapter 2 Level 2 Cache 2-15

■ Data Response (C8):

■ L2 data and Invalidation data MUX

■ Data xmit to OQ/CPX

■ Write WBB data

■ 64b data merge for PSTs and 64b compare for CASX

2.1.4 L2 Interactions with Core
OpenSPARC T2 cores will use 8 bit Byte Mask fields for stores instead of 2 bit size
field that OpenSPARC T1 cores use. The main reason for this is to support VIS
partial stores with random byte enables.

This section describes the pipeline flow for a few representative L2 operations.

2.1.4.1 Load Hit

Loads always return 16B of data, and lower address bits are ignored, i.e. if a load
request to address 0x13 is presented to the L2, the 16 bytes at 0x10 are returned. The
8 bit byte mask field is ignored for loads. The different instruction types that fall in

TABLE 2-1 Pipeline Diagram: Load Hit

C1 C2 C3 C4 C5 C52 C6 C7 C8

tag,
VUAD
read
VUAD
bypass
tag
compare
Check
ECC for
Tags
MB CAM
and MB
hit logic
FB CAM
WBB
CAM

way sel
logic
xmit way sel
to l2d
rd/wr!
Gen,xmit
VUAD ECC
check

way sel
xmit in l2d

data array
read cyc1
FB data
read cycle
Xmit
inputs to
directory

data array
read cyc2
stage FB data
D$ directory
write
I$ directory
CAM
VUAD write

data
array
read
cyc3
4:1 mux
mux
with FB
data

data
xmit
cycle
gen
inval.
vector

request to
the dest cpx
queuecheck
ECC on
data

Mux
Data/In
val.
Vector
data
return to
dest. cpx
2-16 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

the category of loads are: load, prefetch, stream load, mmu load. Out of these, prefetch, stream load
and mmu load are non-cacheable (will have NC bit set in the PCX packet). These loads
do not cam the I$ directory and do not update the D$ directory.
Chapter 2 Level 2 Cache 2-17

FIGURE 2-10 Load Hit

ind ex

cam
_en

V
U

A
D

a rray

sctag _scda ta_w
ay_sel_c

sctag_scdata _rd_ w
r_c2

sct ag_ scdata_ col_ of fse t_ c

scta g_ scd at a_ w
ord _ en _ c2

fi ll_ buf fer_da ta
F

B
arra y

Inval
pkt
g en

updt_en

w
r_d at a

up dt _en

vuad_data

=
E

n try0

=
E

n try
n

=
E

n try1

D
$

P
0

D
$

P
1

D
$

P
n

I$
P

0

I $
P

1

I$
P

n

icdir _cam
_addr

vuad
P

0

vuad
P

1

vuad
P

n

Data Ecc

-
- &

0.............n

Index

B
ank0 B

ank1 B
a nk7

Tag Ecc

-
- &

0.............n

Index

Bank0

Bank1

Bank7

tag0

tag1

ta g2

tag3

t ag
n

pa rit y

parity

parity

parity

pari ty

w
ay

n

valid

= = = = =

tag_hit

A
d dress

tagctl_hit_l2orfb_c

fill_buffer_hit

tag_w
ay_hi

logic

LO
A

D
H

IT

F
B

array

=
E

nt ry0

=
E

nt ry
n

=
E

ntry1

F
B

C
o m

pare
A

ddre ss

valid
bits

vuad _in de

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

re ad_ dat a
ret urn

In vali datio n
pkt s

m
iss_buffer_hit

M
B

arra y

=
E

ntry0

=
E

nt ry1

M
B

C
om

p are
A

dd ress

valid
bits

=
E

ntry
n

w
bb _bu ff er_ hit

W
B

B
array

=
E

ntry0

=
E

ntry1

W
B

B
C

om
p are

A
d dress

val id
bi ts

=
E

n try
n

rdm
a_ buf fer_h it

IO
W

B
array

=
E

ntry0

=
E

ntry1

IO
W

B
C

o m
pare

A
d dress

valid
bits

=
E

n try
n

ind ex

cam
_en

V
U

A
D

a rray

sctag _scda ta_w
ay_sel_c2

sctag_scdata _rd_ w
r_c2

sct ag_ scdata_ col_ of fse t_ c 2

scta g_ scd at a_ w
ord _ en _ c2

fi ll_ buf fer_da ta
F

B
arra y

Inval
pkt
g en

updt_en

w
r_d at a

up dt _en

vuad_data

=
E

n try0

=
E

n try
n

=
E

n try1

D
$

P
0

D
$

P
1

D
$

P
n

I$
P

0

I $
P

1

I$
P

n

icdir _cam
_addr

vuad
P

0

vuad
P

1

vuad
P

n

Data Ecc

-
-

0.............n

Index

B
ank0 B

ank1 B
a nk7

Tag Ecc

-
-

0.............n

Index

Bank0

Bank1

Bank7

tag0

tag1

ta g2

tag3

t ag
n

pa rit y

parity

parity

parity

pari ty

w
ay

n

valid

= = = = =

tag_hit

A
d dress

tagctl_hit_l2orfb_c3

fill_buffer_hit

tag_w
ay_hit

logic

LO
A

D
H

IT

F
B

array

=
E

nt ry0

=
E

nt ry
n

=
E

ntry1

F
B

C
o m

pare
A

ddre ss

valid
bits

vuad _in dex

C
1

C
2

C
3

C
4

C
5,C

52
C
6

C
7

C
8

re ad_ dat a
ret urn

In vali datio n
pkt s

m
iss_buffer_hit

M
B

arra y

=
E

ntry0

=
E

nt ry1

M
B

C
om

p are
A

dd ress

valid
bits

=
E

ntry
n

w
bb _bu ff er_ hit

W
B

B
array

=
E

ntry0

=
E

ntry1

W
B

B
C

om
p are

A
d dress

val id
bi ts

=
E

n try
n

rdm
a_ buf fer_h it

=
E

ntry0

=
E

ntry1

valid
bits

=
E

n try
n

pkt /
ecc
gen

O
u tp ut F

i fo

sct ag_ cpx_re q_cq [7 :0

sctag_ cpx_d ata

pkt /
ecc
gen

O
u tp ut F

i fo

sct ag_ cpx_re q_cq [7 :0
]

sctag_ cpx_d ata

Way0
Wayn

Way0
Wayn
2-18 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

2.1.4.2 Store Hit

Eight bytes of store data is always sent to the L2. The LSU will ensure that the data
is properly aligned to the 8B boundary. The 8 bit byte mask indicates which bytes are
to be stored. Again, the lower address bits are ignored.

(This is different than OpenSPARC T1. OpenSPARC T1 L2 had to use the lower
address bits along with the size to determine what to store.)

FIGURE 2-11 shows the timing diagram for a 8/4 byte store with the following
combination of Byte Enables:

1111 1111

1111 0000

0000 1111

TABLE 2-2 Pipeline Diagram: Store Hit

C1 C2 C3 C4 C5 C52 C6 C7 C8

tag,VUAD
read
VUAD
bypass
tag
compare
Check
ECC for
Tags
MB CAM
and MB
hit logic
perform
store data
ECC
FB CAM
WBB
CAM

way sel
logic
xmit way sel
to l2d
rd/wr!
gen,xmit
VUAD ECC
check

way sel
xmit in l2d

ddata
array
write
cyc1
Xmit
inputs to
directory

data array
write cyc2
I$ and D$
directory
CAM
VUAD write

data
array wr
cyc3

gen
inval.vec
tor

request to
the dest cpx
queue (ack
for write)
check ECC
on data

Mux
Data/In
val.
Vector
Chapter 2 Level 2 Cache 2-19

FIGURE 2-11 Store Hit

To improve the performance of stores from L1, L2 cache in OpenSPARC T2 would

V
U

A
D

a rray

sctag _scda ta _w
a y_sel _c2

scta g_scd ata_rd _w
r_ c2

sctag_ scdat a_ col_ offset_c2

sctag _scda ta _w
o rd_e n_c2

W
ri te

A
ck

I nva l
p kt
g e n

u pd t_ e n

vua d_d ata

=
E

ntry0

=
E

nt ry
n

=
E

n try1

D
$

P
0

D
$

P
1

D
$

P
n

I $
P

0

I$
P

1

I$
P

n

ca m
_en

icd ir_ca m
_ad dr

vuad
P

0

vua d
P

1

vua d
P

n

Data Ecc

-
-

0.............n

Index

B
ank0 B

ank1 B
ank7

Tag Ecc

-
-

0.............n

Index

Bank0

Bank1

Bank7

tag0

tag1

t ag2

t ag 3

tag
n

pari ty

pa rity

p ari ty

pa rit y

pa ri ty

w
ay

n

vali d

= = = = =

hi t/ m
iss

A
d dress

l ogi c

S
T

O
R

E
H

IT

vu ad_ ind ex

C
1

C
2

C
3

C
4

C
5,C

5 2
C
6

C
7

C
8

ca m
_e n

d cdi r_ cam
_ a dd r

lo gic
=

E
n try0

=
E

n try
n

=
E

ntry1

In vali dat io n
pkts

t ag ctl _ hi t_ l 2o rfb _ c3

fil l_b uf fe r_hi t

tag _w
a y_hit

F
B

array

=
E

ntry0

=
E

ntry1

M
B

C
om

pare
A

ddress

val id
bi ts

=
E

ntry
n

m
i ss_bu ffer_ hit

M
B

array

=
E

ntry0

=
E

ntry1

M
B

C
om

pare
A

ddress

valid
bits

=
E

ntry
n

w
bb_buffer_hit

W
B

B
array

=
E

ntry0

=
E

n try1

W
B

B
C

om
pare

A
ddress

val id
bi ts

=
E

ntry
n

rdm
a_buffer_hit

IO
W

B
array

=
E

ntry0

=
E

ntry1

IO
W

B
C

om
pare

A
ddress

valid
bits

=
E

n try
n

w
rite_d ata

pkt /
ecc
ge n

O
ut pu t F

i fo

sct ag _ cpx_ re q_ cq [7 :0]

sct ag _cpx_ dat a

Way0
Wayn

Way0
Wayn
2-20 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

send back acks to core in case stores from L1 hit to outstanding store miss to the
same line in Miss Buffer. This would involve adding a control flop in Miss Buffer
control logic to associate a load miss or store miss with the MB entry. However the
ack will get sent back if it hits only in store misses. If any one of the addresses it hits
is a load miss, the ack will not be generated.

Note – In OpenSPARC T1, stores are ack’ed when they make their first pass through
the L2 pipe - hit or miss. The exception to this is when the store hits an entry in the
Miss Buffer. The reason for not issuing the ack in this case is that if the entry in the
MB were a load, the ack would cause the L1 to update before the load returned data,
causing WAR hazard. However, if the entry in the MB was a store, no such hazard
exists, and the ack can be issued.

Main reason for wanting to add this earlier ack capability in OpenSPARC T2 is to
complement the addition of store pipelining in the L1 for stores going to the same L2
cache line. In this scheme, a store that follows another store to the same L2 line can
be issued without waiting for the first store to be ack’ed, however in the absence of
acks for these stores, the Store Buffer entries cannot be dequeued. This would stall
dequeue of Store Buffer entries due to stores to different lines and different banks
also that are behind the stores to the same line. In this particular case (stores to the
L2 line are all waiting in the Miss Buffer for the data return from DRAM), this can
amount to stalling the drain of the Store Buffer in L1 for ~160 cpu cycles, causing it
to be filled up and thread(s) to stall.

The Store Buffer is only 8 entries per thread, and once it fills up, the thread stalls, so
we want to minimize this. STB stalls cause a noticeable degradation in performance.
The decrease in stalls from adding pipelining gained somewhere around 15% on
SpecINT, so it’s a worthwhile change.

2.1.4.3 Partial Store

Partial stores are stores which have any combination of byte masks other than
00001111,11110000 and 11111111.

Even for partial stores, eight bytes of store data is always sent to the L2. The LSU
will ensure that the data is properly aligned to the 8B boundary. The 8 bit byte mask
would indicate which bytes are to be stored. Again, the lower address bits (0,1,2) are
ignored.
Chapter 2 Level 2 Cache 2-21

Partial stores are handled as a read-modify-write operation in two passes through
the pipe. The first pass is shown in Timing Diagram . The second pass is identical to
a store, except that the ack does not get sent again.

The merged data is written into the Miss Buffer and is readied for reissue in C9.

TABLE 2-3 Timing Diagram: Partial Store

C1 C2 C3 C4 C5 C52 C6 C7 C8

tag,VUAD
read
VUAD
bypass
tag
compare
Check
ECC for
Tags
MB CAM

and MB
hit logic
FB CAM
WBB
CAM

way sel
logic
xmit way sel
to l2d
rd/wr!
Gen,xmit
VUAD ECC
check

way sel
xmit in l2d

data array
read cyc1
FB data
read cycle
Xmit
inputs to
directory

data array
read cyc2
stage FB data
I$ and D$
directory
CAM
VUAD write

C52
data
array
read
cyc3
4:1 mux
mux
with FB
data

data
xmit
cycle
gen
inval.
vector

request to
the dest cpx
queue (ack
for write)
check ECC
on data

Mux
Data/in
val
vector
Merge
data
2-22 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

2.1.4.4 Ifetch Hit

ICache line is 32 B, so two data reads are required for an Instruction Fill request.

TABLE 2-4 Timing Diagram: Ifetch Hit

C1 C2 C3 C4 C5 C52 C6 C7 C8

tag,VUAD
read
VUAD
bypass
tag
compare
Check
ECC for
Tags
MB CAM
and MB
hit logic
FB CAM
WBB
CAM

way sel
logic
xmit way sel
to l2d
rd/wr!
Gen,xmit
VUAD ECC
check
stall next
instru-ction

way sel
xmit in l2d

data array
read cyc1
FB data
read cycle
Xmit
inputs to
directory

data array
read cyc2
stage FB data
I$ directory
write
D$ directory
CAM
VUAD write

data
array
read
cyc3
4:1 mux
mux
with FB
data

data
xmit
cycle
gen
inval.
vector

request to
the dest cpx
queue
check ECC
on data

Mux
Data/In
val.
Vector

data
return to
dest. cpx
Chapter 2 Level 2 Cache 2-23

FIGURE 2-12 Ifetch Hit

The following 16B data block is transmitted in C9. Note that Ifetch misses are 32B

ca m
_en

V
U

A
D

array

sct ag _scda ta_ w
ay_ sel_ c2

sct ag _scda ta _rd_ w
r_c2

sct ag_ scdata_ col_ of fse t_ c2

sct ag_ scdata_ w
ord _en _c2

fill _bu ff er_ dat a
F

B
arra y

up dt _en

w
r_data

upd t_ en

vu ad_ dat a

I nva l
p kt
gen

=
E

nt ry0

=
E

nt ry
n

=
E

ntry1

D
$

P
0

D
$

P
1

D
$

P
n

I$
P

0

I $
P

1

I$
P

n

dcdir_cam
_addr

vuad
P

0

vuad
P

1

vuad
P

n

Data Ecc

-
-

0.............n

Index

B
ank0 B

ank1 B
a nk7

Tag Ecc

-
-

0.............n

Index

Bank0

Bank1

Bank7

tag0

tag1

tag 2

ta g3

tag
n

p arity

pari ty

pa rit y

p arity

pari ty

w
ay

n

val id

= = = = =

ta g_h it

A
ddress

tagctl_hit_l2orfb_c3

fi ll_ buff er_h it

tag_w
ay_hit

log ic

IF
E

T
C

H
H

IT

F
B

array

=
E

ntry0

=
E

n try
n

=
E

n try1

F
B

C
om

pare
A

ddress

valid
bits

vuad _in dex

C
1

C
2

C
3

C
4

C
5,C

52
C
6

C
7

C
8

re a d_ d at a
ret urn

I nva l id a ti on
p kts

m
iss_ buff er_h it

M
B

array

=
E

ntry0

=
E

ntry1

M
B

C
om

p are
A

dd ress

valid
bits

=
E

nt ry
n

w
bb_buffer_hit

W
B

B
array

=
E

ntry0

=
E

n try1

W
B

B
C

om
pa re

A
ddre ss

val id
bi ts

=
E

ntry
n

rdm
a_buffer_hit

IO
W

B
a rray

=
E

ntry0

=
E

n try1

IO
W

B
C

om
pare

A
ddress

valid
bits

=
E

ntry
n

ind ex

p kt/
ecc
gen

O
u tp utF

if o

scta g_cp x_req _cq[7: 0]

sctag_ cpx_d ata

p kt/
ecc
gen

O
u tp u tF

if o

scta g_cp x_req _cq[7: 0]

sctag_ cpx_d ata

Way0
Wayn

Way0
Wayn
2-24 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

aligned, and 32 B get returned to the core over two consecutive cycles. For a 32 B
ifetch with lower address bits non-zero (unaligned 32B read), the two 16B lines are
returned in address order, not critical line first. The 8 bit byte mask field is ignored
for Ifetch.

Note that if the NC bit is a 1 for an Ifetch request (L1 I$ is disabled), it will still cam
the D$ directory and send an invalidation vector if there is a hit in the D$ directory.

2.1.4.5 Miss

An instruction that does not hit the L2 cache, Fill Buffer or the Writeback Buffer is
queued in the Miss Buffer as a "true miss". Eviction is performed during the second
pass of the miss operation. This is done to remove the hit/miss determination from
the critical C1 stall signal. To improve the performance of stores from L1, L2 cache in
OpenSPARC T2 would send back acks to core in case stores from L1 hit to
outstanding store miss to the same line in Miss Buffer. This would involve adding a
control flop in Miss Buffer control logic to associate a load miss or store miss with
the MB entry. However the ack will get sent back if it hits only in store misses. If any
one of the addresses it hits is a load miss, the ack will not be generated.

In C9, EVICT_READY bit gets set in MB. The instruction (along with data for a
store) gets written to MB also in C9.

TABLE 2-5 Timing Diagram: Miss

C1 C2 C3 C4 C5 C52 C6 C7 C8

tag,VUAD
read
tag
compare
MB CAM
perform
store data
ECC (for
store)
VUAD
bypass
FB CAM
WBB
CAM

way sel
logic,
check
VUAD ECC

write MB
tag
set MB
valid bit

request to
the dest cpx
queue (ack
for write in
case it is a
store miss
but hits in
one or more
MB store
miss
entries)
Chapter 2 Level 2 Cache 2-25

2.1.4.6 Eviction (Clean or Dirty)

The entry in the Miss Buffer is selected for issue in case the EVICT_READY bit gets
set indicating it is ready for eviction. An evict instruction gets issued from the Miss
Buffer which causes eviction to happen as it makes a pass down the pipe. This also
clears the EVICT_READY bit provided evict instruction pass does not encounter a
TECC error. Invalidation of L1 cache lines happen for eviction of clean or dirty lines.
However only dirty lines are sent to DRAM, clean lines just get overwritten.

TABLE 2-6 Timing Diagram: Eviction

C1 C2 C3 C4 C5 C52 C6 C7 C8 C9

tag,VUA
D read
tag
compare

VUAD
byp

perform
pseudo
LRU
stall two
cycles to
avoid
collision
with
instruction
after evict
instruction
for data
array
access

way sel
logic
mux out
evicted
tag

way sel
Xmit to
l2d

way sel
xmit in
l2d

data array
read cyc1
I$ and D$
directory
CAM
write
evicted tag
in WBB
VUAD
Write

data
array
read
cyc2

data
array
read
cyc3
gen
inval.
vector

xmit inv
response
to dest cpx
queues

inv
packet
to dest
cpx
data
queues
write
WBB
data

ready
for
request
to
DRAM
2-26 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

2.1.4.7 Fill

FIGURE 2-13 Read Miss and Read Data Fill from DRAM

TABLE 2-7 Timing Diagram: Fill

C1 C2 C3 C4 C5 C52 C6 C7 C8 C9

tag write stall three
cycles
to avoid
collision
with
instruction
after fill for
data array
access

Xmit FB
entry to
l2b

way sel
xmit to
l2d
read FB

VUAD write
Xmit way
sel inside
l2d
mux fbdata
with l2d

data
array
wr cyc
1

data
array
wr cyc2

data array
wr cyc3
Chapter 2 Level 2 Cache 2-27

M
B
D
ata

m
b_d ata_w

r_en
w

rit e
da ta

w
r_da ta

=
{28 'b 0, m

bda ta _in st_ te cc_c8[5: 0] ,m
bctl_e vict_c8,

m
b ctl _de p _c8

, m
bct l_ te cc_ c8,

m
bct l_ m

ben try_ c8[3:0],
a rbdp _ in st_ c8 [2 2: 0] ,m

bda ta _in st_ dat a_ c8[6 3: 0]}

d ram
_p rev_p ick

dram
_ pick

dram
_ pick_ p1

dram
_pick_d1

dram
_pick_d2

sctag_dram
_rd_req

m

b_addr_rd_en
dram

_ read _ad dr

d ram
_w

r_ad dr

sctag_dram
_ rd_a ddr[39 :5]

fillbuff
tag

array

fb _w
r_en

m
b_data_rd_en

sctag_dram
_rd_req_id[2:0]

w
r_ptr

m
b

id

d ram
_sctag _rd_ ack

dram
_ scta g_rd _ack_ d1

lo g ic

dra m
_rea dy_b it

m
btag _rea d_d at a[39:6],

m
bd at a_i nst _t ecc[5: 0]

d ram
_d at a_vl d_r0 _d1

d ram
_sctag _da ta _vld _r1

dram
_ scta g_q w

ord _i d
r0 d1[1:0]

dra m
sctag dat a_ vld_ r1

dra m
sctag dat a_ r2[127:0]

d ram
sct ag decc_ r2[27:0]

reg ro up
fo r

3 2
bi ts

ram
_ data[15 5: 0]fb array_ w

r_e n

dram
_ scta g_d ata_vl d_r0

d ram
_sctag _qw

ord_ id_ r0[1:0][

f il lbuf f
d ata

l2c_ fi ll_ read y

R
ead

M
iss

and
R

ead
data

fillfrom
D

R
A

M

P
ha se

1
R

e ad/ W
rite

P
ha se

2
A

dd ress
com

pa re
A

nd
V

al id
bi ts

an d
S

ta rt
com

puting
hitsign al

C
ont in ue

to
C

om
p ute

hit
si gna l.

G
ene rate

W
ri te

en a bl e s

W
rit e

to
M

iss
buf fer

T
a g

W
rit e

to
M

i ss
b uf fe r

D
at a

M
B

tag

M
B

D
ata

m
b _co m

p are _ ad d r_p x2 [3 9: 8]

=

p arity
check

h itg ene rat ion
l ogi c

T
a g

R
am

m
iss

m
i ss

b u ff er
w

r_ en
w

ri te
a ddr

=== == == == = === = =

m
b

e ntry
0

m
b

en try
1

m
b

e n try3 1

m
b

e ntry
2

m
b

e nt ry
3

M
B
ta g

Valid bits are and-ed her

logic
M

B
T

a g

F
B

IO
W

B
B

W
B

B

C
5,C

52
C

1
C

2
C

3
C

4
C

6
C

7
C

8
D

1

D

2
D

3
C

3
R

1
R

O
R

2
R

3
R

4
R

5

2-28 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 2-14 Evict and Write back to DRAM

V
U

A
D

array

T
A

G
array

LR
U

P
ick

W
ay

sel

D
irty

evict

xm
it LR

U
W

a y
se l

D
ata

array
rea d

w
bt ag_ w

en

w
btag_ w

en

W
B

T
a g

w
bd at a_w

en

w
bd at a

w
bd at a_w

en

W
B

D
ata

w
bd at a

w
bt ag _ad d r[3 9: 0]

set _w
b_vl d

inst_addr_c4

evict_addr_c4

set _w
r_ req_ pen d

l og i c

w
bt ag _ rd_ e n

scta g_d ram
_a dd r[3 9 :5]

scta g _d ra m
_w

r_ req

dra m
__sct ag w

r_a ck

read _en

d ra m
_rd _ ad d r[3 9: 5]

w
bb _ w

r_ a dd r[3 9:0]

iow
b_w

r_ad dr[39: 0]
dra m

_ w
r_ a dd r[3 9 :5

]

w
b_array_dout[623:0]

iow
b_array_dout[623:0]

w
b_array_dout_r3[623:0]

M
ux

logic

w
b_array_dout_r3_8t1[77:0

]

w
b_array_dout_r4[77:0]

scb uf_dra m
_w

r_ dat a_ r5[63:0]

scbuf_dram
_w

r_data_vld_r5

scbuf_dram
_data_m

ecc_r5
cm

p
logic

E
victand

W
rite

back
to

D
R

A
M

W
B

T
a g

W
B

D
ata

W
ay

sele ctt ransm
i tin

scda ta
W

ay
selecttransm

itfrom
sctag

to
scdata

E
C

C
g ene rat ion

C

1
C

2
C

3
C

4

R
0

R
1

R
2

R
3

R
4

C
6

C
7

C
8

C
9

C
5,C

52
Chapter 2 Level 2 Cache 2-29

2.1.4.8 Atomics LDSTUB/SWAP 1st Pass

Same as a load with a merge in C8.

The first pass through the L2 pipe reads 16B of data at the address requested
(ignoring the lower bits), returns it to the requesting processor, and merges the
swap/UB data. The merged data is written into the Miss Buffer and is readied for
reissue in C9. The instruction then goes through a second pass upon which the new
data is stored and an acknowledgment is sent to the requesting processor. The
second pass of a ldstub/swap is same as that for a store hit.

For SWAP and LDSTUB, the bytes to write in L2 will be picked up from the Byte
Mask itself. SWAP is always 32b aligned on 4 byte boundary and LDSTUB is always
8b.

2.1.4.9 Atomics CAS

CAS{X} instructions are handled as two packets. The first packet (CAS(1)) reads the
data from memory, sends the data back to the requesting processor, and performs
the comparison in C8. The second packet (CAS(2)) is inserted into the MB as a store.
If the comparison result is true, the second packet proceeds like a normal store. If the
result was false, the second pass proceeds to only generate the store
acknowledgment. The data arrays are not written.

TABLE 2-8 Timing Diagram: Atomics LDSTUB/SWAP 1st Pass:

C1 C2 C3 C4 C5 C52 C6 C7 C8

tag,VUAD
read
VUAD
bypass
tag
compare
Check
ECC for
Tags
MB CAM
and MB
hit logic
FB CAM
WBB
CAM

way sel
logic
xmit way sel
to l2d
rd/wr! Gen,
xmit
VUAD ECC
check

way sel
xmit in l2d

data array
read cyc1
FB data
read cycle
Xmit
inputs to
directory

data array
read cyc2
stage FB data
D$ directory
write
I$ directory
CAM
VUAD write

data
array
read cyc
3
4:1 mux
mux
with FB
data

data
xmit
cycle
gen
inval.
vector

request to
the dest cpx
queue
check ECC
on data

Mux
Data/In
val.
Vector

data
return to
dest.
Cpx

Merge
data as
in Partial
Store
2-30 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

CASA/CASXA are similar, but with one difference. CASA is 32b, aligned on 4 byte
boundary and CASXA is 64b. The compare and conditional store are assumed to be
on an 8B boundary (except the load return which is always 16B). The 8 bit Byte Mask
will indicate which bytes to compare and conditionally store.

2.1.4.10 Prefetch Invalidate Cache Entry (ICE)

L2 supports Prefetch ICE instruction which gets used by SW to flush lines in L2
based on an index and a way specified as part of the Physical Address in the
instruction itself. Bits [39:37] of the PA has to be driven as 3’b011 by SW and the way,
index, bank information would be on PA[21:18], PA[17:9] and PA[8:6] respectively.
LSU issues a prefetch instruction over the crossbar to L2 with bit 116 (inv bit) of the
cpx packet being 1’b1. On seeing this packet, L2 flips bit 39 to 1’b1 before storing it
in IQ array or feeding to the pipe. Thus with PA[39:37] = 3’b111, it is guaranteed that
the instruction always misses in L2 irrespective of 8/4/2 bank mode of operation.

The Prefetch ICE gets executed in L2 in two passes. First pass is like a regular
prefetch which misses in the L2 tags.On the miss, the instruction gets written to the
Miss Buffer and also the Evict bit gets set. However the DRAM read gets suppressed
as this is a flush instruction only and no data needs to be read from memory.

In the second pass, an evict instruction gets issued from the Miss Buffer for the
Prefetch ICE and it will use the way specified in PA[21:18] of the Prefetch ICE packet
itself to pick the Eviction way and L2 Directory Lookup way, instead of the way
picked by the LRU logic. Then the eviction proceeds like normal: an eviction
invalidation packet gets generated and sent to the crossbar to invalidate all L1 ways
for all cores that are included in that line. In case the line is dirty, a writeback
happens to DRAM. In the eviction pass of the instruction, it gets deleted from the
Miss Buffer. No response packet gets sent to the cores for the instruction itself.

Note that in case the Prefetch ICE instruction encounters a Tag Parity Error or
VUAD CE in either the first pass, the error is ignored (not logged and reported) and
the Prefetch ICE goes on as normal. However in its second pass if the Prefetch ICE
detects a tag parity error, it will be re-inserted into the Miss Buffer, the eviction pass
will not happen and a scrub will be issued from the Miss Buffer. After the scrub is
complete, the eviction pass of the Prefetch ICE will occur and if this time there are
no more tag parity error detected, the eviction pass will complete. This is because
the tag parity error could have corrupted any bit of the address, so that unless
corrected, the eviction of a dirty line would cause data corruption in memory.
However if the eviction pass of the Prefetch ICE encounters a VUAD CE, the error
would be ignored and the eviction pass would go through since we know the way
already that has to be evicted.The VUAD data would get silently corrected before it
gets written to the VUAD array in C5.

Note that since any error in the Dirty bit would have been silently cleaned in the
first pass of Prefetch ICE itself, in the second pass of the Prefetch ICE, the way to
flush would be identified correctly as clean or dirty and the dirty line would get
Chapter 2 Level 2 Cache 2-31

evicted to DRAM properly. Also if the Dirty bit error gets detected in C2 stage of the
second pass of Prefetch ICE (the corruption in the array happened in between the
first and second passes), the way to flush would still get correctly identified as clean
or dirty in the second pass, as the data would get silently corrected in c2 stage of the
second pass itself.

Prefetch ICE First Pass (Miss in L2)

In C9, EVICT_READY bit gets set in MB. The instruction gets written to MB also in
C9. However dram_ready bit does not get set in C9, thereby stopping issue of a
DRAM read request.

TABLE 2-9 Timing Diagram: Prefetch ICE First Pass (Miss in L2):

C1 C2 C3 C4 C5 C52 C6 C7 C8 C9

tag,
VUAD
read
tag
compare
MB CAM
VUAD
bypass
FB CAM
WBB
CAM

miss
detected
Tag parity
error NOT
checked
VUAD ECC
checked,
data
corrected if
SE detected
(CE not
logged)

write MB
tag
set MB
valid bit

VUAD
write

set
evict_rd
y in MB
Prefetch
ICE
written
in MB
dram_rd
y not set
2-32 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

2nd Pass of Prefetch ICE (Eviction plus Delete from Miss Buffer)

Note that to ensure ordering, after the Prefetch ICE is inserted into the Miss Buffer,
requests from crossbar and SIU are blocked from entering into the L2 pipeline, and
the second pass of the Prefetch ICE (eviction pass) is not issued from the Miss Buffer
until the Miss Buffer count becomes 1 (the Prefetch ICE is the only instruction in the
Miss Buffer). After the second pass of Prefetch ICE completes, the stall of the
crossbar and SIU requests are removed, and instructions that accumulated in IQ
Array and Snoop queue can go through.

TABLE 2-10 Timing Diagram:2nd Pass of Prefetch ICE (Eviction plus Delete from Miss Buffer)

C1 C2 C3 C4 C5 C52 C6 C7 C8 C9

tag,
VUAD
read
tag
compare
VUAD
byp

pick
replacemen
t way from
PA[21:18],
Tag parity
error NOT
checked
VUAD ECC
checked,
data
corrected if
SE
detected.
(CE not
logged)
stall two
cycles to
avoid
collision
with
instruction
after evict
instruction
for data
array access

way sel
logic
mux out
evicted
tag
way sel
Xmit to
l2d
delete
entry
from MB

way sel
xmit in
l2d

data array
read cyc1
I$ and D$
directory
CAM
write
evicted tag
in WBB
write
VUAD
array

data
array
read
cyc2

data
array
read
cyc3
gen
inval.
vector

xmit inv
respons
e to dest
cpx
queues

inv
packet
to dest
cpx data
queues
write
WBB
data
(if dirty)

ready
for WBK
request
to
DRAM
(if dirty)
Chapter 2 Level 2 Cache 2-33

Diagnostic Read of Data Array:

Diagnostic read access to the L2 data array is done through 64 bit read that access a
32 bit data subblock along with the corresponding 7 bit ECC. The instruction that
gets used is Diagnostic Load.

Diagnostic Write of Data Array:

Diagnostic write access to the L2 data array is done through 64 bit store that access a
32 bit data subblock along with the corresponding 7 bit ECC.The instruction that
gets used is Diagnostic Store.

TABLE 2-11 Timing Diagram: Diagnostic Read of Data Array

C1 C2 C3 C4 C5 C52 C6 C7 C8 C9

tag,
VUAD
read

disable
way sel
gen
stall c1
instruc.

Gen way
sel from
decoded
address

Xmit way
sel to l2d

Xmit way
sel inside
l2d

read data
array
cyc 1

read
data
array
cyc 2

read
data
array
cyc 3

Xmit 156
bits of data
to l2t

Mux
out 39
bits.
Xmit
req on
CPX

Xmit 39
bits of
data
with
rest of
CPX
packet

TABLE 2-12 Timing Diagram: Diagnostic Write of Data Array

C1 C2 C3 C4 C5 C52 C6 C7 C8 C9

tag,
VUAD
read

disable
way sel
gen
stall c1
instruc.

Gen way
sel from
decoded
address

Xmit way
sel to l2d

Xmit way
sel inside
l2d

write data
array
cyc 1

write
data
array
cyc 2

write
data
array
cyc 3

Gen inv
vector =
0’s

Xmit
write
ack to
CPX

Mux
data/in
v vector
2-34 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

Diagnostic Read of Tag Array

Diagnostic read to the L2 tag array is done through 64 bit read that accesses the tag
along with the corresponding 6 bit ECC. The instruction that gets used is Diagnostic
Load.

Diagnostic Write of Tag Array:

Diagnostic write to the L2 tag array is done through 64 bit write that accesses the tag
along with the corresponding 6 bit ECC.The instruction that gets used is Diagnostic
Store.

TABLE 2-13 Timing Diagram: Diagnostic Read of Tag Array

C1 C2 C3 C4 C5 C52 C6 C7 C8 C9

diagnosti
c decode

mux px2
index

read tag
array

prepare
way mux
selects

mux out tag
and flop

stage
data

stage
data

stage data xmit
req to
CPX
mux
with
data
from
other
srcs
(diagno
stic/VU
AD
diagnos
tic/retu
rn
data/in
v
vector)

xmit tag
data to
CPX

TABLE 2-14 Timing Diagram: Diagnostic Write of Tag Arra

C1 C2 C3 C4 C5 C52 C6 C7 C8 C9

do
nothing

enable
write into
the tag
stall pipe
for 3 cycles

write into
the tag

do
nothing

do nothing do
nothing

do
nothing

do nothing xmit
request
to cpx

xmit
ack to
CPX
Chapter 2 Level 2 Cache 2-35

Diagnostic Read of VD/UA Array:

Diagnostic read to the L2 VD/UA arrays is done through a pair of address access
ranges. The first accesses the valid and dirty bits for an entire set plus the parity for
each of those bits across the set via 64 bit read. The second range accesses the AU
bits for the entire set via 64 bit read.The instruction that gets used is Diagnostic
Load.

Diagnostic Write of VD/UA Array:

Diagnostic write to the L2 VD/UA arrays is done through a pair of address access
ranges. The first accesses the valid and dirty bits for an entire set plus the parity for
each of those bits across the set via 64 bit write. The second range accesses the used
and allocate bits for the entire set via 64 bit write.The instruction that gets used is
Diagnostic Store.

Block Loads:

The core issues four 16B loads non-atomically. The L2 treats them as four separate
load instructions.

TABLE 2-15 Timing Diagram: Diagnostic Read of VD/UA Array

C1 C2 C3 C4 C5 C52 C6 C7 C8 C9

VUAD
array
read

stall pipe
for 4 cycles
mux out
appropriat
e bits (VD
or UA
based on
address)

flop o/p
data

flop o/p
data

flop o/p
data

flop
o/p
data

flop
o/p
data

flop o/p
data

xmit
req to
requesti
ng cpx
mux
VUAD
data
with
data
from
other
srcs

xmit
data to
cpx

TABLE 2-16 Timing Diagram: Diagnostic Write of VD/UA Array:

C1 C2 C3 C4 C5 C52 C6 C7 C8 C9

do
nothing

stall pipe
for 4 cycles

stage wr
data

stage wr
data

vuad
write

do
nothing

do
nothing

do nothing xmit
req to
CPX

xmit
ack to
CPX
2-36 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

Block Stores:
■ issued by the core with bis bit (bit 114) and bst bit (bit 115) both =1 on the PCX

packet.

■ On a hit in L2, each store behaves like a normal store.

■ On an L2 miss, line is fetched from DRAM, allocated in L2 and updated in L2.

■ On directory CAM access, all matching L1’s are invalidated. In addition, the entry
in the directory that got hit also gets invalidated.

Block Init Stores:
■ issued by the core with the bis bit (bit 114) of PCX packet = 1.

■ On a hit in L2, each store behaves like a normal store.

■ On a miss in L2, if PA[5:0] = 0, the line is initialized with all 0’s by issuing a
dummy read request to MCU instead of a regular read request, followed by the
store happening.

■ On a miss in L2, if PA[5:0]!= 0, it behaves like a regular store miss, in that it
fetches the line from DRAM and then writes to it.

■ On directory CAM access, all matching L1’s are invalidated. In addition, the entry
that got hit in the directory also gets invalidated.

Data Array Scrub:

Data array scrubbing refers to recomputing ECC for data across all ways in a
particular index, detecting and correcting error in either data or ECC for each way.
OpenSPARC T2 L2 data uses SEC/DED ECC (has a single bit error correction and
double bit error detection). Through scrubbing single bit errors get corrected and
double bit errors get flagged.

The Data Array in L2 gets scrubbed at regular (programmable) intervals after a data
fill operation under CSR control. If the CSR bit enabling the Scrub Mode bit is on,
then after a programmed interval of time a bit called TECC gets set by the Scrub
controller logic. The scrubber gets called on the first fill with this bit set and starts
the scrub operation for an index (which increments with every scrub routine and has
no relationship to the fill index) right after the fill completes in the pipe. It scrubs 64
bits of data at a time for each way, so it takes (8 x 16 ways) = 128 back to back scrub
Chapter 2 Level 2 Cache 2-37

operations to complete the data scrub of that particular index in the L2 bank. While
the scrub is going on the pipe stays stalled. Timing Diagram shows a typical data
scrub operation following a fill.

Tag Array Scrub:

Tag array scrubbing refers to recomputing ECC for tag across all ways in a particular
index, detecting and correcting error in either tag or ECC for each way. OpenSPARC
T2 L2 tag uses SEC ECC (has a single bit error correction, no double error
detection). Through scrubbing single bit errors get corrected.

Once a parity error is detected in C2 on any Tag entry, TECC is marked as 1 in the
instruction that gets written to the Miss Buffer in C3. Then the scrub instruction gets
issued from the MB and enters the pipe. All 16 ways for the index with parity error

TABLE 2-17 Timing Diagram: Fill

C1 C2 C3 C4 C5 C52 C6 C7 C8

tag write stall four
cycles

Xmit FB
entry to
l2b
Fill Op
with
TECC = 1

way sel
xmit to l2d
read FB

VUAD write
Xmit way sel
inside l2d
mux fbdata
with l2d

data
array
wr cyc1

data
array
wr cyc2

data array
wr cyc3

Start scrub
FSM. stall
pipe (cnt=0)

(cnt=1) Setup tag
read with
scrub idx
(cnt=2)

Read Tag
Read Valid bit
(cnt=3)

Gen
scrub
way
(cnt=4)

Xmit
Scrub
way to
l2d (cnt=
5)

Scrub read 1
(cnt = 6)

Scrub
Read 2
(cnt=7)

TABLE 2-18 Timing Diagram: Data Scrub

C1 C2 C3 C4 C5 C52 C6 C7 C8

Scrub
Read 3
(cnt=8)

Xmit to l2t
(cnt=9)

Ecc corr.
(cnt = 10)

Mux out
64 bit
(cnt = 11)

Mux with c1
inst data
Perform stecc
& gen waysel
l2d_wr &
col_off
(cnt = 12)

way sel
xmit to
l2d
(cnt =
13)

Xmit
way sel
inside
l2d
(cnt = 0)
Start
scrub
FSM.
stall
pipe

Scrub data
array wr
cyc1
(cnt = 1)

Scrub
data
array wr
cyc2
(cnt = 2)
Setup
tag read
with
scrub
idx
2-38 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

gets scrubbed, so the scrub operation takes a total of (8x16) = 128 L2 clocks during
which the L2 pipeline stays stalled. Timing diagram TABLE 2-20 shows a typical Tag
Scrub operation.

VUAD SBE Correction:

OpenSPARC T1 protects VD and UA arrays with parity. Parity check happens in C2,
and if an error is detected, a fatal error trap gets taken. So for a false hit in C1, the
read/write happens, but the machine gets fatal error trap and resets. Since this is
one of the largest sources of fatal errors, OpenSPARC T2 would protect the VD and
UA arrays with SEC DED ECC.

For every set, there would be 7 ECC bits with 16 Dirty bits and 16 Valid bits (i.e
32/7 ECC). Also for every set, there would be 7 ECC bits with 16 Allocate bits and
16 Use bits (i.e 32/7 ECC). Note that the 7th ECC bit is also the parity bit across 32
data bits and 6 ECC bits to detect double bit error. So a total of (39 + 39) = 78 bits of
storage per set. Even though the Used bits need not be ECC protected (since their
value is non-critical: any error in the used bits will cause potentially different
replacement order, but still functionally correct operation), since VD and UA arrays
would be implemented out of the same Register File array, L2 would protect the Use
bits and the Allocate bits with ECC.

For any instruction from core or from SIU, the VD and UA arrays get read in C1
stage of the L2 pipe and get muxed with forwarded VD,UA bits from prior
instructions in the pipe that are to the same index. The output of the mux gets
written to a C2 flop. In case this C1 mux select points to the leg coming from the
VD/UA arrays, ECC would get checked in C2 on the data from the arrays. The data
will get corrected in C2 stage itself (for a single bit error) and will get written back to
the VD,UA arrays with regenerated ECC in C5 stage of the pipe for all instructions
other than diagnostic accesses. If a double bit (Uncorrectable) error gets detected in
any one of VD or UA arrays, L2 will log LVU in L2 Error Status register which will
cause L2 to assert fatal error reset request to the Reset block. The execution recovery
and logging mechanism for Correctable VD/UA errors in L2 is as follows:

TABLE 2-19 Timing Diagram: Tag Scrub Operation

C1 C2 C3 C4 C5 C52 C6 C7 C8 C9

tecc inst
from MB
assert
pipe stall

Setup Tag
read of
corrupted
index
(cnt=0)

Setup
Index
(cnt = 1)

Tag Read
(cnt = 2)

Setup
Muxsel
(cnt = 3)

Mux
Tag
(cnt = 4)

ECC
corr.
(cnt =
5)

Setup
Write
Index
(cnt = 6)

Tag
Write

(cnt =
7)

Setup
Tag
read of
corrupt
ed
index
(cnt=0)
Chapter 2 Level 2 Cache 2-39

1. If the instruction was any flavor of load, store, atomic, ifetch from core, L2 would
detect the Correctable error in C2 and log it as LVC (VUAD correctable error)
with the syndrome in L2 Error Status register in C9 stage of the same pass.The
PA[39:0] (index [8:0]) would be captured in the L2 UE/CE address register. The
caming of the L2 directories, updates of the L2 directories and dispatch of
crossbar packets back to cores would be gated off by the correctable error.If the
error resulted in a false hit (tag match but valid = 1 while it should be 0), the data
array operation (load or store) would still happen though the crossbar packet
would be gated off. There is no memory corruption issue as store to an invalid
way does not cause data corruption. Also the instruction would be moved into
the Miss Buffer and readied for resissue in C9. However the DRAM ready bit
would not be set in the Miss Buffer thereby disabling dispatch of requests to
MCU.Once the instruction gets reissued down the L2 pipe, it would see corrected
data in the VD/UA arrays and would execute properly based on correct state of
the L2 lines at that index. The LVC error that got logged in the first pass would
get reported to the Virtual Core specified in the
L2_CONTROL_REG.ERRORSTEER field on bits [139:138] of Error Indication
packet of crossbar after the occurrence of the next L2 fill if error reporting is
enabled.

2. If the instruction was a RDD or WR8 or WRI from SIU, L2 would detect the
Correctable error in C2 and log it as LVC (VUAD correctable error) with the
syndrome in L2 Error Status register in C9 stage of the same pass .The PA[39:0]
(index [8:0]) would be captured in the L2 UE/CE address register. The caming of
the L2 directories, updates of the L2 directories and dispatch of data return and
write ack packets in the first pass back to SIU would be gated off by the
correctable error. If the error resulted in a false hit (tag match but valid = 1 while
it should be 0), the data array operation (load or store) would still happen though
the SIU packet would be gated off. There is no memory corruption issue as store
to an invalid way does not cause data corruption.Also the instruction would be
moved into the Miss Buffer and readied for reissue in C9. However the DRAM
ready bit would not be set in the Miss Buffer thereby disabling dispatch of
requests to MCU.Once the instruction gets reissued down the L2 pipe, it would
see corrected data in the VD/UA arrays,would execute properly based on correct
state of the L2 lines at that index and would return packets (read data, wri
ack,wib_dequeue) to SIU. The LVC error that got logged in the first pass would
get reported to the Virtual Core specified in the
L2_CONTROL_REG.ERRORSTEER field on bits [139:138] of Error Indication
packet of crossbar after the occurrence of the next L2 fill if error reporting is
enabled.

3. If the instruction is of any of the types mentioned in (1) and (2) but issued from
the Miss Buffer, all the things mentioned in (1) and (2) happen with one
exception: the instruction does not get re-inserted into the Miss Buffer, but the
valid bit in the Miss Buffer stays set, and the instruction gets replayed again
through the vuad_ce_rdy and vuad_ce_replay bits being set in the Miss Buffer.
2-40 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

4. If the instruction was an evict instruction issued from the Miss Buffer and there is
a VUAD CE detected and the instruction is not a Prefetch ICE instruction, the
Evict Bit and Evict Ready bit stay set in the Miss Buffer, so that the eviction gets
replayed from the Miss Buffer. By this time the VUAD CE has been corrected and
the eviction happens as normal. Also in the eviction pass that detected the VUAD
CE, the caming of the L2 directories, updates of the L2 directories and dispatch of
crossbar packets back to cores and copying of the line to the Write Back Buffer are
gated off by the correctable error.

5. If the instruction was any flavor of diagnostic, Icache Invalidate, Dcache
Invalidate, Tecc, Fill, Prefetch ICE or replayed instruction from Miss Buffer hitting
in the Fill Buffer Tags, L2 would not detect the Correctable error and would not
log LVC. Also the instruction will proceed as normal as if nothing happened and
would send back responses to the cores as normal. However for all of the above
mentioned instructions other than Diagnostics, the corrected data would get
written in the VUAD arrays in C5, basically doing a silent correction.

Timing Diagram TABLE 2-20 shows the error detection and correction pass for VUAD
single bit correctable error for loads,stores,ifetches,atomics,wr8’s,rdd’s and wri’s.

This pass gets followed by the instruction reissue from Miss Buffer by which time

the error is already corrected, and the instruction executes normally as shown by
earlier pipe diagrams in the document.

TABLE 2-20 Timing Diagram: VUAD SBE Error Detection and Correction

C1 C2 C3 C4 C5 C52 C6 C7 C8 C9

tag read
VUAD
read
VUAD
bypass

VUAD
ECC check
Single Bit
Error
Detected

Write
Instructio
n to MB
Set DEP
bit
Disable
SIU ack
gen logic,
IOWB
eviction
logic for
WRI’s

Gate of
I$,D$ Dir
CAM ,
I$,D$ Dir
Update

Vuad write
(corr-ected
data

Gate off
crossbar
request

Ready
Instruct
ion for
reissue
Do not
set
DRAM_
READY
Chapter 2 Level 2 Cache 2-41

Ordering of future instructions in L2 in the case of a VUAD SBE:

All instructions other than diagnostic, Icache Invalidate, Dcache Invalidate, Tecc, Fill
or Prefetch ICE (and not issued from the Miss Buffer) that would detect VUAD SBE
would set the DEP bit when they get inserted into the Miss Buffer. This would
guarantee that a future instruction to the same PA would hit in the Miss Buffer and
see the DEP bit set and would also get moved into the Miss Buffer. Also, this future
instruction would not be issued to the pipe until the offending instruction has been
issued to the pipe and its DEP bit cleared. This would maintain ordering and remove
hazards. However it is possible that instructions to different PA would send acks
and data back to crossbar and SIU out of order w.r.t order of arrival to L2. For loads,
ifetches, atomic reads and rdd’s this would not be an issue. However for stores out
of order acks may be an issue if loads following the stores return old data instead of
new data (this would have caused TSO ordering violation). But since we put the
offending instruction in the Miss Buffer and set the DEP bit, loads would always be
ordered after stores to the same address and would not complete until the store
completes, and hence would return new data.

Also in case the instruction above hits against another address in the Miss Buffer
and detects a VUAD CE, the instruction would set its DEP bit and get inserted into
the Miss Buffer,but would not get replayed immediately. It would get replayed only
when its dependency cleared. In this case the instruction would not set the
vuad_ce_rdy and vuad_ce_replay bits in the Miss Buffer.

For any instruction other than diagnostic, Icache Invalidate, Dcache Invalidate, Tecc,
Fill or Prefetch ICE and issued from the Miss Buffer that detects VUAD SBE, the
DEP bit would not get set, however the Valid bit would not be cleared and the
instruction would not get re-inserted into the Miss Buffer. The instruction would get
replayed from the Miss Buffer through the vuad_ce_rdy and vuad_ce_replay bits
being set in the Miss Buffer.

Tag Parity Error and VUAD Error detected in single pass:

Any instruction from core or SIU other than Diagnostics, Prefetch ICE and I$,D$
invalidates can detect tag parity error and VUAD SBE. It is architecturally possible
for such an instruction to detect a tag parity error and VUAD SBE in the same pass.
If that happens, the recovery and correction mechanism will be as follows:

1. Instruction would be inserted into the Miss Buffer in the first pass (in which it
detected tag parity error and VUAD ce) and will be readied for reissue not in C9
but by the scrub instruction that is to follow.

2. The VUAD SBE would get corrected in the first pass itself (with the VUAD array
getting updated in c5).

3. A scrub instruction will get issued from Miss Buffer which will walk down L2
pipe and do the scrub of the tag array
2-42 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

4. Original instruction will get issued from the Miss Buffer and this time will detect
neither tag parity error nor VUAD SBE and will complete as normal.

2.1.4.11 L2 Interactions with SIU (System Interface Unit)

Block Reads (RDD’s):

Block Read from SIU goes through L2 pipe like a regular load from the core. On a
hit, 64 B of data is returned to SIU. On a miss, L2 does not allocate, but sends a non-
allocating read to DRAM. It gets 64 bytes of data from DRAM and sends it back to
SIU (read once data only) directly without installing in the L2 cache.T

In C10, L2 starts issuing data return to SIU 32 bits per clock from l2b block. While
processing a block read from SIU, the L2 arbiter does not accept any other SIU read
or write request until the block read is complete. This is because there is not enough
queue space within L2 to hold the data that is getting streamed out in case a new
block read request comes from SIU.

TABLE 2-21 Timing Diagram: Block Reads

C1 C2 C3 C4 C5 C52 C6 C7 C8

tag,VUA
D read
VUAD
bypass
tag
compare
Check
ECC for
Tags
MB CAM
and MB
hit logic
FB CAM
WBB
CAM

way sel
logic
xmit way
sel to l2d
rd/wr!
Gen,xmit
VUAD
Ecc check
stall next
instruction

way sel
xmit in
l2d
FB data
read
enable
(on a
miss)

data
array
read cyc1
FB data
read
cycle 1
write 64
B Fbdata
to l2d
flop

data array
read cyc2
VUAD write
stage FB
data

data
array
read
cyc3
mux
with FB
data
write 64
B data
to flop
in l2d

data
Xmit
cyc 1

write 64
B data
to flop
in l2b

stage
64 B data
in flop in
l2b

32:1
Mux
to get
32 bits
of data
from
64 bytes
(in
l2b,criti
cal 32
bits
first)

Check
ECC on
data
(32 bits)
flop
data in
l2b
Chapter 2 Level 2 Cache 2-43

Write Invalidates (WRI’s):

For a 64 B write (write invalidate from SIU), the SIU issues a 64 B write request to
L2. The data goes to IOWB and waits there until the write makes it through the pipe
after resolving any dependencies with the Miss Buffer entries (resolves ordering
issues w.r.t prior accesses from the CPU to the same line). Once this happens, the
IOWB empties its contents to DRAM, after arbitrating with the WBB.

When the write progresses through the pipe, it looks up the tags. If tag hit, it
invalidates the entry and all L1 entries that match. If tag miss, it does nothing (just
comes down the pipe) to maintain order.The only two cases where a WRI gets put
into the Miss Buffer are on tag parity error (potential false miss case) or VUAD SBE
(can be anything: true miss, false miss, true hit, false hit).

Partial Line Writes (WR8’s):

When the SIU issues 8B writes to L2 with random byte enables, the L2 treats them
just like 8B stores from core (i.e does 2-pass partial store if odd number of byte
enables are active or if misaligned access, otherwise regular store). Data gets
committed to L2 cache.

2.1.4.12 L2 Pipeline Stalls
■ Same column stall - Each column (sub-bank) of the data array (also referred to as

subbanks) requires two cycles to access. Therefore, the same column cannot be
accessed in consecutive cycles. A one cycle stall is inserted if a collision is
detected.

■ Ifetch - Ifetch operations require two reads of the data array. A one cycle stall is
inserted for any ifetch operation.

■ Fill - Fill operation stalls the pipe for stall three cycles

■ Eviction - Eviction operation stalls pipe by two cycles

■ Diagnostics

■ Tag/Data array scrubs

2.1.5 Functional Description of Sub-blocks
The L2 Cache Unit is composed of the following sub-blocks:

■ L2 Tags

■ L2 VUAD

■ L2 Data
2-44 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

■ Directory

■ Input Queue (IQ)

■ IU Queue (SIUQ)

■ Output Queue (OQ)

■ Arbiter

■ Miss Buffer (MB)

■ Fill Buffer (FB)

■ Writeback Buffer (WBB)

■ I/O Write Buffer (IOWB)

2.1.5.1 L2 Tags

TABLE 2-22 shows the physical address mapping for the L2 cache.

Given a bank of 512 KB with 64 B lines, the tag index is bits <17:9>. Each tag entry
contains address<39:18> + 6 ECC bits. The state of each line is maintained using
valid (V), used (U), allocated (A), and dirty (D) bits. These are stored in the VUAD
array.

Each 22 bit tag is protected by 6 bits of ECC. A 16 way 27 bit compare (with the
appropriate bits from the issuing instruction) is performed to generate the way
selects for accessing the data array. This approach removes error detection from the
"tag to data" critical path.

Thus total Tag Memory per bank of L2 is 28 KB for 64 B line size.

L2 Tag ECC

The L2 tag arrays are protected by ECC. For every 22 bits of tag, there are 5 SEC ECC
bits and 1 parity bit (which covers all 27 bits). OpenSPARC T1 L2 does not detect
Uncorrectable (Double Bit) errors for tag and OpenSPARC T2 L2 won’t either (unless
we get Epic 9 data which shows high enough FIT rate).

In pipe stage C1, {22 tag bits, 5 ECC bits} get compared with corresponding 27 bits in
all of the 16 ways in the set. This prevents a false hit from happening. If {22 tag bits,
5 ECC bits} match in one entry, then it is a true hit. If a true hit does not happen,
then it is miss. As the instruction moves to pipe stage C2, parity is recommitted for

TABLE 2-22 Physical Address Mapping for the L2 Cache

39 18 17 9 8 6 5 4 3 0

tag index L2 bank subbank addr 16b offset
Chapter 2 Level 2 Cache 2-45

each of 16 ways over {22 tag bits, 5 ECC bits}. If there is a parity error detected in C2,
the instruction is moved into Miss Buffer and a scrub instruction is issued from the
Miss Buffer to scrub and correct ECC and parity for any entry in error. After the
scrub instruction is complete, the original instruction gets re-issued from the Miss
Buffer.

Note that if the instruction did not hit in any of the tags in C1, there are 4
possibilities:

■ there is no parity error in C2. In which case it would be a true miss and go to
DRAM.

■ There is a parity error in C2 and one of the ways differs by 1 bit only in the tag
field w.r.t the instruction, then this could be a case of a false miss (if upon
scrubbing this bit that is different gets chosen as the bit to be flipped). Then the
instruction after getting replayed from the Miss Buffer will hit in L2.

■ There is a parity error in C2 and one of the ways differs by 1 bit only in the tag
field w.r.t the instruction, but the error is in one of the ECC bits or on another
data bit, in which case the address is different, and it will miss in L2 after getting
replayed from Miss Buffer and will go to DRAM.

■ There is a parity error in C2 and instruction tag mismatches by more than 1 bit
with each way, it will miss in L2 after getting replayed from Miss Buffer and will
go to DRAM.

Note – What happens if tag hits in 2 ways ? OpenSPARC T2 L2 response is
indeterministic. The SRAM circuits are protected from getting burnt out in such a
case. The functional behavior of L2 is not defined.

2.1.5.2 L2 VUAD

This 4.9 KB (including ECC) dual ported array is used to maintain the state of every
line in the L2 cache for each bank. The state of each line is maintained using the
Valid (V), Used (U), Allocate (A) and Dirty (D) bits. Allocate bit indicates that the
marked line has been allocated to a miss. This bit is also used in the processing of
some special instruction’s such as atomics and "partial" stores (since these do read-
modify-writes, which involve 2 passes through the pipe, the line needs to be locked
until the second pass completes; otherwise the line may get replaced before the
second pass happens). The Used bit is a reference bit used in the replacement
algorithm.

The Allocate bit (per way) gets set when a line gets picked for replacement. For a
load or ifetch, it gets cleared when fill happens, and for store when store completes.
The Used bit gets set when any store/load hits (1 per way). Used bits get cleared (all
16 at a time) when there are no unused or unallocated entries for that set. The dirty
2-46 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

bit (per way) gets set when a stores modifies the line. It gets cleared when the line is
invalidated. The valid bit (per way) gets set when a new line is installed in that way.
It gets reset when that line gets invalidated.

The L2 uses a Round Robin algorithm to pick replacement candidates. When there is
a L2 miss and a line needs to be selected for replacement, in reference to a dynamic
pointer which can point to any one of the 16 ways, the first entry with (A = 0 and U
= 0) otherwise (A = 0) gets picked for replacement. All 16 ways get looked at in a
wrap-around fashion starting from the way that is currently pointed at by this
pointer.

The algorithm used to select a way, out of 16 ways, to be evicted out of the L2 cache
is not a true LRU algorithm but Round Robin arbitration. Round Robin arbitration is
done in two stages by dividing 16 ways in 4 quads of 4 ways each. First Round
Robin is done within each quads to select one of the 4 ways and then Round Robin
is done to select one of the four quads. A 4 bit state register is kept for each quad at
each level. A one on a bit location corresponding to a way represents highest priority
for that way. Every time an eviction takes place, state register is updated by shifting
it left by one bit otherwise state of the register does not change. State register is used
in C2 for the way selection and it is updated in the C3. On reset state register is
initialized to a state such that way0 has the highest priority.

Way selection algorithm depends on the Used and Allocate bit of the VUAD array,
read during C1, for the way selection. First priority is given to the ways that has not
been Used and has not been Allocated for the eviction in the previous cycle. If there
is no Unused and Unallocated way then a way that has not been previously
Allocated is given preference. Invalid bit is not used for the way selection as if a way
is Invalid then its Used bit will not be set, so checking Invalid bit is redundant.

Note – What happens if all 16 ways have A = 1? No new instructions can enter the
pipe until at least one A = 0. This is guaranteed by MB stalling the pipe
speculatively. Since MB is 32 entries in OpenSPARC T2, and since there are 16 ways
per set, the L2 control logic will detect 12 entries of the same index in MB and
speculatively stop accepting requests from PCX and SIUQ (this accounts for 4
instructions in flight in PX2,C1,C2,C3 that can take the count to 16 misses to the
same index). The stall to PCX/IQ and SIUQ requests lasts for until the number of
entries of the same index in MB reaches 11.

2.1.5.3 L2 VUAD ECC

OpenSPARC T1 protects VUAD array with parity. Parity check happens in C2, and if
an error is detected, a fatal error trap gets taken. So for a false hit in C1, the
read/write happens, but the machine gets fatal error trap and resets. Since this is
one of the largest sources of fatal errors, OpenSPARC T2 would protect the VD and
UA arrays with SEC DED ECC.
Chapter 2 Level 2 Cache 2-47

For every set, there would be 7 ECC bits with 16 Dirty bits and 16 Valid bits (i.e 32/7
ECC). Also for every set, there would be 7 ECC bits with 16 Allocate bits and 16 Use
bits (i.e 32/7 ECC). Note that the 7th ECC bit is also the parity bit across 32 data bits
and 6 ECC bits to detect double bit error. So a total of (39 + 39) = 78 bits of storage
per set. Even though the Used bits need not be ECC protected (since their value is
non-critical: any error in the used bits will cause potentially different replacement
order, but still functionally correct operation), since VD and UA arrays would be
implemented out of the same Register File array, L2 would protect the Use bits and
the Allocate bits with ECC.

For any instruction from core or from SIU, the VD and UA arrays get read in C1
stage of the L2 pipe and get muxed with forwarded VD,UA bits from prior
instructions in the pipe that are to the same index. The output of the mux gets
written to a C2 flop. In case this C1 mux select points to the leg coming from the
VD/UA arrays, ECC would get checked in C2 on the data from the arrays. The data
will get corrected in C2 stage itself (for a single bit error) and will get written back to
the VD,UA arrays with regenerated ECC in C5 stage of the pipe for all instructions
other than diagnostic accesses. If a double bit (Uncorrectable) error gets detected in
any one of VD or UA arrays, L2 will log LVU in L2 Error Status register which will
cause L2 to assert fatal error reset request to the Reset block. If L2 detects
Correctable SBE in C2, it will log it as LVC (VUAD correctable error) with the
syndrome in L2 Error Status register in C9 stage of the same pass.The index [8:0]
would be captured in the L2 UE/CE address register.

2.1.5.4 L2 Data

Each L2 data array bank is a single ported SRAM structure capable of performing
the following operations:

■ 16B read

■ 64B read

■ 8B write with any combination of word enables

■ 64B write (with any combination of word enables). However fills would update
all 64 bytes at a time.

Each L2 bank is 512 KB in size, with each logical line 64 B in size.

Each L2 data array bank is further subdivided into four sub-banks, also referred to
as columns, each 16 B in width. These sub-banks are accessed based on bits <5:4> of
the physical address. Loads (which are a maximum of 16 B in size) and stores
(maximum of 8 B in size) access one subbank. Cache fills and line evictions are 64 B
in size, and access four sub-banks per cycle.

Any L2 cache data array access takes two cycles to complete, so no sub-bank can be
accessed in consecutive cycles. All access can be pipelined except, back to back
accesses to the same sub-bank.
2-48 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

Each 32b word is protected by 7 bits of SEC/DED ECC. (Each line is 32 x [32 + 7
ECC] = 1248 bits). All sub-word accesses require a read modify write operation to be
performed and are referred to in this document as "partial stores".

2.1.5.5 L2 Directory

The directory maintains a copy of the L1 tags for coherency management and also
ensures that the same line is not resident in both the icache and dcache (across all
cores). The directory is split into an icache directory (icdir) and a dcache directory
(dcdir), which are similar in size and functionality.

The directory is written only when a load is performed. On certain data accesses
(loads, stores and evictions), the directory is camed to determine whether the data is
resident in L1 caches. The result of this CAM operation is a set of match bits which
is encoded to create an invalidation vector to be sent back to the SPARC cores to
invalidate L1 lines.

■ Loads - The icdir is CAMed to maintain I/D exclusivity. The dcdir is updated to
reflect the load data that fills the L1 cache.

■ IFetch - The dcdir is CAMed to maintain I/D exclusivity. The icdir is updated to
reflect the instruction data that fills the L1 cache.

■ Stores - Both directories are CAMed. This ensures that (i) if the store is to
instruction space, the L1 icache invalidates the line and does not pick up stale
data; (ii) if a line is shared across SPARC cores, the L1 dcache invalidates other
cores and does not pick up stale data; and (iii) the issuing core has the most
current information on the validity of its line.

■ Evictions from the L2 cache - Both directories are CAMed to invalidate any line
that is no longer resident in the L2.

2.1.5.6 Directory Organization

D$ Dir:

There are 8 cores in OpenSPARC T2. L1 Dcache for each core has 128 sets, each set
has 4 ways. Since L1 Dcache line size is 16 B, this gives a total of (8 x 128 x 4 x 16)
bytes = 64 KB or 4K L1 lines in all cores together. Each L1 Dcache is 8KB.

Thus each L1 Dcache will map (128/8) 16 sets to each L2 bank. So for each L2 bank,
the DCache directory will consist of (16 x 8) sets of L1 Dcache lines for all cores
combined. This gives a total of 512 L1 Dcache lines per bank.

These 512 L1 Dcache line mappings gets organized physically in the DCache
directory as follows:
Chapter 2 Level 2 Cache 2-49

Each Dcache directory has 16 panels arranged as 4 rows and 4 columns. Row gets
accessed by address[5:4], column by address[10,9]. Each panel has 32 entries indexed
by {cpu_id(3 bits), replacement way(2 bits)}.

For an update related to a load, the panel is accessed by address {10,9,5,4} and the
entry within the panel to be updated is selected by {cpu_id(3 bits), replacement
way(2 bits)} for the load.

For a store or a ICache mutual-exclusivity check on a Ifetch, which can potentially
invalidate a maximum 8 L1 cache lines (one L1 line per core), the panel gets selected
by address {10,9,5,4} and all 32 entries within that panel get CAMed against the
store, based on which a invalidation vector gets generated for a max of 8 L1 Dcache
line invalidation’s (one per core). The way number for each L1 Dcache will be
encoded as a 2 bit field in the inval vector.

For an eviction, since the L2 cache line is 64 bytes, 4 panels out of 16 will get CAMed
based on address[10,9] (i.e 1 column). This would mean a total of 32x4 = 128
compares to invalidate a max of 4 cache lines per L1, i.e a max of 4x8 = 32 L1 Dcache
lines for all cores combined. This will come out as 32 D$ L1 lines eviction vector
from L2. The way number for each L1 Dcache will be encoded as a 2 bit field in the
inval vector.

Each entry in the directory will store {L2 index[9 bits],L2 way[4 bits], parity, valid}
i.e a total of 15 bits corresponding to the location in L2 that the L1 line maps to.

For a load hit, the entry gets updated with {L2 index[9 bits],L2 way[4 bits], parity},
while on a store or eviction or a ICache mutual-exclusivity check on a Ifetch, the {L2
index[9 bits],L2 way[4 bits]} gets CAMed against the stored value of each entry.

I$ Dir:

L1 Icache for each core has 64 sets, each set has 8 ways. Since L1 Icache line size is 32
B, this gives a total of (8 x 64 x 8 x 32) bytes = 128 KB or 4K L1 Icache lines in all
cores together. Each L1 Icache is 16 KB.

Thus each L1 Icache will map (64/8) = 8 sets to each L2 bank. So for each L2 bank,
the ICache directory will consist of (8 x 8) sets of L1 Icache lines for all cores
combined. This gives a total of 512 L1 Icache lines per bank.

These 512 L1 Icache line mappings gets organized physically in the ICache directory
as follows:

Each Icache directory has 16 panels arranged as 4 rows and 4 columns. Row gets
accessed by {address[5],I$ replacement way[2]}, column by address[10,9]. Each panel
has 32 entries indexed by {cpu_id(3 bits), I$ replacement way[1:0]}.
2-50 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

For an update related to a Ifetch hit, the panel is accessed by {address {10,9,5}, I$
replacement way[2]} and the entry within the panel to be updated is selected by
{cpu_id(3 bits), I$ replacement way[1:0]} for the Ifetch hit.

For a store or a Dcache mutual-exclusivity check on a load, which can potentially
invalidate a maximum 8 L1 Icache lines (one line per core), 2 panels gets selected by
address {10,9,5} and all 32 entries within each panel get CAMed against the store,
based on which a invalidation vector gets generated for a max of 8 L1 Icache line
invalidation’s (one per core). The way number for each L1 Icache line will be
encoded as a 3 bit field in the inval vector.

For an eviction, since the L2 cache line is 64 bytes, 4 panels out of 16 will get CAMed
based on address[10,9] (i.e 1 column). This would mean a total of 64x2 = 128
compares to invalidate a max of 2 Icache lines per L1, i.e a max of 2x8 = 16 L1 Icache
lines for all cores combined. This will come out as 16 I$ L1 lines eviction vector from
L2. The way number for each L1 Icache line will be encoded as a 3 bit field in the
inval vector.

Each entry in the directory will store {L2 index[9 bits],L2 way[4 bits], parity, valid}
i.e a total of 15 bits corresponding to the location in L2 that the L1 line maps to.

For a Ifetch hit, the entry gets updated with {L2 index[9 bits],L2 way[4 bits], parity},
while on a store or eviction or a Dcache mutual-exclusivity check on a load, the {L2
index[9 bits],L2 way[4 bits]} gets CAMed against the stored value of each entry.

2.1.5.7 SIU Queue (SIUQ)

The SIU Queue accepts RDD,WRI and WR8 packets from the SIU and issues them to
the pipe after arbitrating against other requests.L2 SIU Queue block can record up to
2 requests from SIU in it’s 2 deep fifo. The requests are received serially. A counter is
maintained in the SIU side incrementing on a transaction dispatch to L2 cache and
decrementing upon receiving l2t_siu_iq_dequeue or l2t_siu_wib_dequeue Signals
from the L2 cache. l2t_siu_iq_dequeue signal is asserted when an instruction is
issued down the L2 pipe (RDD,WRI and WR8 instructions). l2t_siu_wib_dequeue is
asserted when the contents of a I/O Write Buffer entry gets streamed to DRAM
(WRI).

2.1.5.8 Input Queue (IQ)

The input queue is a 16 entry FIFO which queues packets arriving on the PCX when
they cannot be immediately accepted into the L2 pipe. Each entry in the IQ is 130
bits wide. The FIFO is implemented with a dual ported array. The write port is used
for writing into the IQ from the PCX interface. The read port is for reading contents
for issue into the L2 pipeline. If the IQ is empty when a packet comes on the PCX,
the packet can pass around the IQ if it is selected for issue to the L2 pipe.
Chapter 2 Level 2 Cache 2-51

The IQ asserts a stall to the PCX when 11 entries are used in the FIFO. This allows
for packets already in flight as shown in .

2.1.5.9 Output Queue (OQ)

The output queue is a 16 entry FIFO which queues operations waiting for access to
the CPX. Each entry in the OQ is 146 bits wide. The FIFO is implemented with a
dual ported array. The write port is used for writing into the OQ from the L2 pipe.
The read port is for reading contents for issue to the CPX. If the OQ is empty when
a packet comes from the L2 pipe, the packet can pass around the OQ if it is selected
for issue to the CPX.

Multicast requests are dequeued from the FIFO only if all the destination CPX
queues can accept the response packet.

When the OQ reaches its high water mark, the L2 pipe stops accepting inputs from
the Miss Buffer or the PCX. Fills can happen while the OQ is full since they don’t
generate CPX traffic.

2.1.5.10 Arbiter

The arbiter manages access to the L2 pipeline from the various sources which
request access. The IQ, MB, IO interface, and FB all need access to the L2 pipe.
Access to the pipe is granted based on the following priority:

■ Access currently stalled in the pipe

■ Second packet of a CAS operation

■ SIU instruction from SIU Queue

■ Miss Buffer instruction

■ Fill Buffer instruction

■ Instruction from the IQ

■ Background scrub request

TABLE 2-23 Input Queue Pipeline

PQ A B C D E F

PA A B C D E stall

PX A B C D E

PX? A B C D E

C1 A B C D E

C@ (count) 12 13 14 15 16
2-52 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

2.1.5.11 Miss Buffer (MB)

The Miss Buffer (MB) has 32 entries and stores instructions which cannot be
processed as a simple cache hit. This includes true L2 cache misses (no tag match),
instructions that have the same cache line address as a previous miss or an entry in
the Writeback Buffer, instructions requiring multiple passes through the L2 pipeline
(atomics and partial stores), unallocated L2 misses, and accesses causing tag ECC
errors.

Miss Buffer in OpenSPARC T2 L2 would be 32 entries instead of 16 as in
OpenSPARC T1 L2. This is needed to reduce L2 stalls due to Miss Buffer full which
affects the CPI of each of the 64 threads (due to the fact that Miss Buffer going full
stalls all accesses to L2; load hits and store hits cannot happen). With DDR 280 Mhz,
for TPCC, CPI per thread improves by 8% between 16 and 32 entry Miss Buffer and
L2 stall due to MB full reduces from 6.4% to 0.08%. With DDR 333 Mhz, for TPCC,
CPI per thread improves by about 7.6% with 32 entry Miss Buffer while L2 stall due
to MB full goes closer to zero.

The Miss Buffer is divided into a dual ported RAM portion which holds store data
and a CAM portion which contains the address.

A read request is issued to DRAM and the requesting instruction is replayed when
the "critical quad-word" of data arrives from DRAM.

All entries in the Miss Buffer that share the same cache line address are linked in the
order of insertion to preserve ordering. Instructions to the same address are
processed in age order whereas instructions to different addresses are not ordered
and exist as a free list.

When a MB entry gets picked for issue to the DRAM (load, store, ifetch miss), the
entry gets copied into the Fill Buffer and a valid bit gets set. There can be up to 8
reads outstanding from L2 to DRAM at any point of time. Data can come from
DRAM to L2 out of order w.r.t the address order. When the data comes back out of
order, the MB entries get readied for issue in the order of data return. This means
that there is no concept of age in the order of data returns to core as these are all
independent accesses to different addresses. Thus when a later read gets replayed
from the MB down the pipe and invalidates its slot in the MB, a new request from
the pipe will take its slot in the MB, even while an older read has not yet returned
data from DRAM.

In most cases, when a data return happens, the replayed load from the MB makes it
through the pipe before the Fill Request can. Hence the valid bit of the MB entry gets
cleared (after the replayed MB instruction execution is complete in the pipe) before
the Fill Buffer valid bit. However if there are other prior MB instructions like partial
stores that get picked instead of the MB instruction of concern, the fill request can
enter the pipe before the MB instruction and in those cases the valid bit in the Fill
Chapter 2 Level 2 Cache 2-53

Buffer would get cleared prior to the MB valid bit. Thus the MB valid bit and FB
valid bits always get set in the order of MB valid first, FB valid later. However they
can get cleared in any order.

When the MB reaches its high water mark, the arbiter no longer accepts requests
from the IQ or PCX.

2.1.5.12 Fill Buffer (FB)

The Fill Buffer is an 8 entry buffer used to temporarily store data arriving from
DRAM on an L2 miss request. Data arrives from DRAM in four 16 B blocks starting
with the critical quad-word. A load instruction waiting in the Miss Buffer can enter
the pipeline after the critical quad-word arrives from DRAM (critical 16B will arrive
first from DRAM) In this case, the data is bypassed. After all 4 quad-words arrive,
the fill instruction enters the pipeline and fills the cache (and the Fill Buffer entry
gets invalidated). For a non-allocating read (e.g I/O read), the data gets drained
from the Fill Buffer directly to the I/O Interface when data arrives, and the Fill
Buffer entry gets invalidated.

When the FB is full, the Miss Buffer cannot make requests to DRAM.

The Fill Buffer is divided into a RAM portion which stores the data returned from
DRAM waiting for a fill to the cache and a CAM portion which contains the address.

2.1.5.13 Writeback Buffer (WBB)

The Writeback Buffer is an 8 entry buffer used to store dirty evicted data from the L2
on a miss. Evicted lines are streamed out to DRAM opportunistically. An instruction
whose cache line address matches the address of an entry in the WBB is inserted into
the Miss Buffer. This instruction must wait for the entry in the WBB to write to
DRAM before entering the L2 pipe.

When the WBB reaches its high water mark, the arbiter no longer issues instructions
from the Miss Buffer. This stops read requests to DRAM and allow writebacks to
proceed.

The Writeback Buffer is divided into a RAM portion which stores the evicted data
until it can be written to DRAM and a CAM portion which contains the address.

2.1.5.14 I/O Write Buffer (IOWB)

The I/O Write Buffer is a 4 entry buffer which stores incoming data from the PCI-EX
interface in the case of a 64 B write operation. Since the PCI-EX interface bus width
is only 32 bits wide, the data must be collected over 16 cycles before writing to
2-54 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

DRAM. An instruction whose cache line address matches the address of an entry in
the IOWB is inserted into the Miss Buffer. This instruction waits for the entry in the
IOWB to write to DRAM before entering the L2 pipe.

The I/O Write Buffer is divided into a RAM portion which stores the data from the
IO interface until it can be written to DRAM and a CAM portion which contains the
address.

It is the responsibility of the IO interface to use a handshaking protocol to track the
state of the IOW Buffer.

The IO interface must never issue an operation requiring the buffer when the buffer
is full.
Chapter 2 Level 2 Cache 2-55

2.1.6 Unit-level Interface Signals

TABLE 2-24 Unit Level Interface Signals

Signal Name I/O Size
From/
To Timing Description

Crossbar

l2t_cpx_req_cq O 8 CCX Request to be drained out of L2

l2t_cpx_data_ca O 146 CCX Data from L2 cache

cpx_l2t_grant_cx I 8 CCX Grant to gain access to crossbar

l2t_cpx_atom_cq O 1 CCX First packet of Imiss

l2t_pcx_stall_pq O 1 PCX Cannot accept any more requests to
L2Cache from core since the Input fifo is
full.

pcx_l2t_data_rdy_px1 I 1 PCX Cannot accept any more requests to
L2Cache from core since the Input fifo is
full.

pcx_l2t_data_px2 I 130 PCX Data bus from core

pcx_l2t_atm_px1 I 1 PCX Indicates atomic instruction

SIU

l2t_sii_iq_dequeue O 1 SIU Entry in a IOWBB array has freed. l2t is
unloading a request

l2t_sii_wib_dequeue O 1 SIU Write invalidate buffer (size= 4x64 B cache
lines) is being unloaded

l2b_sio_data O 32 SIU Read Data to SIU.

l2b_sio_ue_err O 1 SIU UE on read data to SIU

l2b_sio_ctag_vld O 1 SIU Ack to SIU from L2

sii_l2t_req_vld I 1 SIU SIU request valid.

sii_l2t_req I 32 SIU SIU requests L2 cache to be serviced.

sii_l2b_ecc I 7 SIU Data ECC

DRAM

l2t_mcu_rd_req O Read request to DRAM

l2t_mcu_rd_dummy_req O Flush request to MCU (=COMMIT)
2-56 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

2.1.7 RAS

2.1.7.1 General Overview

The FIT rates for L2 structures in OpenSPARC T2 in Epic8c are similar to their
OpenSPARC T1 counterparts. To improve FIT rates L2, OpenSPARC T2 improves
protection on L2 structures already protected on OpenSPARC T1 (e.g VUAD Array).

L2 consists of the following two major structures that are candidates for protection.

The first type is 6-device, single-ported SRAM cells optimized for density, such as L2
data arrays. These SRAM cells have high Failure In Time (FIT) rates (300-400 FITs
per Mb in Epic8c). All L2 SRAMs have ECC protection.

l2t_mcu_rd_req_id O MCU Request id

l2t_mcu_addr O MCU Read/write Address

l2t_mcu_wr_req O MCU Write request to mcu

l2b_mcu_wr_data_r5 O MCU Write back data to memory

l2b_mcu_data_vld_r5 O MCU Writeback Data Valid signal

l2b_mcu_data_mecc_r5 O MCU Error signal for mcu

mcu_l2t_rd_ack I 1 MCU Read request recorded

mcu_l2t_wr_ack I 1 MCU Write request recorded

mcu_l2t_qword_id_r0 I 2 MCU Quad-word number for a transaction

mcu_l2t_data_vld_r0 I 1 MCU Valid signal with data

mcu_l2t_rd_req_id_r0 I 3 MCU Read request ID returned

mcu_l2t_scb_mecc_err I 1 MCU Async Scrub Error Signals from mcu

mcu_l2t_scb_secc_err I 1 MCU Async Scrub Error Signals from mcu

mcu_l2b_data_r2 I 128 MCU Fill data from mcu

mcu_l2t_mecc_err_r2 I 1 MCU Error information

mcu_l2t_secc_err_r2 I 1 MCU Error information

mcu_l2b_ecc_r2 I 28 MCU SEC ECC Information

TABLE 2-24 Unit Level Interface Signals

Signal Name I/O Size
From/
To Timing Description
Chapter 2 Level 2 Cache 2-57

The second type is a CAM cell, whose FIT rate may be 1/2 of a standard SRAM cell.
CAM cells are difficult to protect. Adding parity to a CAM cell eliminates false CAM
hits due to single-bit errors, but cannot detect false misses.

In L2, only the I$ and D$ Directory CAM’s are protected by parity. None of the other
CAM structures in L2 are big enough to contribute to the overall FIT rate and hence
are not protected by parity.

2.1.7.2 RAS support in L2 sub-blocks

L2 Data Arrays

The L2 data arrays are protected via SEC/DED ECC on a word (32 bit) basis. A
correctable error on a core data read or write results in an error being logged in one
of the core ESRs and, if enabled, causes a precise or disrupting trap request to the
core making the request. On a load, data gets corrected (if a single bit error was
detected) when returned to the core but the error still gets reported to the core on
ERR bits of the CPX packet for the load return. A core data read results from an
instruction cache miss, a data cache miss, an atomic operation, a partial store or a
store of less than 32 bits. A correctable error on an I/O data read or write results in
an error being logged in a global ESR and, if enabled, causes a disrupting trap to the
core identified by the ERRORSTEER field of the L2 Control Register. Hardware
corrects the error, and rewrites the L2 line with corrected data.

An uncorrectable error on an L2 data read by a core is logged to a global ESR, and,
if enabled, causes a disrupting trap to the core on a store. If the core request is due
to an instruction fetch or load due to data cache miss or atomic operation, the error
is actually a precise trap.

In the case of an I/O read or write with an uncorrectable error, the error is logged in
a global ESR, and a disrupting trap is signaled to the core identified in the
ASI_CMP_ERROR_STEERING register.

L2 Tag Arrays

The L2 tag arrays are protected by SEC ECC. A correctable error is logged to a global
ESR, and, if enabled, Signals a disrupting trap request to the core identified in the
ERRORSTEER field of the L2 Control Register. Hardware (scrubber) corrects and re-
writes the tag. The operation is completed by replaying from Miss Buffer.

OpenSPARC T1 L2 does not detect Uncorrectable double bit errors for tag and
OpenSPARC T2 L2 wont either. This is because in OpenSPARC T2 with total FIT
rates in the ballpark of 400, the double bit errors in the L2 tag are contributing only
0.1 FITs.
2-58 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

L2 VUAD Arrays

The VUAD array contains valid, used, allocated, and dirty bits. OpenSPARC T1
protects this array with parity. Any single-bit error in the valid, allocated, or dirty
bits can lead to data corruption and is fatal. OpenSPARC T2 protects the VD and UA
arrays via SEC DED ECC since it is one of the largest sources of fatal errors.

A correctable error in VD or UA array (LVC) is logged in L2 ESR. If enabled, the
error generates a disrupting trap request to the core identified in the ERRORSTEER
field of the L2 control Register. Hardware corrects the entry, and the replayed access
is completed.

An uncorrectable error in VD or UA array (LVU) is also logged in L2 ESR. However
this would cause OpenSPARC T2 to assert warm reset.

L2 Directories

L2 protects it’s I$ and D$ directories with parity. Parity error is fatal. The L2
directory performs a background parity detect which is synchronized with a store
issue down the L2 pipe. The entry being checked for parity can be reset using
dbginit_l so as to make a test repeatable.

Miss Buffer

The Miss Buffer contains miss requests as well as multi-pass L2 operations. The
buffer contains data and address (tag) entries. The tag array is an 32 entry CAM of
40 bits each. A false hit on a tag can result in data corruption. A false miss can also
result in data corruption. OpenSPARC T1 does not protect the tags or data.
OpenSPARC T2 also does not protect the data or tags due to its small contribution to
the FIT rate.

Fill Buffer

The Fill Buffer contains memory read data. This data is either cacheable reads to be
written to the L2, or non-allocating cacheable data forwarded to the I/O interface.
The buffer contains data and address (tag) entries. The data is protected by
SEC/DED ECC and ECC is checked on the way from Fill Buffer to L2 pipe. The tag
array is an 8 entry CAM of 40 bits each. A false hit on a tag can result in data
corruption. A false miss can result in multiple fills for the same line outstanding,
reducing performance. OpenSPARC T1 does not protect the tags. OpenSPARC T2
also does not protect the tags due to its small contribution to the FIT rate.
Chapter 2 Level 2 Cache 2-59

A correctable data ECC error is logged to a global ESR and, if enabled, generates a
disrupting trap request to the core identified in the ERRORSTEER field of the L2
Control Register. Hardware corrects the error before writing the data into the L2.

An uncorrectable data ECC error is logged to a global ESR, and, if enabled, generates
a disrupting trap request to the core identified in the ERRORSTEER field of the L2
Control Register.

Writeback Buffer

The Writeback Buffer contains modified evicted L2 data to be written back to
memory, The data portion is protected by SEC/DED ECC and ECC is checked on the
way from WBB to mcu. The tag is implemented as an 8 entry CAM with 40 bits per
entry. OpenSPARC T1 does not protect the tag. OpenSPARC T2 does not protect the
tag due to its small contribution to overall FIT rate.

If a correctable ECC error occurs on the data, the error is logged, and, if enabled, a
disrupting trap request is generated to the core identified by the ASI _CMP _ERROR
_STEERING register. Hardware corrects the error before writing the data to memory.

If an uncorrectable ECC error occurs on the data, the error is logged, and, if enabled,
generates a disrupting trap request to the core identified by the ASI_ CMP_ ERROR_
STEERING register.

I/O Write Buffer

The I/O Write Buffer collects I/O write data prior to writing it to DRAM. The buffer
consists of tag and data sections. OpenSPARC T1 and OpenSPARC T2 protect the
data with SEC/DED ECC and ECC is checked on the way from IOWB to DRAM.
The tag is not protected.

If a correctable ECC error occurs on the data, the error is logged, and, if enabled, a
disrupting trap request is generated to the core identified by the ASI_ CMP_
ERROR_ STEERING register. Hardware corrects the error before writing the data to
memory.

If an uncorrectable ECC error occurs on the data, the error is logged, and, if enabled,
a disrupting trap request is generated to the core identified by the ASI_ CMP_
ERROR_STEERING register. Software could possibly retry the write operation
through the device driver.
2-60 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

2.1.7.3 NotDATA in L2 (new feature in OpenSPARC T2)

Uncorrectable errors are not necessarily unrecoverable. Program execution may or
may not be affected depending on the not be affected depending on the condition
under which the error occurs. In either case, HW must signal the occurrence of the
error when it detects it to the appropriate SW error handler. However the chances
for recovery are greatly enhanced if only the offended processor reports the error,
and the others do not.

To meet this high level goal, as part of a requirement from SPARC SWG RAS
working group to have UE from DRAM stored in L2/L3 caches as Notdata,
OpenSPARC T2 L2 would support a scheme for detecting Notdata on UE from
DRAM without using extra bits of storage.

The scheme involves flipping the computed ECC bits for the data with UE from
DRAM and storing it with the data. The idea is when a subsequent access happens
to the line in L2 that would do an ECC check, the generated ECC would be 1’s
complement of the stored ECC, resulting in check bits[6:0] being all 1’s. This would
indicate NotData.

System requires that NotData syndrome be protected from single bit errors (SBE’s).
Single bit error correction is not required. However it is required that the error be
reported (even as UE), and that the error is never mistaken as valid data, or data
with correctable errors.

The ECC logic in L2 after detecting single bit error in the data or ECC portion of the
NotData packet will treat it as an uncorrectable error. A double bit error can be a
problem since the ECC logic would potentially treat it as valid data with CE. But the
chance of such failure is very remote and double bit error protection on NotData is
not a system requirement.

The following sections describe the mechanisms of detecting UE on FIll and storing
NotData in L2 and also L2 behavior on subsequent accesses to L2 from core, SIU,
scrubber and DRAM (eviction) finding NotData.

Detecting UE on a Fill & storing NotData in L2:

If MCU detects UE on data return from DRAM, it will indicate UE to L2 on a 16 byte
quad-word boundary and also invert all ECC bits associated with the 16 bytes of
data. This data with inverted ECC bits will then get written to the Fill Buffer and
eventually get written to the L2 data array on the fill. Thus on the UE, MCU will
write data marked as Notdata itself into the L2 cache. However once the data is
returned to L2, there are three possibilities:

1. replayed load/ifetch/atomic reads from the Fill Buffer array before the fill
happens and detects UE.
Chapter 2 Level 2 Cache 2-61

In this case if an UE gets detected on the data read from the Fill Buffer, it would
return load/ifetch/atomic data to Core but mark the data as UE in the CPX packet.
Also the UE would be logged as DAU error in L2. The Core will take a precise trap.
Then the fill would happen and store NotData in the array. Subsequent accesses
would see Notdata in the L2.

2. replayed load/ifetch/atomic reads from the Fill Buffer array before the fill
happens and does not detect UE but UE is another 16 byte chunk in the same line.

In that case the load/ifetch/atomic will complete as normal. Later on when the FIll
happens, if the UE is on another 16 Byte chunk for the same line (as indicated by a
UE bit stored in FIll Buffer from DRAM), the UE would be logged as DAU error in
L2 and assert a disrupting trap to CPU. The fill would store NotData in the array so
the subsequent accesses see NotData in L2.

3. 1. replayed load/ifetch/atomic reads from the data array itself after the fill.

In this case if there was UE detected during the fill, the UE would be logged as DAU
error in L2 and would cause a disrupting trap to the core. The fill would store
NotData in the array. Later on if the replayed load/ifetch/atomic reads the 16 Byte
chunk that has NotData in it, it will return data to Core but mark the data as
NotData in the CPX packet. This would cause a precise trap. All subsequent
accesses that hit would also see NotData.

If the FIll was for a store miss from CPU or SIU, UE would be logged as DAU error
in L2 and cause a disrupting trap. The fill would store NotData in the array so the
subsequent accesses see NotData in L2.

Detecting UE on a Scrub:

When the L2 data array scrubber detects UE in a line in the data array, it will log the
UE as LDSU bit in L2 and will issue a CPX Error packet to the core specified in the
ERRORSTEER field of the L2 Control Register.

L2 behavior on subsequent accesses to L2 from core, SIU, scrubber and
DRAM (eviction) finding NotData.

1. Load/Ifetch/atomic hit from CPU in L2 encountering NotData :

When a load/ifetch/atomic hit detects NotData, it will set NDSP bit in L2 and report
NotData to the requesting core on the CPX packet.

2. Partial store hit from CPU encountering Notdata:

When a partial store hit in L2 encounters NotData it will set NDSP bit in L2 and
issue a Error Indication packet to the core indicating NotData. A disrupting trap
would get issued. The store will not happen in L2.
2-62 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

3. 4/8 byte store from CPU:

The store would complete irrespective of the NotData in the data array. ALthough
NotData gets marked for all 4 byte chunks of a 16 Byte line segment, all 4 NotData
segments may get overwritten with 2/4 back to back stores and would cause the
NotData symptom to be lost. In that case, when the disrupting trap caused by the
UE on the related Fill gets the issued, the trap handler will just cause an eviction of
the dirty line to DRAM (without knowing whether it has Notdata or not). L2 will
detect Notdata on the data in the eviction path and if there is no trace of any
NotData, MCU will just write it out to DRAM without polluting the ECC on 16 byte
boundary. Otherwise L2 will signal UE to MCU and MCU will write it out to DRAM
polluting the ECC on 16 byte boundary.

4. SIU load hit in L2 encountering NotData:

SIU load hitting in L2 encountering NotData will return data marked with UE to SIU
which will get propagated to PCI_EX /BSC. NDDM bit will be set in L2 and a CPX
Error packet will be issued to core specified in the ERRORSTEER field of the L2
Control Register indicating NotData and a disrupting trap will be taken.

5. SIU partial store hit in L2 encountering NotData:

When a partial store from SIU in L2 encounters NotData in L2 it will set NDDM and
issue a Error Indication packet to the core specified in the ERRORSTEER field of the
L2 Control Register indicating NotData. The store will not happen in L2. A
disrupting trap will be taken.

6. 4/8 byte store from SIU:

The store would complete irrespective of the NotData in the data array. ALthough
NotData gets marked for all 4 byte chunks of a 16 Byte line segment, all 4 NotData
segments may get overwritten with 2/4 back to back stores and would cause the
NotData symptom to be lost.In that case, when the disrupting trap caused by the UE
on the related Fill gets the issued, the trap handler will just cause an eviction of the
dirty line to DRAM (without knowing whether it has UE or not). UE will detect UE
on the data in the eviction path and if there is no trace of any NotData, it will just
write it out to DRAM without polluting the parity. Otherwise it will signal UE to
MCU and MCU will write it out to DRAM polluting the data to indicate multi-bit
error.

7. Data Ram Scrubber encountering NotData in L2:

When Data Ram Scrubber in L2 detects NotData it will do nothing, and will keep the
data and ECC bits unchanged.

8. Eviction from L2 encountering NotData:
Chapter 2 Level 2 Cache 2-63

When NotData is detected on evicted data from Write Back Data Buffer to DRAM,
L2 would indicate to MCU UE for each 16 byte chunk same as today, and the MCU
would write the data to DRAM after flipping multiple ECC bits according to Galois
Field Hemming code.

L2 behavior on NotData reported from Core

1. When uncorrectable errors occur on the store data in the store buffer, core would
indicate it to L2 by asserting INV bit (116) of the pcx packet to 1’b1. L2 would
then accept the store and do the write, but would mark the data as NotData.

2. To deal with UE on the compare data of a CASA instruction, LSU will assert the
INV bit (116) of the pcx packet for both the CAS1 and CAS2 packets. When the L2
sees this bit asserted, it will force the compare result to be "true" so that L2 will be
updated. Also instead of storing the swap data, it will write NotData.

2.1.7.4 Error reporting by L2

L2 cache reports the different errors it detects to the cores through encoded ERR[1:0]
field on the CPX packets.

Loads, stream loads, mmu loads, prefetches, ifetches, atomics send back
UE/CE/Notdata error on the data read, on ERR[1:0] (139:138) bits of the Load
return, Stream Load Return, MMU Load return, Prefetch Return, Ifill Return 1, Ifill
Return 2, Swap/Ldstub return and CAS return packets respectively to the requesting
virtual core.

LDAU/LDAC/NDSP errors respectively get recorded in L2 Error Status registers
(please refer to OpenSPARC T2 Programmer’s Reference Manual) for UE/CE/Notdata
Error with R/W bit being a 0.

In case a UE/Notdata is detected on a CAS1 or swap/ldstub read pass, the store
does not happen in L2 in the CAS2 and swap/ldstub writes passes (leaving the data
and ECC unchanged). However in the CAS 2 ack packet and the swap/ldstub ack
packet, ERR[1:0] (bits 139:138) gets driven as valid to the requesting virtual core with
the encoding reflecting CE/UE/Notdata.

On a atomic miss, when the line is returned from DRAM, the fill always happens
first and then the load of the atomic is replayed from the Miss Buffer.Now if the line
has CE or UE in it, on the fill, an L2 Error indication packet will get sent to the core
indicating CE or UE. Note that CE here means that the line is already corrected and
error free on account of MCU cleaning it up when writing to L2. If it was a CE, the
error would not be visible in the L2 after the fill as the line is already corrected, and
the replayed load of the atomic will not see any error and will just return good data.
The store that follows will just complete as normal without any errors. If it was a
UE, the error would be still persisting in the line when the fill happens and so the
2-64 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

replayed load will see Notdata and will indicate a Notdata on the load return packet
to the core. The store that follows will also see the error and indicate Notdata on the
store ack packet. The store will not happen in L2.

Stores, Stream Stores on detecting UE/CE/Notdata on the data do not report the
error on the ERR[1:0] (139:138) bits of the Store ack, Stream Store ack packets
respectively. However the errors get reported on bits 139:138 of Error Indication
packet later to the requesting virtual core after the occurrence of the next L2 fill. On
the detection of the error, LDAU/LDAC/NDSP errors respectively get recorded in
L2 Error Status registers (please refer to OpenSPARC T2 Programmer’s Reference
Manual) for UE/CE/Notdata Error with R/W bit being a 1. Stores do not happen to
the L2 in case of UE and Notdata errors leaving the data and ECC unchanged.

Directory parity (LRU) error and VUAD Uncorrectable Error (LVU) cause a fatal
error warm reset and does not get reported to the core on the Error Indication
Packet.

All other errors
(LDWC,LDWU,LDRC,LDRU,LDSC,LDSU,DAC,DAU,DRC,DRU,DSC,DSU,LTC,LVC,
NDDM) would get reported to the Virtual Core specified in the
L2_CONTROL_REG.ERRORSTEER field on bits [139:138] of Error Indication packet
of crossbar after the occurrence of the next L2 fill.

L2 would drive bit 137 of the CPX packet on an L2 Error indication CPX packet as 1
in case of LDRC error on a SIU RDD.This would indicate to the core that core should
take a SW_recoverable trap instead of a HW_corrected error trap. For all other
Correctable errors asserted by L2 on the Error Indication packet, this bit will be 0
indicating HW_corrected error. Also for other error types like UE and Notdata, this
bit would be driven as 0.

2.1.8 VDFT Features
The following DFT features are supported by L2 cache.

■ BIST

■ Full scan

■ Shadow can

2.1.9 Critical Path Analysis
Following are the critical paths in OpenSPARC T1 L2 cache:

■ VUAD access in C1: Memory Access(10g) + 1mm xmit (2g) + 4-1 mux(3.5g) + 4-1
mux(3.5g) + 2-1 mux(2g) = 21 gates.
Chapter 2 Level 2 Cache 2-65

■ Way Sel Generation in C2: c2 compare logic(2g) + 2.32 mm xmit in the tag array
(4.7g) + 600U xmit to tagctl(1.2g) + waysel logic(5g) +3mm xmit to middle of the
bottom of l2d (6g) = 19 gates.

Transmit from l2t to l2d is based on the existing proposed full chip floor plan.

■ Arbitration in PX to tag access: Arb logic to sel PX addr (12g) + 2.7mm xmit to
VUAD (6g) + array setup (1g) = 19 gates

■ Data cache access in C4, C5 and C52.

■ Data return in C8. Xmit from deccdp to oqdp (2g) + 3-1 mux in oqdp (3g) + xmit
from oqdp to ccx (5g) + setup in the CCX (10g) = 20 gates.

2.1.10 Performance
The following are the L2 cache performance data for 1.4 Ghz cmp clk and 333 Mhz
DRAM clk:

■ Load-Use latency seen by core on L1 miss and L2 hit: 21 cmp clks = (0.714x20) =
14.994 nsec

W’ |PQ PA PX1 PX2 | C1 C2 C3 C4 C5 C52 C6 C7 C8 |

CQ CA CX1 CX2 | CX3 E M B W

[where the CPU related stages are as follows:

W’ - arb for pcx

PQ - send pcx request

PA - send pcx packet

CX3 - packet received from cpx

E - IFU signaled to restart thread

M - data written to L1 cache (if load was cacheable)

B - data sent to EXU/FGU

W - data written to register file or bypassed to dependent instruction in
E stage]

■ Load-Use latency seen by core on L1 miss and L2 miss: 93 cmp clks= (0.714 x 93)
= 66.4 nsec

W’ -> C1: 6 cmp clks

C2 -> Req to MCU: 10 cmp clks
2-66 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

MCU -> DRAM address on memory bus: 4 cmp clks for ack sync + 2 DRAM clks
= 12.4 cmp clks

DRAM address -> first DRAM data (critical 16/32 B first) on pins: 8 DRAM clocks

= 33.6 cmp clks

MCU -> L2 first critical data: 3 DRAM clks = 12.6 cmp clks

L2 first critical data -> C2 stage of replayed Load: 4 cmp clks

C3 stage of replayed load -> return critical 16B to core: 9 cmp clks

Data seen by Core -> earliest it gets used in Core pipe = 5 cmp clks

■ Peak L2 load bandwidth with back to back hits in different sub-banks: 1.4 Ghz
x16 bytes = 22.4 GB/s

(16 bytes of data getting returned from L2 to core every cmp clock over Crossbar)

■ L2 store bandwidth with 8 byte back to back stores that hit in L2 in different sub-
banks: 1.4 Ghz x 8 bytes = 11.2 GB/s

2.2 Appendix

2.2.1 Debug mode/initialization mode
L2 cache comes out disabled after reset. One of the bits in the L2 cache control
registers have to be set in order to enable L2 cache. When L2 cache is disabled, there
are no accesses to L2 cache tag ram, data ram, VUAD arrays. All the instructions are
treated as a miss. However, diagnostic accesses to tag ram, data ram and VUAD
arrays are permitted.

The behavior of L2 cache when disabled is as follows:

In this mode the Miss Buffer operates to it’s full capacity. However, the Fill Buffer is
just one (line) deep. All the instructions still follow the pipeline described in chapter
5.

All the loads and stores issued to L2 cache gets recorded in Miss Buffer (MB). Loads
recorded in Miss Buffer gets issued to DRAM. The (load) data returned from DRAM
is recorded in the Fill Buffer (FB). The instruction gets replayed from the Miss Buffer
and data gets returned from the Fill Buffer.
Chapter 2 Level 2 Cache 2-67

When a Store transaction is encountered in Miss Buffer (MB), the store data gets
transferred to the Fill Buffer and a read gets issued to DRAM to fetch the line. When
the read data is returned, the store transaction now gets replayed from the Miss
Buffer and does a data merge with the Fill data before getting written into the
Writeback Buffer (WBB). Stores are issued out of Writeback Buffer to DRAM.

2.2.2 Reset sequence for L2 cache
In L2 cache, parity bits in the tag array, valid bits in VUAD array and the directories
should be initialized before L2 cache is enabled to guarantee coherency and correct
functionality.

The directory valid bits are cleared with flash reset during POR_. The reset block
drives the flash reset. When the valid bits are cleared (not valid) then the entries are
don’t care. Hence, the parity bits are not initialized to good parity. Clearing valid
bits in the directory informs the L2 cache that there are no valid lines in L1.

BISI or ASI’s are used to initialize the VUAD arrays by clearing all the valid bits.
This informs L2 cache that there are no valid lines in L2.

BISI or ASI’s are used to initialize the tag array with good parity. This eliminates the
possibility of any error cases from happening.
2-68 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

CHAPTER 3

Memory Control Unit (MCU)

This chapter contains the following sections:

■ Section 3.1, “Overview” on page 3-2

■ Section 3.2, “Terminology and Configuration” on page 3-5

■ Section 3.3, “DDR2 FBD Usage” on page 3-11

■ Section 3.4, “MCU-L2 Cache Interface” on page 3-26

■ Section 3.5, “DDR2 SDRAM Transaction Timing” on page 3-30

■ Section 3.6, “Memory Latencies” on page 3-44

■ Section 3.7, “Multiple Clock Domains” on page 3-47

■ Section 3.8, “Functional Description” on page 3-49

■ Section 3.9, “SDRAM Power Reduction and Reduced-Configuration Operating
Modes” on page 3-70

■ Section 3.10, “RAS Features” on page 3-72

■ Section 3.11, “Test Features” on page 3-76

■ Section 3.12, “MCU Level I/O” on page 3-79

■ Section 3.12, “MCU Level I/O” on page 3-79

■ Section 3.13, “MCU Registers” on page 3-83

■ Section 3.14, “Other Registers” on page 3-106
3-1

3.1 Overview
The DRAM memory control unit (MCU) interfaces to external registered DDR2 FBDs
through a unidirectional high-speed link to service load and store requests from two
L2 cache banks of the on-chip L2 Cache unit. Each load and store request from a L2
cache bank has a data size of 1 cache line, 64 bytes. There are 4 physical
instantiations of MCU in the OpenSPARC T2 CPU.

The features of the MCU are as follows:

■ Maximum memory of 128 GB per MCU branch using 8 GB DDR2 FBDs (assuming
2 Gb DRAM parts).

■ Supports DDR2 SDRAM clock frequencies up to 400 MHz (800 MHz double data
rate). Internally, the MCU runs at the DDR rate.

■ Supports up to 16 ranks of DDR2 FBDs per channel (8 pairs of double sided
FBDs).

■ Supports 128 bits of write data and 16 bits ECC per SDRAM cycle and 256 bits of
read data and 32 bits ECC per SDRAM cycle.

■ System peak memory bandwidths (4 branches) with 800 MHz DDR parts: 50
GB/s for reads, 25 GB/s for writes.

■ Uses 10-bit Southbound and 14-bit Northbound FBD channel protocols running at
12 times the SDRAM cycle rate.

■ Supports DDR2 SDRAM burst length of 4 with when using both FBD channels in
an MCU, burst length of 8 when using 1 FBD channel.

■ ECC generation, check, correction.

■ Programmable DDR2 SDRAM power throttle control.

■ The FBD Hot Plug feature is not supported.

3.1.1 Changes from OpenSPARC T1 MCU design
■ Use higher DDR2 SDRAM frequency: 266MHz, 333 MHz and 400MHz instead of

166MHz to 200MHz.

■ Uses FBDIMM channels to access memories instead of direct DDR2 interface.

■ Interface to two L2 cache banks per MCU instead of one or two L2 Cache banks
interface per MCU.

■ Minimum configuration with one DIMM per MCU branch.
3-2 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

3.1.2 Changes to OpenSPARC T2 MCU to support FBD
■ Added new FBD controller with channel initialization, error detection, and frame

encode and decode logic.

■ Updated address decoding to support upto 16 ranks of DIMMs. Can support
either one or two channels per MCU.

■ Write data rate reduced to half DDR rate. Data is buffered in AMB to allow more
flexibility in issuing write commands.

■ Read and write operations to different DIMMs can occur in parallel. Reads and
writes to a single FBD must be scheduled so that there are no data collisions on
the DIMM’s local DDR2 bus. However, since the Northbound and Southbound
channels are independent, read data from one DIMM can be returning to the host
at the same time that write data is being sent to different DIMM.

■ Have separate read and write schedulers that communicate with each other to
ensure there are no FBD bus data collisions.

■ No dead cycle when switching read or write commands between DIMMs;
however,this is still needed when switching access to the other sides of same
DIMM.

■ Include sync frame generation to AMBs in state machine, at least once every 42
frames.

■ Remove read DQS strobe placement support. OCD and ODT support will be
programmed through the AMBs.

■ Spread transactions over different DIMMs instead of staying in one DIMM as
long as possible to keep thermal dissipation better spread across DIMMs.

■ Support L0s power saving mode.
Chapter 3 Memory Control Unit (MCU) 3-3

FIGURE 3-1 OpenSPARC T2 System Overview

Cache
Crossbar

(CCX)

CCU

SIU

SSI ROM IntfFCRAM Intf

NIU
10 Gb MAC

eFuse

PCI-EX

L2 Bank0

L2 Bank1

MCU 0SPARC Core

10 Gb MAC

OpenSPARCT2

PCI-EX

Fully Buffered
DIMMs (FBD)

TCU

MCU 1

MCU 2

MCU 3

10

14

10

10

10

L2 Bank0

L2 Bank1

L2 Bank0

L2 Bank1

L2 Bank0

L2 Bank1

64

64

128

64

64

128

64

64

128

64

64

128

1.4Ghz1.4Ghz 800Mh 4.8Ghz

DIMMs
Ranks

1
1 or 2 per DIMM

2 3 8

10

10

10

10

Optional dual Channel Mode

10

10

10

DIMMs 1 2 3 8

10

10

10

10

14

14

14

14

14

14

14

SPARC Core

SPARC Core

SPARC Core

SPARC Core

SPARC Core

SPARC Core

SPARC Core
3-4 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

3.2 Terminology and Configuration

3.2.1 DRAM Terminology
■ DIMM: Dual Inline Memory Module. Industry standard SDRAM module

package. A stick of memory.

■ Channel: Port connecting Processor chip to DIMM.

■ DRAM chip: single chip inside the DIMM. We differentiate the types by how
many bits it outputs and its capacity. (x4 means 4 bit output, x8 means 8 bit
output, x16, x32 etc and 256Mbit or 512Mbit capacity). Most common ones are the
x4, x8 output.

■ Bank: Most DDR SDRAM chips are broken up into 4 or 8 logical banks internally
to enable full pipelining of memory operations.

■ Rank: A group of data that can be accessed from a DIMM. Each DIMM has two
chip selects. When a DIMM has two ranks, each chip select accesses DRAMs on
one side of the DIMM independently. When a DIMM has one rank, both chip
selects must be asserted at the same time to access all DRAMs on the DIMM. For
x4 SDRAMs, single rank DIMMs have 18 devices and double rank DIMMs have
36 devices.

■ RAS/CAS: RAS stands for "Row Address Strobe." When this signal is asserted, a
particular bank is enabled. It is also often referred to as "ACTIVE" command. CAS
stands for "Column Address Strobe." When this signal is asserted, the column
address and Read/Write Signals are transmitted.

■ Refresh: DRAM requires what is often referred to as "REFRESH" cycle. Every row
in the DRAM requires a "REFRESH" access every 15.6uS/7.8uS.

■ Single-channel Mode: This is a low-power configuration with one DIMM per
memory channel. Only 72 bits of the 144 external IO pins are used, and the
memory burst length is 8. While it is possible to support two DIMMs per channel
with this configuration, it is only expected to be used with one DIMM.

3.2.2 FBD Terminology
■ Advanced Memory Buffer (AMB) - The AMB buffers memory traffic between the

host and the SDRAMs. Requests are sent by the host to the AMB across a high
speed link, and the AMB drives the requests to the SDRAMs using the DDR2
protocol.

■ Bit Lane - A differencial pair of Signals in one direction.
Chapter 3 Memory Control Unit (MCU) 3-5

■ Cyclic Redundancy Code (CRC) - An error detection code sent with data across
the FBD link to protect the data from errors. When a CRC error is detected, the
faulty frame must be retransmitted.

■ DDR Branch - A minimum aggregation of DDR channels which operate in lock-
step to support error correction. A rank spans a branch. In OpenSPARC T2, a
branch will consist of one or two DDR channels.

■ DDR Channel - A DDR channel consists of a data channel with 72 bits of data and
an addr/cntrl channel.

■ DDR Data Channel - a DDR data channel consists of 72 bits of data divided into
18 data groups.

■ Frame - Groups of bits containing commands or data sent across the link over 12
cycles.

■ FBD - Fully Buffered DIMM.

■ Link - High-speed parallel differential point-to-point interface.

■ Linear Feedback Shift Register (LFSR) - A shift register where the data input to
the last register is a function of the outputs of other registers.

■ Northbound (NB) - the direction of Signals running from the farthest DIMM
toward the host.

■ Slot - Socket for a DIMM.

■ Southbound (SB) - the direction of Signals running from the host controller
toward the DIMMs.

■ Training Sequence (TS) - A sequence of bits sent per bit lane from the host to the
FBDs to initialize the channel operation.

■ Unit Interval (UI) - Average time interval between voltage transitions of a signal.
Approx. 200 ps for DIMMs running at 800 MHz.

3.2.3 DDR Branch Configuration
The following are key assumptions made during the design of this controller:

■ x4 and x8 DIMMs are supported.

■ DIMM capacity, configuration, and timing parameters cannot be different within
a memory branch.

■ Each DDR branch can have a different memory size and a different kind of DIMM
(e.g. a different number of ranks or different cas latency). Software should not use
address space bigger than 4 times the lowest memory capacity in a branch
because the cache lines are interleaved across channels, and using different sized
memories can create holes in the address space.

■ DRAM banks are always closed after read or write command by issuing an
autoprecharge command.
3-6 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

■ Burst length is 4 (BL=4) when using a two channels per DDR branch. Burst
length is 8 (BL=8) when using a single channel per branch.

■ There is a fixed 1 dead cycle for switching commands from one rank on a DIMM
to the other rank on the same DIMM.

■ Reads, Writes, and Refreshes across DDR branches have no relationship to each
other. They are all independent.

There are four independent DDR branches per CPU chip, each controlled by a
separate MCU. Each branch can be configured with one or two channesl. and
supports up to 16 ranks of DIMMs as shown in FIGURE 3-2. Each channel can be
populated with up to 8 single- or dual-rank FBDs. When a branch is configured
with two channels, the two FBDs that share the same AMB_ID are accessed in lock-
step. Data is returned 144 bits per frame for 8 frames in single channel mode and
288 bits per frame for 4 frames in dual channel mode. In either mode, the total data
transfer size is 512 bits, or 64 bytes, the cache line size for the L2 cache.

FIGURE 3-2 DDR Branch Configuration

Each FBD contains 4 or 8 internal banks that can be controlled independently. These
internal banks are controlled inside the SDRAM chips themselves. Accesses can
overlap between different internal banks. In a normal configuration, every Read and
Write operation to SDRAM will generate a burst length of 4 with 16 bytes of data

MCU 0

10

14

800Mhz

10

14

200Mhz
refclk

FBD
channel

FBD
channel

FBD
branch 0

Rank 0
(front)

Rank 1
(back)

AMB ID = 0 1 2 7

4.8Ghz1.4Ghz

SB
0

SB
1

NB0

NB1

64

128

Write
data

Read
data

Optional dual Channel Mode
Chapter 3 Memory Control Unit (MCU) 3-7

transferred every half memory clock cycle. In single-channel mode, Reads and
Writes will have a burst length of 8 with 8 bytes of data transferred every half
memory cycle.

3.2.3.1 Physical Address Mapping

The 40-bit physical memory address PA[39:0] request from the 8 L2 banks are
decoded and mapped to one of the four MCUs by address bits PA[8:7].

The L2 memory write requests are 64-byte aligned: PA[5:0] = 6’h00. A partial cache
line memory write is not supported by the MCU.

TABLE 3-1 Supported Memory Organization

DIMM Base Device Part Ranks # of Devices
Min. Memory
per Branch

Max. Memory
per Branch

512 MB 256 Mb x4 1 18 512 MB 8 GB

1 GB 512 Mb x4 1 18 1 GB 16 GB

1 GB 256 Mb x4 2 36 1 GB 16 GB

2 GB 1 Gb x4 1 18 2 GB 32 GB

2 GB 512 Mb x4 2 36 2 GB 32 GB

4 GB 2 Gb x4 1 18 4 GB 64 GB

4 GB 1 Gb x4 2 36 4 GB 64 GB

8 GB 2 Gb x4 2 36 8 GB 128 GB

512 MB 512 Mb x8 1 9 512 MB 8 GB

1 GB 512 Mb x8 2 18 1 GB 16 GB

1 GB 1 Gb x8 1 9 1 GB 16 GB

2 GB 1 Gb x8 2 18 2 GB 32 GB

2 GB 2 Gb x8 1 9 2 GB 32 GB

4 GB 2 Gb x8 2 18 4 GB 64 GB

39 - 9 8 - 6 5 - 4 3 - 1

DIMMs Memory Address L2 Bank Select L2 Cacheline
Sub-Address

16-byte Offset
3-8 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

The L2 physical memory read address requests are 16-byte aligned: PA[3:0]=4’h0.
The read data returned will be in the following order based on the L2 cache line sub
address, PA[5:4] (PA[6:4] for single-channel mode).

TABLE 3-3 Read Data Return Order for BL=8

The L2 cache bank select (PA[8:6]) is mapped to the 4 memory branches as shown in
FIGURE 3-3.

TABLE 3-2 Read Data Return Order for BL=4

L2 cacheline
sub- address, PA[5]

16-byte data return order

0 0,1,2,3

1 2,3,0,1

L2 cacheline
sub- address, PA[5]

8-byte data return order

0 0,1,2,3,4,5,6,7

1 4,5,6,7,0,1,2,3
Chapter 3 Memory Control Unit (MCU) 3-9

FIGURE 3-3 L2 Cache Banks Memory Branch Mapping

3.2.4 FBD Channel Configuration
The FBD specification supports two southbound channel configurations and five
northbound channel configurations. OpenSPARC T2 will support both southbound
configurations - the 10-bit and 10-bit failover modes - and two of the northbound
configurations - the 14-bit and 14-bit failover modes. These modes support data
packets of 64 bits data and 8 bits ECC. The 10-bit southbound mode provides 22
bits of CRC while the 10-bit failover mode has 10 bits of CRC. The 14-bit
northbound mode provides 24 bits of CRC on read data (12-bits per 72-bit data
packet), and the 14-bit failover mode provides 12 bits of CRC (6 bits per 72-bit data
packet).

During channel initialization, software will determine if a channel can be fully
utilized (10-bit southbound or 14-bit northbound mode) or if a failover mode must
be used in which one of the bit lanes is muxed out.

3 5 4 3 0

DIMMs memory address L2 bank select L2 cache line sub address 16-byte offset

MCU_0
(L2$ bank #0, #1)

MCU_1
(L2$ bank #2, #3)

MCU_2
(L2$ bank #4, #5)

MCU_3
(L2$ bank #6, #7)

DRAM Byte ADDR:
 0x000 – 0x07F
 0x200 – 0x27F
Etc.

DRAM Byte ADDR:
 0x080 – 0x0FF
 0x280 – 0x2FF
Etc.

DRAM Byte ADDR:
 0x100 – 0x17F
 0x300 – 0x37F
Etc.

DRAM Byte ADDR:
 0x180 – 0x1FF
 0x380 – 0x3FF
Etc.
3-10 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

3.3 DDR2 FBD Usage
The following sections detail DDR2 FBD information specific to the OpenSPARC T2
MCU.

Note – "The OpenSPARC T2 Memory Control Unit (MCU) implements a DDR2 FBD
design model that is based on various JEDEC-approved DDR2 SDRAM and
FBDIMM standards. JEDEC has received information that certain patents or patent
applications may be relevant to FBDIMM Advanced Memory Buffer standard
(JESD82-20) as well as other standards related to FBDIMM technology (JESD206)
(For more information, see
http://www.jedec.org/download/search/FBDIMM/Patents.xls).

Sun Microsystems does not provide any legal opinions as to the validity or relevancy
of such patents or patent applications. Sun Microsystems encourages prospective
users of the OpenSPARC T2 MCU design to review all information assembled by
JEDEC and develop their own independent conclusion."

3.3.1 FBD Channel Initialization
The FBD channels must be initialized through a software interface. This allows
more flexibility in the initialization over a dedicated hardware state machine. The
registers used for initialization are detailed in Section 19.6.

Software must perform the following sequence of events in order to initialize an FBD
channel:

1. Drive Electrical Idle on the SB channel’s TX outputs by setting the Channel State
Register to ’Disable’. Channels must remain in Disable state for at least tDisable
(51 frames) before transitioning to Calibrate state.

2. To transition to Calibrate state, set Channel State Register to ’Calibrate’ for longer
than twice tClkTrain time (42 frames). Once the AMBs are in the Calibrate state,
they must remain in this state for at least tCalibrate time (480K frames).

3. Drive Electrical Idle on SB channel to transition AMBs to Disable state. Remain in
Disable state for at least tDisable time (51 frames).

4. Set the Channel State Register to ’Training’ to begin driving TS0 patterns on the
SB channel to transition the AMBs to the Training state. The TS0 patterns are sent
to the last AMB until TS0 patterns are received on the northbound channel with
the AMB_ID from the last AMB. Software will use the Training State Loopback
Chapter 3 Memory Control Unit (MCU) 3-11

registers to determine how many correct TS0 patterns have been received on the
northbound channel. This training requires approx. 275 frames with eight
DIMMs per channel. After several correct TS0 patterns have been received on 13
of 14 of the bit lanes, initialization can procede to step 5.

5. Set the Channel State Register to ’Testing’ to begin driving TS1 patterns on the SB
channel to transition the AMBs to the Testing state. The IBIST engine within the
MCU will take over after the TS1 header has been sent, and it will signal the MCU
upon its completion so the MCU can send the trailer and begin the next training
sequence. After several TS1 patterns with the AMB_ID of the last AMB have been
received correctly, and software/IBIST has determined that at least 9 southbound
and 13 northbound bit lanes are working, initialization can procede to step 6.

6. Set the Channel State Register to ’Polling’ to begin driving TS2 patterns on the SB
channel to transition the AMBs to the Polling state. Continue sending TS2
patterns to the last AMB until correct TS2 patterns are received on the NB
channel. This determines the read round trip delay for the channel. TS2 patterns
can be sent to intermediate AMBs to determine which channel protocols they
support and to check that they can properly merge their data into the NB data
stream. AMBs that are not able to merge their data into the NB data stream
correctly will assert their Data_Merge_Error status bit. Once initialization reaches
the L0 state, software can check these bits to determine how to adjust the
Command_to_Data_Incr registers in the AMBs.

Set the Channel State Register to ’Config’ to begin driving TS3 patterns on the SB
channel to transition the AMBs to the Config state. The TS3 patterns program the
configuration of the SB and NB channels (always 10 SB and 14 SB for OpenSPARC
T2) and which channel bits are muxed out if using a fail over mode. TS3 patterns
are issued until the patterns are correctly received on the NB channel.

7. Set the Channel State Register to ’L0’ to transition AMBs to L0 state. After 4
consecutive NOPs have been sent on the SB channel, the channel is ready to
accept channel and DRAM commands.
3-12 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

3.3.2 FBD Commands

TABLE 3-4 FBD DRAM Commands

DRAM Cmds 23 22 21
2
0

1
9

1
8 17

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Activate DS2 DS1 DS0 1 Addr RS DRAM Bank and Address

Write DS2 DS1 DS0 0 1 1 RS DRAM Bank and Address

Read DS2 DS1 DS0 0 1 0 RS DRAM Bank and Address

Precharge All DS2 DS1 DS0 0 0 1 RS X X X X 1 1 1 X X X X X X X X X X

Precharge
Single

DS2 DS1 DS0 0 RS DRAM Bank 1 1 0 X X X X X X X X X X

Auto Refresh DS2 DS1 DS0 0 RS X X X X 1 0 1 X X X X X X X X X X

Enter Self
Refresh

DS2 DS1 DS0 0 RS X X X X 1 0 0 X X X X X X X X X X

Exit Self
Refresh / Exit
Power Down

DS2 DS1 DS0 0 RS X X X X 0 1 1 X X X X X X X X X X

Enter Power
Down

DS2 DS1 DS0 0 RS X X X X 0 1 0 X X X X X X X X X X

reserved X X X X X X X X X X X 0 0 X X X X X X X X X X X

TABLE 3-5 FBD Channel Commands

Channel Cmds 23 22 21 [20:14] 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Debug:: In-band
Events

E
V7

E
V6

E
V5

7’b0001111 1 EV
4

EV
3

EV
2

EV
1

EV
0

PV
7

PV
6

PV
5

PV
4

PV
3

PV
2

PV
1

PV
0

Debug:: Relative
Timing

P
H
5

P
H
4

P
H
3

7’b0001111 0 PH
2

PH
1

PH
0

RT
9

RT
8

RT
7

RT
6

RT
5

RT
4

RT
3

RT
2

RT
1

RT
0

Debug::
Exposed Info

EX
16

EX
15

EX
14

7’b0001110 EX
13

EX
12

EX
11

EX
10

EX
9

EX
8

EX
7

EX
6

EX
5

EX
4

EX
3

EX
2

EX
1

EX
0

reserved X X X 7’b000110x X X X X X X X X X X X X X X

reserved 7’b000110xx X X X X X X X X X X X X X X
Chapter 3 Memory Control Unit (MCU) 3-13

Refer to the FB-DIMM Architecture and Protocol and Advanced Memory Buffer
specifications for a full explanation of the channel commands.

3.3.2.1 FBD Frame Formats

Data is transmitted across the southbound and northbound channels in frames. For
the southbound channel, 10 bits of data are sent per cycle over 12 cycles. For the
northbound channel 14 bits of data are sent per cycle over 12 cycles. The next two
sections show the format of the frames.

Southbound Frame Formats

The southbound frame format consists of two sections, the "A" command section
and the "B"/"C" command or Data section. The 24-bit "A" command section is
contained in the first four cycles of the frame. The aC[23:0] bits in TABLE 3-6 shows
the location of the "A" command. Bits F[1:0] determines the format of the last 8
cycles of the frame as shown in TABLE 3-7. Bits aE[13:0] are the CRC value protecting
the aC[23:0] and F[1:0] fields.

The FE[21:0] bits in TABLE 3-6 are CRC bits protecting the 72 bits of command or data
in the remaining 8 cycles. Bits FE[13:0] are exclusive-ORed with the aE[13:0] field of
the following frame.

DRAM CKE per
DIMM

D
S2

D
S1

D
S0

7’b0000111 BC X X X X X DE
7

DE
6

DE
5

DE
4

DE
3

DE
2

DE
1

DE
0

DRAM CKE per
RANK

D
S2

D
S1

D
S0

7’b0000110 BC X X X X X D3
R1

D3
R0

D2
R1

D2
R0

D1
R1

D1
R0

D0
R1

D0
R0

Write Config
Reg

D
S2

D
S1

D
S0

7’b0000101 DS
3

TI
D

X A1
0

A9 A8 A7 A6 A5 A4 A3 A2 0 0

Read Config Reg D
S2

D
S1

D
S0

7’b0000100 DS
3

X X A1
0

A9 A8 A7 A6 A5 A4 A3 A2 0 0

reserved X X X 7’b0000011 X X X X X X X X X X X X X X

Soft Channel
Reset

X X X 7’b0000010 X X X X X X X X X X X X X X

Sync X X X 7’b0000001 X SD
1

SD
0

X X X X IE
R

ER
C

EL
0s

X X R1 R0

Channel NOP X X X 7’b0000000 X X X X X X X X X X X X X X

TABLE 3-5 FBD Channel Commands

Channel Cmds 23 22 21 [20:14] 13 12 11 10 9 8 7 6 5 4 3 2 1 0
3-14 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

In failover mode, the data for bit 9 is neither transmitted nor used in CRC
calculations.

TABLE 3-6 Common Features of Normal Southbound Frames

Transfer

Bit

9 8 7 6 5 4 3 2 1 0

0 aE0 aE7 aE8 F0 aC20 aC16 aC12 aC8 aC4 aC0

1 aE1 aE6 aE9 F1 aC21 aC17 aC13 aC9 aC5 aC1

2 aE2 aE5 aE10 aE13 aC22 aC18 aC14 aC10 aC6 aC2

3 aE3 aE4 aE11 aE12 aC23 aC19 aC15 aC11 aC7 aC3

4 FE21

5 FE20

6 FE19

7 FE18

8 FE17

9 FE16

10 FE15

11 FE14

FE0 FE7 FE8

FE1 FE6 FE9

FE2 FE5 FE10 FE13

FE3 FE4 FE11 FE12

TABLE 3-7 Southbound Frame Type Encoding

Frame Format F1 F0 Comments

Command 0 0 Frame contains one or more commands plus optional data

reserved 0 1

Command +
Wdata

1 WSn Frame contains an "A" command plus 72 bits of Wdata
Chapter 3 Memory Control Unit (MCU) 3-15

Command Frame Format

TABLE 3-8 shows the format of a southbound frame with three commands, aC[23:0],
bC[23:0], and cC[23:0].

Command Frame with Data Format

TABLE 3-9 shows the southbound frame format where the "B" command has a 32-bit
data payload. The BE[3:0] bits are byte enables for the data. This format is used to
write to internal control registers of the AMB.

TABLE 3-8 Command Frame Format

Transfer
Bit

9 8 7 6 5 4 3 2 1 0

0 aE0 aE7 aE8 F0 aC20 aC16 aC12 aC8 aC4 aC0

1 aE1 aE6 aE9 F1 aC21 aC17 aC13 aC9 aC5 aC1

2 aE2 aE5 aE10 aE13 aC22 aC18 aC14 aC10 aC6 aC2

3 aE3 aE4 aE11 aE12 aC23 aC19 aC15 aC11 aC7 aC3

4 FE21 0 0 0 bC20 bC16 bC12 bC8 bC4 bC0

5 FE20 0 0 0 bC21 bC17 bC13 bC9 bC5 bC1

6 FE19 0 0 0 bC22 bC18 bC14 bC10 bC6 bC2

7 FE18 0 0 0 bC23 bC19 bC15 bC11 bC7 bC3

8 FE17 0 0 0 cC20 cC16 cC12 cC8 cC4 cC0

9 FE16 0 0 0 cC21 cC17 cC13 cC9 cC5 cC1

10 FE15 0 0 0 cC22 cC18 cC14 cC10 cC6 cC2

11 FE14 0 0 0 cC23 cC19 cC15 cC11 cC7 cC3

TABLE 3-9 Command Frame with Data Format

Transfer
Bit

9 8 7 6 5 4 3 2 1 0

0 aE0 aE7 aE8 F0 aC20 aC16 aC12 aC8 aC4 aC0

1 aE1 aE6 aE9 F1 aC21 aC17 aC13 aC9 aC5 aC1

2 aE2 aE5 aE10 aE13 aC22 aC18 aC14 aC10 aC6 aC2

3 aE3 aE4 aE11 aE12 aC23 aC19 aC15 aC11 aC7 aC3

4 FE21 0 0 0 bC20 bC16 bC12 bC8 bC4 bC0
3-16 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

Command +WData Frame Format (4-bit Device)

Write data is sent in the southbound frame when F[1] is 1. Write data for a write
command is sent to an AMB over four cycles. TABLE 3-10 shows the format of the
F[1:0] field for these four frames. The WS[2:0] field identifies the target AMB. Each
AMB must speculatively store the write data in an accumulation buffer until it
determines that the data is for it. If the data is for that AMB, the data is stored in the
Write Data Buffer; otherwise, it is discarded.

TABLE 3-11 shows the format of the Command with Wdata frame.

5 FE20 0 0 0 bC21 bC17 bC13 bC9 bC5 bC1

6 FE19 0 0 0 bC22 bC18 bC14 bC10 bC6 bC2

7 FE18 0 0 0 bC23 bC19 bC15 bC11 bC7 bC3

8 FE17 BE0 D28 D24 D20 D16 D12 D8 D4 D0

9 FE16 BE1 D29 D25 D21 D17 D13 D9 D5 D1

10 FE15 BE2 D30 D26 D22 D18 D14 D10 D6 D2

11 FE14 BE3 D31 D27 D23 D19 D15 D11 D7 D3

TABLE 3-10 WData Address Delivery

Wdata Frame F1 F0

0 1 WS0

1 1 WS1

2 1 WS2

3 1 0

TABLE 3-11 Command+Wdata Frame Format (4-bit Device)

Transfer
Bit

9 8 7 6 5 4 3 2 1 0

0 aE0 aE7 aE8 F0 aC20 aC16 aC12 aC8 aC4 aC0

1 aE1 aE6 aE9 F1 aC21 aC17 aC13 aC9 aC5 aC1

2 aE2 aE5 aE10 aE13 aC22 aC18 aC14 aC10 aC6 aC2

TABLE 3-9 Command Frame with Data Format (Continued)

Transfer
Bit
Chapter 3 Memory Control Unit (MCU) 3-17

Northbound Frame Formats

Northbound frames return status information or read data. Alert Frames implicitly
tell if an error has occurred on the southbound channel. A Status Frame is an
explicit status response to a Sync Frame on the southbound channel. When no
Status or Read Data Frame is expected and no Alert Frame is detected on the
northbound channel, then an Idle frame is expected.

Bit 13 of the northbound frame is not transmitted or used in CRC calculations when
in failover mode.

Northbound Idle Frame Format

The Idle Frames are sent by the AMBs on the northbound channel to indicate that it
is still operating correctly. The bits within the frame are determined by a 12-bit
LFSR with polynomial x^12 + x^7 + x^4 + x^3 + 1. An example implementation is
shown in FIGURE 3-4.

3 aE3 aE4 aE11 aE12 aC23 aC19 aC15 aC11 aC7 aC3

4 FE21 C17D0 C15D0 C13D0 C11D0 C9D0 C7D0 C5D0 C3D0 C1D0

5 FE20 C17D1 C15D1 C13D1 C11D1 C9D1 C7D1 C5D1 C3D1 C1D1

6 FE19 C17D2 C15D2 C13D2 C11D2 C9D2 C7D2 C5D2 C3D2 C1D2

7 FE18 C17D3 C15D3 C13D3 C11D3 C9D3 C7D3 C5D3 C3D3 C1D3

8 FE17 C18D0 C16D0 C14D0 C12D0 C10D0 C8D0 C6D0 C4D0 C2D0

9 FE16 C18D1 C16D1 C14D1 C12D1 C10D1 C8D1 C6D1 C4D1 C2D1

10 FE15 C18D2 C16D2 C14D2 C12D2 C10D2 C8D2 C6D2 C4D2 C2D2

11 FE14 C18D3 C16D3 C14D3 C12D3 C10D3 C8D3 C6D3 C4D3 C2D3

TABLE 3-11 Command+Wdata Frame Format (4-bit Device) (Continued)

Transfer
Bit
3-18 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 3-4 Idle Frame LFSR Counter

The initial value is 12’b000000000001, and the LFSR cycles through 2^12 - 1 states
before repeating. The pattern in the LFSR is mapped to the Idle Frame bit lanes, i.e.
X0 maps to bit lane 0, X1 to bit lane 1, etc. The 13th bit lane contains the value of X0
for the first 6 cycles of the frame and the inverse of X0 for the last 6 cycles. The 14th
bit lane contains the value of X0 for all 12 cycles of the frame. TABLE 3-13 shows the
format of the first Idle Frame.

TABLE 3-12 First Northbound Idle Frame Format

Xfer Bit

13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 0 0 0 0 0 0 0 0 0 1

1 1 1 0 0 0 0 0 0 0 0 0 0 0 1

2 1 1 0 0 0 0 0 0 0 0 0 0 0 1

3 1 1 0 0 0 0 0 0 0 0 0 0 0 1

4 1 1 0 0 0 0 0 0 0 0 0 0 0 1

5 1 1 0 0 0 0 0 0 0 0 0 0 0 1

6 1 0 0 0 0 0 0 0 0 0 0 0 0 1

7 1 0 0 0 0 0 0 0 0 0 0 0 0 1

8 1 0 0 0 0 0 0 0 0 0 0 0 0 1

9 1 0 0 0 0 0 0 0 0 0 0 0 0 1

10 1 0 0 0 0 0 0 0 0 0 0 0 0 1

11 1 0 0 0 0 0 0 0 0 0 0 0 0 1
Chapter 3 Memory Control Unit (MCU) 3-19

Alert Frame Format

An AMB will begin sending Alert Frames in place of Idle Frames on the northbound
channel whenever an error has been detected on the southbound channel and will
continue to do so until it receives a Soft Channel Reset command or a channel reset.
The Alert Frame format is the inverse of the corresponding Idle Frame. TABLE 3-13

shows the format of the Alert Frame that replaces the Second Idle Frame.

Data Frame Format

TABLE 3-14 shows the format of a Northbound Read Data Frame for x4 devices. It
contains two 72-bit data packets, each with 12-bit CRC protection.

TABLE 3-13 Alert Frame Replacing First Idle Frame

Xfer Bit

13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 1 1 1 1 1 1 1 1 0

1 0 0 1 1 1 1 1 1 1 1 1 1 1 0

2 0 0 1 1 1 1 1 1 1 1 1 1 1 0

3 0 0 1 1 1 1 1 1 1 1 1 1 1 0

4 0 0 1 1 1 1 1 1 1 1 1 1 1 0

5 0 0 1 1 1 1 1 1 1 1 1 1 1 0

6 0 1 1 1 1 1 1 1 1 1 1 1 1 0

7 0 1 1 1 1 1 1 1 1 1 1 1 1 0

8 0 1 1 1 1 1 1 1 1 1 1 1 1 0

9 0 1 1 1 1 1 1 1 1 1 1 1 1 0

10 0 1 1 1 1 1 1 1 1 1 1 1 1 0

11 0 1 1 1 1 1 1 1 1 1 1 1 1 0

TABLE 3-14 Northbound Data Frame Format

Xfer Bit

13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 E1.0 E1.11 C17.D2 C16D0 C14.D2 C13.D0 C11.D2 C10.D0 C8.D2 C7.D0 C5.D2 C4.D0 C2.D2 C1.D0

1 E1.1 E1.10 C17.D3 C16D1 C14.D3 C13.D1 C11.D3 C10.D1 C8.D3 C7.D1 C5.D3 C4.D1 C2.D3 C1.D1
3-20 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

Northbound Register Data Frame Format

TABLE 3-15 shows the format for an AMB Register Read Data Frame.

2 E1.2 E1.9 C18.D0 C16D2 C15.D0 C13.D2 C12.D0 C10.D2 C9.D0 C7.D2 C6.D0 C4.D2 C3.D0 C1.D2

3 E1.3 E1.8 C18.D1 C16D3 C15.D1 C13.D3 C12.D1 C10.D3 C9.D1 C7.D3 C6.D1 C4.D3 C3.D1 C1.D3

4 E1.4 E1.7 C18.20 C17.D0 C15.D2 C14.D0 C12.D2 C11.D0 C9.D2 C8.D0 C6.D2 C5.D0 C3.D2 C2.D1

5 E1.5 E1.6 C18.D3 C17.D1 C15.D3 C14.D1 C12.D3 C11.D1 C9.D3 C8.D1 C6.D3 C5.D1 C3.D3 C2.D0

6 E2.0 E2.11 C17.D2 C16.D0 C14.D2 C13.D0 C11.D2 C10.D0 C8.D2 C7.D0 C5.D2 C4.D0 C2.D2 C1.D0

7 E2.1 E2.10 C17.D3 C16.D1 C14.D3 C13.D1 C11.D3 C10.D1 C8.D3 C7.D1 C5.D3 C4.D1 C2.D3 C1.D1

8 E2.2 E2.0 C18.D0 C16.D2 C15.D0 C13.D2 C10.D0 C10.D2 C9.D0 C7.D2 C6.D0 C4.D2 C3.D0 C1.D2

9 E2.3 E2.8 C18.D1 C16.D3 C15.D1 C13.D3 C10.D1 C10.D3 C9.D1 C7.D3 C6.D1 C4.D3 C3.D1 C1.D3

10 E2.4 E2.7 C18.D2 C17.D0 C15.D2 C14.D0 C12.D2 C11.D0 C9.D2 C8.D0 C6.D2 C5.D0 C3.D2 C2.D0

11 E2.5 E2.6 C18.D3 C17.D1 C15.D3 C14.D1 C12.D3 C11.D1 C9.D3 C8.D1 C6.D3 C5.D1 C3.D3 C2.D1

TABLE 3-15 Northbound Register Data Frame Format

Xfer Bit

13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 E1.0 E1.11 0 0 0 0 0 0 D30 D24 D18 D12 D6 D0

1 E1.1 E1.10 0 0 0 0 0 0 D31 D25 D19 D13 D7 D1

2 E1.2 E1.9 0 0 0 0 0 0 0 D26 D20 D14 D8 D2

3 E1.3 E1.8 0 0 0 0 0 0 0 D27 D21 D15 D9 D3

4 E1.4 E1.7 0 0 0 0 0 0 0 D28 D22 D16 D10 D4

5 E1.5 E1.6 0 0 0 0 0 0 0 D29 D23 D17 D11 D5

6 E2.0 B2.11 0 0 0 0 0 0 0 0 0 0 0 0

7 E2.1 E2.10 0 0 0 0 0 0 0 0 0 0 0 0

8 E2.2 E2.9 0 0 0 0 0 0 0 0 0 0 0 0

9 E2.3 E2.8 0 0 0 0 0 0 0 0 0 0 0 0

10 E2.4 E2.7 0 0 0 0 0 0 0 0 0 0 0 0

11 E2.5 E2.6 0 0 0 0 0 0 0 0 0 0 0 0

TABLE 3-14 Northbound Data Frame Format (Continued)

Xfer Bit
Chapter 3 Memory Control Unit (MCU) 3-21

Northbound Status Frame Format

TABLE 3-16 shows the format of the northbound Status Frame. The Status Frame is
sent in response to Sync Frame on the southbound channel. The Status Frame
returns at the time that the first Read Data Frame would return if a read were issued
at the time of Sync Frame plus an additional delay determined by the SD[1:0] field of
the Sync command. Each AMB sends its status back on the bit lane corresponding to
its AMB_ID. The S[3:0] bits are the status information from the configuration
register selected in the Sync command (TABLE 3-17). The SP bit is the odd parity of
S[3:0].

TABLE 3-16 Status Frame Format

Xfer Bit

13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 DBS0 DAS0 D9S0 D8S0 D7S0 D6S0 D5S0 D4S0 D3S0 D2S0 D1S0 D0S0

1 0 0 DBS1 DAS1 D9S1 D8S1 D7S1 D6S1 D5S1 D4S1 D3S1 D2S1 D1S1 D0S1

2 0 0 DBS2 DAS2 D9S2 D8S2 D7S2 D6S2 D5S2 D4S2 D3S2 D2S2 D1S2 D0S2

3 0 0 DBS3 DAS3 D9S3 D8S3 D7S3 D6S3 D5S3 D4S3 D3S3 D2S3 D1S3 D0S3

4 0 0 DBSP DASP D9SP D8SP D7SP D6SP D5SP D4SP D3SP D2SP D1SP D0SP

5 0 1 0 1 0 1 0 1 0 1 0 1 0 1

6 1 0 1 0 1 0 1 0 1 0 1 0 1 0

7 0 1 0 1 0 1 0 1 0 1 0 1 0 1

8 1 0 1 0 1 0 1 0 1 0 1 0 1 0

9 0 1 0 1 0 1 0 1 0 1 0 1 0 1

10 1 0 1 0 1 0 1 0 1 0 1 0 1 0

11 0 1 0 1 0 1 0 1 0 1 0 1 0 1

TABLE 3-17 Status Bit Description

Field Name Description

FBD Status 0

SP Parity Parity of S[3:0]

S3 NBDE Northbound Debug Event

S2:S1 Thermal_Trip AMB thermal information for thermal management

S0 Alert_Asserted An error has been detected by the AMB.
3-22 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

Refer to the FB-DIMM Architecture and Protocol and Advanced Memory Buffer
specifications for a full explanation of the frame formats and AMB register
definitions.

3.3.3 SDRAM Initialization
The initialization sequence within the MCU for the SDRAMs will still follow the
same flow; however, the interface will be different. The MCU will have to initialize
the SDRAMs indirectly through registers in the AMBs. The MCU will issue a
command to the AMBs and then poll status registers to determine when the AMBs
have completed issuing the command to the SDRAMs.

After SDRAM initialization is complete, the MCU will begin scheduling commands
directly to the SDRAMs.

The DDR2 SDRAMs must be powered up and initialized in a predefined manner.
Operational procedures other than those specified may result in undefined
operation. TABLE 3-18 shows the sequence of steps required for POWER UP and
Initialization.

FBD Status 1

SP Parity Parity of S[3:0]

S[3:1] reserved reserved

S[0] Data_Merge_Error AMB cannot meet northbound data merge timing requirement.

FBD Status 2

SP Parity Parity of S[3:0]

S[3:0] reserved reserved

FBD Status 3

SP Parity Parity of S[3:0]

S[3:0] reserved reserved

TABLE 3-18 SDRAM Power Up and Initialization Sequence

Step Required Action

1. Apply power to VDD.

2. Apply power to VDDQ.

3. Apply power to VREF and to the system VTT.

TABLE 3-17 Status Bit Description (Continued)

Field Name Description
Chapter 3 Memory Control Unit (MCU) 3-23

3.3.4 DDR2 SDRAM Commands
TABLE 3-19 shows the truth table for the commands supported by the DDR2
SDRAMs.

4. Start clock and maintain stable condition for 200 s.

5. Apply No Operation or Deselect command and take CKE high.

6. Wait minimum of 400ns, then issue a Precharge-all command.

7. Issue Extended Mode Register 2 Set (EMRS(2)) command.

8. Issue Extended Mode Register 3 Set (EMRS(3)) command.

9. Issue Extended Mode Register 1 Set (EMRS(1)) command to enable DLL.

10. Issue Mode Register Set (MRS) command to reset DLL.

11. Issue Precharge-all command.

12. Issue 2 or more Auto-Refresh commands.

13. Issue MRS command with low on A8 to initialize device operation (i.e. to program operating
parameters without resetting the DLL).

14. At least 200 clocks after step 8, execute OCD Calibration (Off Chip Driver Impedance adjustment). If
OCD calibration is not used, EMRS OCD Default command (A9=A8=A7=1) followed by EMRS OCD
Calibration Mode Exit command (A9=A8=A7=0) must be issued with other parameters of EMRS.

15. The DDR2 SDRAM is now ready for normal operation.

TABLE 3-19 DDR2 SDRAM Command Truth Table

Function

CKE
Previous
Cycle

CKE
Current
Cycle CS# RAS# CAS# WE# Bank Address

Mode/Extended Mode
Register Set

H H L L L L BA Op-Code

Auto-Refresh H H L L L H X X

Self-Refresh Entry H L L L L H X X

Self-Refresh Exit L H H X X X X X

L H H H

Single Bank Precharge H H L L H L BA A10=L

Precharge All Banks H H L L H L X A10=H

TABLE 3-18 SDRAM Power Up and Initialization Sequence (Continued)

Step Required Action
3-24 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

Commands Supported by OpenSPARC T2
■ Mode/Extended Mode Register Set - program Mode or Extended Mode Register

which controls operation of SDRAM.

■ Auto-Refresh - refresh all SDRAM banks.

■ Self-Refresh - place SDRAM in refresh mode controlled by a timer within the
SDRAM.

■ Power Down - place SDRAM in low power mode.

■ Single Bank Precharge - deactivate row in a particular bank.

■ Precharge All Banks - deactivate rows in all banks.

■ Bank Activate - activate a row within a particular bank.

Bank Activate H H L L H H BA Row
Address

Write Column
Address
A10=L

Write with Auto-Precharge Column
Address
A10=H

Read Column
Address
A10=L

Read with Auto-Precharge H H L H L H BA Column
Address
A10=H

No Operation H X L H H H X X

Device Deselect H X H X X X X X

Power Down Entry H L H X X X X X

L H H H

Power Down Exit L H H X X X X X

L H H H

TABLE 3-19 DDR2 SDRAM Command Truth Table (Continued)

Function

CKE
Previous
Cycle

CKE
Current
Cycle CS# RAS# CAS# WE# Bank Address
Chapter 3 Memory Control Unit (MCU) 3-25

■ Write with Auto-Precharge - perform a write operation and deactivate the bank
after completion.

■ Read with Auto-Precharge - perform a read operation and deactivate the bank
after completion.

■ No Operation/Device Deselect - no operation.

■ (Read and Write without Autoprecharge are not supported in OpenSPARC T2
since a bank is always closed after a transaction.)

3.4 MCU-L2 Cache Interface
An L2 cache bank can send one read or write request at a time to the MCU. Once it
sends a request it must wait for the appropriate acknowledge before sending the
next request. There is a delay of three cycles from the completion of a transaction
(acknowledge for a read, last data word for a write) until the next request can be
made. There can be a total of eight outstanding read requests and eight outstanding
write requests from each L2 cache bank at any time.
3-26 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 3-5 MCU-L2 Cache Interface Signals

3.4.1 MCU Read Transaction
The L2 Cache makes a read request by asserting l2t_mcu_rd_req to the MCU at the
same time that l2t_mcu_addr[39:4] and l2t_mcu_rd_req_id[2:0], the index into the L2
cache’s fill buffer for returning data, are valid. The request is registered in the MCU
and held in the l2clk domain until l2if_cmp_ddr_sync_en is high.
(l2if_cmp_ddr_sync_en is a registered version of cmp_ddr_sync_en , the top-level
clock synchronization signal.) This signal is used to synchronize the Signals crossing
from the l2clk (1.4 GHz) domain to the drl2clk (800 MHz) domain and indicates that
the request will be stored in the Read Request Queue on the next drl2clk cycle.
FIGURE 3-6 shows the timing of the read request and the internal acknowledge. There
is a two-deep FIFO on the read request port. When a read request comes in, it is
placed in the FIFO. An acknowledge for a transaction is sent to the L2 cache when
that transaction reaches the head of the FIFO, either when a transaction is placed
into an empty FIFO or when both entries are full and then an entry is dequeued.

No flow control is needed for the returning read data because the L2 cache will
guarantee space to receive the data. When mcu_l2t_data_vld_r0 signal is asserted,
the Signals mcu_l2t_qword_id_r0[1:0] and mcu_l2t_read_req_id[2:0] are driven at
the same time, and mcu_l2b_data_r3[127:0] and mcu_l2b_ecc_r3[27:0] are driven
three cycles later. Also, mcu_l2t_secc_err_r3 or mcu_l2t_mecc_err_r3 will be

MCUL2_0 L2_1

l2t0_mcu_rd_req

l2t0_mcu_wr_req

l2b0_mcu_wr_data_r5[63:0]

l2t0_mcu_rd_req_id[2:0]

l2t0_mcu_addr_39to9[39:9]

l2b0_mcu_data_vld_r5

l2t0_mcu_addr_5

l2b0_mcu_data_mecc_r5

mcu_l2t0_data_vld_r0

mcu_l2t0_wr_ack

mcu_l2t0_rd_ack

mcu_l2t0_scb_mecc_err

mcu_l2t0_scb_secc_err

mcu_l2t0_qword_id[1:0]

mcu_l2t0_mecc_err_r2

mcu_l2t0_secc_err_r2

mcu_l2t0_rd_req_id_r0[2:0]

mcu_l2b_data_r2[127:0]

mcu_l2b_ecc_r2[27:0]

l2t1_mcu_rd_req

l2t1_mcu_wr_req

l2b1_mcu_wr_data_r5[63:0]

l2t1_mcu_rd_req_id[2:0]

l2t1_mcu_addr_39to9[39:9]

l2b1_mcu_data_vld_r5

l2t1_mcu_addr_5

l2b1_mcu_data_mecc_r5

mcu_l2t1_data_vld_r0

mcu_l2t1_wr_ack

mcu_l2t1_rd_ack

mcu_l2t1_scb_mecc_err

mcu_l2t1_scb_secc_err

mcu_l2t1_qword_id[1:0]

mcu_l2t1_mecc_err_r2

mcu_l2t1_secc_err_r2

mcu_l2t1_rd_req_id_r0[2:0]

mcu_l2b_data_r2[127:0]

mcu_l2b_ecc_r2[27:0]
Chapter 3 Memory Control Unit (MCU) 3-27

asserted at the same time as the data if a correctable or uncorrectable error,
respectively, occurred in the corresponding data beat. The data is returned to the L2
cache over several cycles because of the difference between l2clk and drl2clk.
FIGURE 3-6 and FIGURE 3-7 show an example of a 6 to 1 l2clk to drl2clk ratio for a read
request. The order in which the data beats are returned to the L2 cache depends on
the bit PA[5], as discussed in section 3.3.

Since an L2 bank can only have 8 outstanding read requests at a time, and the MCU
can handle eight outstanding reads per L2 bank, the MCU does not have to keep
track of the number of outstanding reads.

Reads are not necessarily serviced in the order they are received from the L2 cache.
Transactions are scheduled in order to limit the amount of dead data cycles on the
bus to the DIMMs. Transaction scheduling is more fully discussed in section 10.2.3
under Arbitration.
3-28 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 3-6 Read Request Timing

FIGURE 3-7 Read Data Return Timing

3.4.2 MCU Write Transaction
The L2 Cache makes a write request by asserting l2t_mcu_wr_req to the MCU at the
same time that l2t_mcu_addr[39:6] is valid. Once the transaction is placed into the
Write Request Queue, mcu_l2t_wr_ack is sent back to the L2 cache to indicate that it
can now send another write transaction. l2b_mcu_data_valid and the write data
l2b_mcu_wr_data_r5[63:0] are asserted 5 cycles after the acknowledge. The write
data is sent to the MCU over 8 cycles for a total of 64 bytes of data.

mcu_l2b_data_r3[127:0]
d0 d1 d2

l2clk

d3

e0 e1 e2 e3mcu_l2b_ecc_r3[27:0]

mcu_l2b_qword_id_r0[1:0]

mcu_l2t_data_vld0_r0

o0 o1 o2 o3

ddr_cmp_sync_en

l2t_mcu_addr[39:5]

l2t_mcu_rd_req

l2if_mcu_rd_ack

l2clk

0 1 n n 1

cmp_ddr_sync_en

l2t_mcu_rd_req_id[2:0]

n – 1

l2if_cmp_ddr_sync_en

n – 2 n 2
Chapter 3 Memory Control Unit (MCU) 3-29

FIGURE 3-8 Write Request Timing

3.5 DDR2 SDRAM Transaction Timing

3.5.1 Memory Read
The MCU reads data from the external memory by:

■ issuing a bank activate by assert RAS and driving the row address and the bank
select.

■ issuing a Posted CAS Burst Read with AutoPrecharge command by asserting CAS
and driving the column address.

■ waiting for a delay of AL (Additive Latency) + CL (CAS latency) before
sampling the read data.

■ sampling data returning in a burst length of 4 in 2 drl2clk cycles.

A new Bank Activate command may be issued to the same bank if the following
conditions are satisfied:

■ The RAS precharge time (tRP) has been satisfied from the clock cycle at which the
AutoPrecharge begins.

■ The RAS cycle time (tRC) from the current Bank Activate has been satisfied.

FIGURE 3-9 shows a single burst read of length 4 (BL=4) with AutoPrecharge,
followed by a reactivation of the same bank.

l2b_mcu_wr_data_r5[63:0]
d0 d1 d2 d4 d5 d6d3 d7

l2clk

0 1 n - 1 n n 1

l2t_mcu_wr_req

l2t_mcu_addr[39:6]

l2if_cmp_ddr_sync_en

mcu_l2t_wr_ack

l2b_mcu_data_valid

n 2 n 3 n 4 n 5 n 12
3-30 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 3-9 Memory Burst Read with AutoPrechare, same bank reactivated

For seamless back-to-back memory reads, a different bank (B) can be activated
during the memory read of bank (A). Bank (B) can start a burst read with
AutoPrecharge command after a delay of BL/2 = 2cycles from the bank (A) burst
read with AutoPrecharge command. FIGURE 3-11 shows a seamless burst read with
AutoPrecharge command of 2 different banks.

RAS_L

CAS_L

DRAM_CLK

CL (A)

BL/2 AutoPrecharge (A)starts
tRP

A, BA

DQS
DQS_L

BankA
Activate

Burst Read (A)
with AutoPrecharge

BankA
Activate

Data (A)

tRC (min)

BL/2

DQ

BL/2

D0 D1 D2 D3

SDRAM
timing
parameters

AL (A)
Chapter 3 Memory Control Unit (MCU) 3-31

FIGURE 3-10 Memory Burst Read with AutoPrecharge with multiple banks activated

Note – There is an additional cycle delay when switching from one rank to a
different rank.

3.5.2 Memory Write
The MCU writes data to the external memory by:

■ issuing a bank activate by asserting RAS and the row address and the bank
selects.

■ issuing a Posted CAS Burst Write with AutoPrecharge command by asserting
CAS and driving the column address .

■ waiting for delay of (AL + CL-2) cycles from the CAS assertion, deasserting the
datastrobe (DQS/DQS_L) for 1 cycle.

■ waiting for a delay of (AL + CL-1) cycles from the CAS cycle before driving the
datastrobe and the write data.

AL (A)

RAS_L

CAS_L

DQ

DRAM_CLK

CL (A)

AutoPrecharge (A) starts
tRP

A, BA

DQS
DQS_L

BankA
Activate

Burst Read (A)
with AutoPrecharge

BankB
Activate

Burst Read (B)
with AutoPrecharge

tRRD

tRAS (A) (min)

BL/2

BL/2

D0A D1A D2A D3A D0B D1B D2B D3B

SDRAM
timing
parameters

Bank A

Bank A

Bank B

Bank B

Bank A

Bank A

Bank B

Bank B

AL (B) CL (B)
3-32 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 3-11 Memory Burst Write with AutoPrecharge and same bank activate

The same bank can be reactivated after a total delay of (1 + AL + CL-1 + BL/2 +
tWR + tRP) cycles for reactivating the same bank. The following diagram shows a
single burst write with AutoPrecharge command.

For a seamless memory write, a different bank (B) can be activated during the
memory write of bank (A). The bank (B) burst write with AutoPrecharge command
after a delay of BL/2 from the bank (A) burst write with AutoPrecharge command.
The following diagram shows a seamless burst write with AutoPrecharge command
of 2 different banks.

RAS_L

CAS_L

DQ

DRAM_CLK

CL-1 (A) tWR

AutoPrecharge (A)starts

A, BA

DQS
DQS_L

BankA
Activate

Burst Write (A)
with AutoPrecharge

BankA
Activate

D0 D1 D2 D3

Data (A)

tRP

>= tRAS (min)

tRC min

SDRAM
timing
parameters

BL/2AL (A)
Chapter 3 Memory Control Unit (MCU) 3-33

FIGURE 3-12 Memory Burst Write with AutoPrecharge and multiple banks activated

3.5.3 SERDES (I/O) Timing
The SERDES handles the physical layer of the FBD channel. The packets from MCU
are converted into frames of bits sent out on the serial link. On the northbound serial
lanes, the data returns from the memory link. Each frame going southbound is
divided into 10 bit lanes and 12 bit times or Unit Interval (UI). The maximum bit
lane frequency is 4.8GHz. Each frame going northbound is divided into 14 bit lanes
and 12 bit times. The DRAM clock is 1/12 the link’s frequency.

RAS_L

CAS_L

DQ

DRAM_CLK

CL -1 (A)

A, BA

DQS
DQS_L

BankA
Activate

Burst Write (A)
with AutoPrecharge

BankB
Activate

Burst Write (B)
with AutoPrecharge

Data (A)

Data (B)

tRRD

D0A D1A D2A D3A D0B D1B D2B D3B

tWR (A) tRP (A)

CL -1 (B)

SDRAM
timing
parameters

Bank A

Bank A

Bank B

Bank B Bank B

Bank BBank A

Bank A

BL/2

BL/2

AL (A)

AL (B)
3-34 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 3-13 Dual FBDIMM Channel Receiver

On the receive side, each SERDES macro recover its high speed clock, convert the
electrical Signals into a bit stream of logical 1s and 0s, and outputs a group (1
symbol) of 12 bits every 400MHz max. There are 3 fundamental microarchitectural
issues for the host receiver:

■ frame / symbol alignment logic (SAL) within a single bit lane

■ frame / lane alignment logic (LAL) across all 14 northbound lanes needed so
MCU data layer does not see the physical aspects of a single channel

PN _ N 7
PN _ P7

PN _ N 8
PN _ P8

PN _ N 6

PN _ N 9
PN _ P9

PN _ P6

PN _ N 11
PN _ P1 1

PN _ N 12
PN _ P1 2

PN _ N 10

PN _ N 13
PN _ P1 3

PN _ P1 0

PN _ N 3
PN _ P3

PN _ N 4
PN _ P4

PN _ N 2

PN _ N 5
PN _ P5

PN _ P2

PN _ N 1
PN _ P1

PN _ N 0 1

1
1

1

1

1
1

1
1

1
1

1

1
1

1
1

1
1

1

1
1

1

1
1

PN _ P0

..
.

.
.

.
.

.
..

.
.

.
.

.
.

.
..

.
.

.
.

.

.
.

.
.

.
..

.
.

.
.

.

..
.

.
.

.
.

.
..

.
.

.
.

.
.

.
.

..
.

.
.

.

.
.

.
.

.
.

..
.

.
.

.

D ual F B D IM M C hannel R eceiver

SAL0 LAL0 CAL0

SAL1

SAL2

SAL3

SAL4

SAL5

SAL6

SAL7

SAL8

SAL9

SAL10

SAL11

SAL12

SAL13

SAL0

SAL1

SAL2

SAL3

SAL4

SAL5

SAL6

SAL7

SAL8

SAL9

SAL10

SAL11

SAL12

SAL13

D E Seria lize r
I/O M A C R O

D E Seria lize r
I/O M A C R O

D E Seria lize r
I/O M A C R O

D E Seria lize r
I/O M A C R O

D E Seria lize r
I/O M A C R O

D E Seria lize r
I/O M A C R O

D E Seria lize r
I/O M A C R O

D E Seria lize r
I/O M A C R O

D E Seria lize r
I/O M A C R O

D E Seria lize r
I/O M A C R O

D E Seria lize r
I/O M A C R O

D E Seria lize r
I/O M A C R O

D E Seria lize r
I/O M A C R O

D E Seria lize r
I/O M A C R O

PN _ N 7
PN _ P7

PN _ N 8
PN _ P8

PN _ N 6

PN _ N 9
PN _ P9

PN _ P6

PN _ N 11
PN _ P1 1

PN _ N 12
PN _ P1 2

PN _ N 10

PN _ N 13
PN _ P1 3

PN _ P1 0

PN _ N 3
PN _ P3

PN _ N 4
PN _ P4

PN _ N 2

PN _ N 5
PN _ P5

PN _ P2

PN _ N 1
PN _ P1

PN _ N 0 1

1
1

1

1

1
1

1
1

1
1

1

1
1

1
1

1
1

1

1
1

1

1
1

PN _ P0

D E Seria lize r
I/O M A C R O

D E Seria lize r
I/O M A C R O

D E Seria lize r
I/O M A C R O

D E Seria lize r
I/O M A C R O

D E Seria lize r
I/O M A C R O

D E Seria lize r
I/O M A C R O

D E Seria lize r
I/O M A C R O

D E Seria lize r
I/O M A C R O

D E Seria lize r
I/O M A C R O

D E Seria lize r
I/O M A C R O

D E Seria lize r
I/O M A C R O

D E Seria lize r
I/O M A C R O

D E Seria lize r
I/O M A C R O

D E Seria lize r
I/O M A C R O

LAL1
Chapter 3 Memory Control Unit (MCU) 3-35

■ frame / channel alignment logic (CAL) across 2 northbound channels (across
potentially all 28 northbound lanes) needed so MCU data layer does not see the
physical aspects of 2 independent channels but sees instead dual channels
operating logically in lockstep.

To minimize the number of wires between MCU and the SERDES logic, especially
for supporting the dual channel case, half a frame is transferred every MCU’s drl2clk
clock cycle, which implies that drl2clk frequency must be at least 1/6 rather than
1/12 the link frequency.

3.5.3.1 Single Lane Symbol Alignment Logic

Assumes 1 SERDES macro handles 1 lane.

■ Q1 : Will 1 fbd SERDES macro do "symbol" detection and lock during TS0 state --
meaning I’m expecting it to lock to the pattern (bus order lsb->msb)
0111_1111_1101 0101_0x0x_0x0x 0101_0101_0101

■ Q1a : If not, we would like the ability to have access to their bit (UI) alignment jog
feature for 1,2,4,6,8 (or even 10) bits so we get symbol lock. (That feature is
available in TI’s PCI Express SERDES macro when its not programmed to do
comma symbol detection.)

■ Q2: how long for symbol lock? (Host only get a budget of 13 TS0 patterns from
the northernmost AMB to recover clock, symbol lock and lane-deskew)

If we can’t get the macro to do symbol lock, we’ll need a symbol alignment logic
(SAL) block. Basically, accumulate 2 12 bit symbols into flops and then program up a
set of mux selects to hunt for the 0101_0101 0111_1111 1101_0101 pattern with a
counter to make sure we can find it again exactly 1 TS0 pattern later. As a host we
only have 13 TS0 patterns to get this and lane-deskew correct, so if we see the
symbol again 3 times, the SAL block asserts symbol lock. This set of muxes +
comparitors and state machine should be doable in 400 MHz. This SAL block is
instantiated 14 times, 1 per lane.

FIGURE 3-14 shows the SAL block needed if the macro doesn’t do symbol lock. The bit
order for the 12 bit data is bit position 0 corresponds to oldest received bit on the
serial link.
3-36 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 3-14 Symbol Alignment Logic

3.5.3.2 Frame Lane Alignment Logic across all 14 Northbound Lanes

Each bit lane has a static skew relative to another bit lane due to differences in
drivers, receivers and traces between bit lanes. The FBDIMM link specification
requires only the host perform the deskew on the northbound direction. Each AMB
is required to deskew in the southbound direction.

DESerializer
I/O MACRO

400 MHz
Primary
Northbound Data

RXBCLKi

12

4.8 GHz
Primary
Northbound Data
(Serial Differential)

PN_Ni

1
PN_Pi

1

RDi[11:0]

[12]

[11] [22]

shift[1]

[6] [7] [8] [9] [10] [11]

shift[0]

shift[2]
shift[3]

[0]

pattern[11:0]

.

Symbol
Alignment

State Machine

locked

mask[11:0] compare

match

data[11:0]header_cycle

[0] [1] [2] [3] [4] [5]

Symbol Alignment Logic (SAL)
Chapter 3 Memory Control Unit (MCU) 3-37

Even when an AMB sends out the same symbol on all of the northbound lanes all
initially aligned, a symbol from one SAL instance is not guaranteed to arrive at the
same cycle as the same symbol from another SAL instance. A full frame must be
collected and all 14 northbound lanes must be aligned to meaningfully interpret the
original content. This lane alignment is done during link training. During training
state 0 (TS0), identical frames are repeated many times and all lanes carry the same
sequence of symbols. The header cycle of the frame is a uniquely identifiable symbol
compared to the rest of the symbols in the frame. During TS0, the Lane Alignment
Logic (LAL) queues up the symbols from each lane and search for the header cycle
symbol. Once the skew between lanes have been determined consistently across
multiple TS0 patterns, the LAL locks onto the wavefront and begins outputing frame
aligned data for the full channel.

FIGURE 3-15 Lane Alignment Logic

locked13

data13[11:0]

header_cycle13
shift_en

N:1
mux

shift_in

locked0

header_cycle0

. .
 .

. .
 .

. .
 .

. .
 .

2:1
mux

failover
12 bits
wide

shift_in

hc13

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

Wire Distributor
out[lane*12 b]

=
fo_lane[b]

wrptr13

hc0

. .
 .

. .
 .

. .
 .

. .
 .

N x 12bit FIFO

data0[11:0] N x 12bit FIFO

. .
 .

. .
 .

. .
 .

. .
 .

shift_en

rdptr13

wrptr0

failselect13

N:1
mux

2:1
mux

failover
12 bits
wide

. .
 .

. .
 .

. .
 .

. .
 .

rdptr0

failselect0

Lane
Alignment

State
Machine

and
Correlators

. .
 .

. .
 .

. .
 .

. .
 .

locked

out[167:0]

header_cycle

Lane A ign ent LogiLane Alignment Logic
3-38 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

Algorithm
lal_locked =0, lal_hc = 0, out=0, wrptr[0]=wrptr[1]=wrptr[2]=...=
wrptr[13] = 0, fastest_found = 14, lockcount=0, master_offset_counter
= 0; master_TS0pattern_counter = 0;
foreach cycle {
while (TS0state) {
 if (lockcount<13) {
 foreach lane (i=0 to i=13) {
 if sal_locked[lane] {
 if sal_hc[lane] {
 if !fastest_found() {

/* assume lane is fastest */
/* set its rdptr to the deepest entry of the symbol

fifo */
rdptr[lane] = N;
set_lockseen[lane] = 1;
start_master_offset_counter(); /* counter

increments each cycle */
start_master_TS0pattern_counter(); /* counter

increments every TS0 pattern */
set_fastest_found(lane);
}

 else if !relationship_exists_to_fastest() {
if (master_offset_counter_value() > N) /* something

is wrong... */
 error_handle(SKEW_TOO_LARGE);
} else {
 rdptr[lane] = rdptr[fastest_lane]-

master_offset_counter_value();
 increment_lock_count();
}

 else if !same_relationship_to_fastest() {
 error_handle(DYNAMIC_SKEW_TO_FASTEST);
}

 } /* if sal_hc[lane]
 } else { /* sal_locked is false */

if (lockseen[lane]) {
 error_handle(SYMBOL_LOCK_UNLOCKED);
}

 } /* foreach lane */
 } /* if lockcount < 13 */
 else {

zero_offset_to_slowest(); /* for all i {rdptr[i]=
rdptr[i]-rdptr[slowest]}
 }
} /* while TS0 state */

lal_locked = (lock_count>=13) && (master_TS0pattern_counter > 2);
Chapter 3 Memory Control Unit (MCU) 3-39

lal_header_cycle = lal_locked && (symbol(fastest_found,
rdptr[fastest_found]) == TS0_HEADER);
lal_out[167:0] = concat(failsymbol(0, rdptr[0], rdptr[1]),
failsymbol(1, rdptr[1], rdptr[2]), ... , symbol13(1, rdptr[13]));

The Lane alignment state machine has direct control of the write pointers and read
pointers of 14 FIFOs. The SAL’s lock signal is the write and shift enable. The state
machine tracks the procession of each SAL’s header_cycle signal over many cycle to
determine the relative delays between the lanes. The first lane to have its SAL
header_cycle assert is declared the fastest lane. It’s symbol read pointer is set to the
deepest entry (N). Each time a header cycle is detected on a locked lane, its symbol
read pointer is set to the appropriate distance ’earlier’ from the fastest’s symbol read
pointer. Once 13 out of the 14 lanes (enough to support failover) have achieved lock,
the read pointer for all the lanes are subtracted such that the slowest lane’s symbol
read pointer is 0, while all the other lane remains the same distance away. This is for
latency purpose only. A separate counter makes sure lane lock is not declared until
multiple TS0 patterns have been elapsed with all 13 or 14 lanes locked.

For efficiency, each SAL’s header_cycle signal is accumulated using flops to allow for
arbitrary access for correlation purpose. Until lane alignment lock has occurred, the
168 bit data out is undeterministic. The lane alignment state machine also handles
masking out the failed lane during training state 3.

Architecturally Complete Implementation

Architecturally, FBDIMM allows for up to 8 DIMMs and 4 logic analyzers on a single
FBDIMM channel. All intermediate DIMMs transmitter are allowed to introduce
100ps + 2UI of skew. The last (southernmost) DIMM is allowed to introduce a longer
lane skew for its northbound driver (100ps + 3UI). All receiver skew component
have the same identical maximum (6UI).

Max lane-skew is

= (# AMBs -1) x (L_txskew2 + L_rxskew) + (L_txskew1 + L_rxskew)

= (# AMBs - 1) x (100ps + 2UI + 6UI) + (100ps + 3UI + 6UI)

= 11 x (100ps + 8UI) + 100ps + 9UI

= 1200ps + 97UI

= Worse case UI max lane skew @ 4.8Gbps, 1UI=208ps

= ~6UI + 97UI = ~9 frames

= Worse case UI max lane skew @ 4.8Gbps, 1UI=208ps

= ~6UI + 97UI = ~9 frames
3-40 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

The TS0 pattern is 12 frames long, so with a 9 frame lane-skew, and 9 frame deep
buffer, there would not be an alias problem of erroneously locking one lane’s TS0
pattern to a prior or next TS0 pattern on another lane. IF ANY TS0 patterns were
dropped on any lanes by the designated AMB while it lane-deskews and the host
locks the northbound lanes prior to that AMB locking its southbound lanes, then the
true maximum allowable skew would be 6 frames long to prevent the situation of
the fastest lane aliasing into a slower lane. A more robust (but much more costly)
mechanism for the host would use TS1’s unique end delimiters for the n-3, n-2, n-1,
and n frames to correct any alias problem. After symbol lock, a budget of 2 or 3 TS0
patterns should be sufficient to assert lane-locked. If lock is not acquired after the
total of 13 TSO patterns, the AMB_ID returned will be incorrect and MCU will need
to look at lane-locked signal. If not locked, then it’ll need to transition back to EI and
do TS0 again.

Nine frames of lane skew can tolerate approximately 22 to 34 ns of delay due to
trace mismatch. At about 61.5 ps/cm of trace velocity, that’s about a mismatch of
50+ cm.

Having a 9 deep x 12 bit wide FIFO per lane seems excessive for the type of board
design and blade system OpenSPARC T2 would go into. FBDIMM architecturally
allows for very inexpensive board design and board manufacturing costs - relaxed
board routing rules between lanes using cheap FR4 dielectric material - while
allowing for a long latency system topology with DIMMs plugged on riser card and
long chains. Architecturally FBDIMM allows a system with a N2’s MCU is
connected to 12 inches of board traces to a PCI Express connector to a memory riser
board to a FBDIMM Connector to a set of AMBs DIMMs and long wires for hooking
up a logic analyzer AMB module.

PC Board/System Dependent OpenSPARC T2 Implementation

If a more realistic board design and system tolopology is available, the cost of the
deep buffer and logic to quickly search exhaustively through theoretically 914
permutation of ordering could be significantly reduced. A typical blade server does
not have that much cubic space of freedom nor expected to need to access more
memory on another blade via the backplane.

A sample analysis from slides from Intel Spring’03 IDF FBDIMM and RawCard
simulation results suggests a better upper bound for the lane trace mismatch.

The short answer is:

1st order approximation of frames needed

frames = roundup (N * (7 * D + L) / 40)

N = settling time (# of wave propagations) of a tx/rcr pair.

D = max trace mismatch between a pair of DIMMs, in cm

L = max trace mismatch between host and northernmost DIMM.
Chapter 3 Memory Control Unit (MCU) 3-41

Intel’s "8 DIMM Layout" slide has the following:

- 0.4" DIMM to DIMM,

- shortest lead-in 1.2"

(southbound channel 0)

- Longest lead-in 7.3"

(northbound channel 3)

Using this as a recommended layout, .4" is practically 1cm.

Assuming N2’s board has at least a 6 layer so there can be a clean back current
return path and sufficient shielding against radiation to the outside and edges of the
PCB; Assuming these ’critical’ Signals avoid high impedance areas (vias, gaps, and
zones in ground planes) and takes the path of least inductance (like avoid going
vertical between planes as much as possible) and also assuming 45 degree turns
instead of 90 degree turns to avoid changing the ’w’ parameter of the wave guide.

The FR4 board dielectric has a permittivity of 4.5 at 1MHz (number used for DIMM
card), but is 3.4 for the GHz operation in the channel (using a higher channel
impedance of 85 ohm)

Propagation delay calculation:

Assuming the simple stripline transmission line model where the

inner metal traces are sandwiched by the pair of ground or VCC planes,

separated by a FR4 dielectric (er = ~3.4), wave velocity

ignoring the higher order effects of the full RLGC,

v = c / sqrt (er)

= 300um/ps / sqrt (3.4)

= 0.5423 * 300 um/ps

= 1627 um/ps (or 61.5 ps/cm)
3-42 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

Relative to the UI of 208ps (4.8GHz), v ~= 30% of a UI

I’m also going to assume a very slow driver to minimize the spike in driver-current
and ringing. FBDIMM does not explicitly specify a maximum slew rate but they’re
implied by the edge transition rate and eye diagrams. So setting N to be a simple 1.

1 * .3 UI / cm = 0.3 UI skew per cm of trace mismatch.

7 channels between the 8 DIMMs @ 1 cm separate. It shouldn’t be too dificult to lay
out these 48 southbound traces on the OpenSPARC T2 board, all next to each other
in parallel, and the DIMM connectors minimally spaced for a field technician to
install the DIMMs. Bear in mind that requirement for each set of 2 differential
conductors have very stringent skew mismatch requirement to avoid the collapse of
the eye at the next receiver.

But let’s suppose it’s D=4 cm of trace mismatch each time we go from one DIMM to
the next DIMM. This allows for going through the connector, through the AMB
package pins to the actual transceivers and associated delay between the AMB
secondary northbound receiver and AMB primary northbound driver) =>

4 * 7 * 0.3 UI = 8.4 UI

Now, the long leg -- between the northernmost DIMM and the host-- contributes the
most skew. potentially 6" mismatch in Intel’s case (although they were from different
channels and opposite directions)

Call it L=16 cm trace mismatch

16 * 0.3 UI = 4.8 UI

Add them up and we are 13.2 UI. This is 2 frames only.

1st order approximation of frames needed

frames = roundup (N * (7 * D + L) / 40)

N = settling time (# of wave propagations) of a tx/rcr pair.

D = max trace mismatch between a pair of DIMMs, in cm
Chapter 3 Memory Control Unit (MCU) 3-43

L = max trace mismatch between host and northernmost DIMM.

3.5.3.3 Channel Alignment Logic across all Two FBDIMM Channels.

The FBDIMM Link specification does not specify the skews between 2 different
channels, nor does it specify that the lane skew numbers are stricly for the same
channel. If it can be assumed that the numbers for lane deskewing applies also
regardless of number of channels as long as the host guarantees that it locks the 2
southbound channels then deskewing across 2 northbound channels can be done in
2 ways:

1. Expand the Lane alignment logic to support 28 simultaneous channels. This
approach introduces less memory latency and alignment buffers but makes the
search algorithm more complex (search within 928 permutations)

2. Use the 2 independent LAL outputs and add 2 sets of 9 deep FIFO and a delay
counter or set of flops to record the delay (maximum 9 cycles apart) between one
channel achieving lane lock and the other channel achieving lane lock.

To minimize bus width for a dual channel option, rather than route 168x2 (334) data
bits per direction between the IO and MCU when both channels are used, a 168 bit
data bus per direction is used and MCU runs at 2x dram speed (800MHz max). In
both dual and single channel mode, fbd_mcu_data[83:0] always contain the primary
channel’s 1st half-frame the 1st cycle and the primary channel’s 2nd half-frame the
2nd cycle. In dual channel mode, fbd_mcu_data[167:84] always contain the
secondary channel’s 1st half-frame the 1st cycle and the secondary channel’s 2nd
half-frame the 2nd cycle. In single channel mode, fbd_mcu_data[167:84] will always
contain the 2nd half-frame on both cycles.

3.6 Memory Latencies

3.6.1 Read Latency
TABLE 3-20 shows the stages in the memory read pipeline and their approximate
latencies for a 4-4-4 800 MHz DDR SDRAM with worst-case bit-lane deskewing.
3-44 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

The total latency does not include the time in the l2clk domain or the time to
synchronize the data between the l2clk and drl2clk domains (A and I). These
latencies assume that the MCU is idle when it receives the read request and that the
request is going to the last of eight FBDs in the channel.

The read requests from the L2 cache are placed in the Read Request Queue (RRQ)
which is checked every drl2clk for a transaction. When a transaction enters the
RRQ, there are two cycles for arbitration, two to issue the Activate command, and
two to issue the Read command. (two drl2clk cycles == one sdram cycle). The
Activate and Read commands are transmitted on successive cycles on the high-
speed FBD channel which runs at 12 times the sdram speed. The Activate and Read
commands are driven to the SDRAMs one cycle after each reaches the FBD. After
the data returns from the SDRAMs, the AMB places the data in the appropriate NB
frame, 144 bits per frame, to return to the MCU. Once the MCU receives the read
data, it checks for CRC errors in the frame and ECC errors in the data. If no errors
are found, the data is returned to the L2 cache 128 bits per drl2clk cycle.

TABLE 3-20 Memory Read Pipeline and Latency

Stage Clock Domain Latency

A. L2 issues read request and MCU
acknowledges

l2clk (1.4 GHz)

B. MCU schedules read command drl2clk (800 MHz) 7.5 ns (6 cycles)

C. Read request transmitted on SB
FBD channel

fbdclk (4.8 GHz) 7.0 ns (1 ns per DIMM)

D. Bit-lane deskew sdram clock (drl2clk / 2 =
= 400 MHz)

22.5 ns (9 frames worst case)

E. Read command issued to
SDRAMs

sdram clock 22.5 ns (9 cycles: CL + AL + 1 for
frame alignment)

F. Read data returned to MCU on
NB FBD channel

fbdclk 7.0 ns (1 ns per DIMM)

G. Bit-lane deskew drl2clk 22.5 ns (9 frames worst case)

H. MCU checks for CRC and ECC
errors

drl2clk 3.75 ns (3 cycles)

I. Read data returned to L2 l2clk

Total 92.75 ns
Chapter 3 Memory Control Unit (MCU) 3-45

3.6.2 Write Latency
TABLE 3-21 shows the stages latencies in the memory write pipeline. The total latency
does not include the time in the l2clk domain or the time to synchronize the data
between the l2clk and drl2clk domains (A and B). These latencies assume that the
MCU is idle when it receives the write request and that the request is going to the
last of eight FBDs in the channel.

When the L2 cache issues a write request, the MCU transfers the request from the
l2clk domain to the drl2clk domain, places it in the Write Request Queue (WRQ),
and sends an acknowledge back to the L2 cache. Once the L2 receives the
acknowledge, it transmits the write data to the MCU 64-bits per cycle over 8 cycles,
and the MCU stores the write data in the Write Data Queue. The MCU sends the
write data and write command independently on the FBD channel; however, it must
ensure that the write data reaches the write data fifo within the AMB early enough
that the AMB can write command the timing requirements to the SDRAMs. If the
write command and data are received with no CRC errors, an Idle frame (as
opposed to an Alert frame) is sent on the NB channel. Once the MCU sees there is
no Alert frame, and thus no error on the write, it can the release the WRQ entry for
the write.

TABLE 3-21 Memory write pipeline and latency

Stage Clock Domain Latency

A. L2 issues write request and MCU
acknowledges

l2clk (1.4 GHz)

B. L2 sends write data l2clk

C. MCU schedules write data and
write command

drl2clk (800 MHz) 7.5 ns (6 cycles)

D. Write data and command
transmitted on SB FBD channel

fbdclk (4.8 GHz) 7 ns (1 cycle per DIMM)

E. Bit-lane deskew sdram clock (drl2clk / 2 =
= 400 MHz)

22.5 ns (9 frames worst case)

F. Write command issued to
SDRAMs

sdram clock 2.5 ns (1 cycle)

G. AMB issues Idle frame on NB
FBD channel

fbdclk 7 ns (1 cycle per DIMM)

H. Bit-lane deskew drl2clk 22.5 ns (9 frames worst case)

I. MCU checks for Alert frame drl2clk 1.25 ns (1 cycle)

Total 70.25 ns
3-46 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

3.7 Multiple Clock Domains
The MCU has three clock domains - l2clk, drl2clk, and iol2clk - and also interfaces to
high-speed SERDES IOs for the DDR channels. The l2clk is the main cpu clock
whose frequency is a multiple of the system clock, iol2clk. The l2clk and drl2clk are
synchronous but do not have an integer ratio between them. The drl2clk will run at
the same frequency as the SDRAM. The l2clk frequency target is 1.4 GHz, and the
system clock target is 350 MHz. The SERDES IOs have a data rate of 12x the DDR
rate - 3.2 GHz for 266 MHz DDR FBDs, 4.0 GHz for 333 MHz DDR FBDs, and 4.8
GHz for 400 MHz FBDs. The SERDES must run at one of these rates within +/- 5%.

The clock inputs to MCU are from the Clock Control Unit (CCU). The transmitting
(l2if_cmp_ddr_sync_en, l2if_cmp_io_sync_en) and receiving (l2if_ddr_cmp_sync_en,
l2if_io_cmp_sync_en) synchronization pulses are delayed versions of outputs from
the CCU which act as clock enable for synchronizing Signals between two clock
domains. The CCU will generate one of each of these enable pulses per MCU clock
cycle.

Example waveforms for two clock ratios and the synchronizing signals across two
clock domains are shown in FIGURE 3-16, FIGURE 3-17, and FIGURE 3-18. More detail on
clock domain synchronization and the supported clock ratios can be found in the
CCU specification.
Chapter 3 Memory Control Unit (MCU) 3-47

FIGURE 3-16 Odd Ratio (13:2) Clock from the On-chip PLL Block

FIGURE 3-17 Even Ratio (12:2) Clock from the On-chip PLL Block

drl2clk

l2clk

cmp_ddr_sync_en

ddr_cmp_sync_en

iol2clk

l2clk

cmp_io_sync_en

io_cmp_sync_en
3-48 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 3-18 Example of Synchronizing between l2clk and iol2clS

3.8 Functional Description
The MCU top level block diagram consists of the control logic and the datapaths to
interface to the two L2 banks and the external DDR2 memory channel.The top level
block diagram of the MCU is shown in FIGURE 3-19 with its 3 clock domains.

In FIGURE 3-18, requests come from the L2 cache banks to the L2 Cache Interface
Control (L2IF_CTL) block. The incoming physical addresses are converted into
DIMM addresses and stored in the Address Datapath (ADR_DP) block. For write
requests, write data is stored in the Write Data Queue Datapath (WDQ_DP). The
DRAM Request Queue Control (DRQ_CTL) block determines the order in which
read and write transactions will go out to the DIMMs. The transactions are
forwarded to the DRAM Interface Control (DRIF_CTL) block which generates the
control Signals for the transactions going out to the DIMMs. The DRAM Write
Datapath (WRDP_DP) block generates ECC for the write data going to the DIMMs.
Read data returning from the DIMMs goes through the Read Data Datapath
(READDP_DP) which checks ECC and corrects single-bit errors and regenerates

l2clk

l2if_cmp_io_sync_e

l2clk

l2if_req

rd_req

l2clk

l2if_io_cmp_sync_e

iol2clk

l2if_ack

ack

Synchronize from l2clk to iol2clk Synchronize from iol2clk to l2clk

cmp_io_sync_e
n

en en

cmp_io_sync_e
n

l2clk l2clk

No logic

1.4 GHz

375 MHz
Chapter 3 Memory Control Unit (MCU) 3-49

ECC for the data before it is returned to the L2 cache. The UCB logic unit provides
the CSR interface for the MCU. Details of each of these blocks in given in the
following sections.
3-50 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 3-19 MCU Block Diagram

3.8.1 MCU Datapaths

3.8.1.1 Request Address Datapath

The physical memory address of the L2 bank read requests and write requests from

NB SERDES SB SERDES

FBDIMMs

ucb_ctl

N2 MCU

L2 Cache bank 1

WriteData

ReadData

6436

adr_dp

ReqAddr

31

l2if_ctl

drq_ctl

drif_ctl

wdq_dp

rdata_ctl

drl2clk

l2clk

L2 Cache bank 0

WriteData

6436

adr_dp

ReqAddr

l2if_ctl

drl2clk

l2clk

wrdp_dpreaddp_dp

128128

wdq_dp

drq_ctl

readdp_dp

128

128 data
28 ecc

31

io 2

r 2

2

fbdif_ctl

fbdrd_dp
fbdwr_dp

Bit-lane
de-skew

rdpctl_ctl

120
168

to rdata_ctl

NCU

6 6

r 2
Chapter 3 Memory Control Unit (MCU) 3-51

the L2 cache are converted to the row and column addresses for the DIMMs in the
system. The converted addresses are queued in the read request address queue or
the write request address queue. These queues participate in arbitration for the
Activate command cycle.

The block diagram of the request address datapath for the two L2 banks is shown
FIGURE 3-20:

FIGURE 3-20 MCU Request Address Queue datapath

DDR2 Address Generation (ADRGEN_DP)

The Address Generation block converts the incoming physical address to an SDRAM
address consisting of the row, column, and bank address bits, and, if they exist, rank
selects. Also, parity is generated for the address, and an address error bit is
generated if an address is accessed that is out of range for the installed DIMMs.

read: adrq_dp

drl2clk
RAS/CAS/Err/Parity

rank/bank/req_id

39

write:
RAS/CAS/Err/Parity

rank/bank

36

Identical to L2 Bank0

 adrq_dp

From L2:
 Write Request Address

drl2clk

L2 Bank0 L2 Bank1

adr_dp

L2 Bank0 Req Addr L2 Bank1 Req Addr

N2 MCU ReqAddr DP

adrgen_dp
RAS/CAS/Bank

l2clk

l2clk
cmp_ddr_en
3-52 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

Inputs to the block are the physical address and the MCU configuration registers
which give the number of row and column address bits, number of ranks, number of
internal banks, and whether the rank selects should come from upper or lower
physical address bits. All of the address information is stored in the Read or Write
Request Address Queue, and the rank and internal bank information will also be
sent to the MCU Request Queue Control (drq_ctl) module.

The converted DIMM address consists of the following 36 bits:

■ RAS address (15b)

■ CAS address (14b)

■ SDRAM internal bank address (3b)

■ DIMM rank select (2b)

■ Request address error (1b)

■ Address parity (1b)

Refer to section 5 for a description of how SDRAM address is converted from the
physical address.

Read and Write Request Address Queues (ADRQ_DP)

The Read and Write Request Address Queues store the converted DIMM addresses
of the MCU memory requests. Each queue has eight entries of 36 bits. The 36 bits
are the same as the converted DIMM address bits described in Section , “DDR2
Address Generation (ADRGEN_DP)” on page 3-52.

3.8.1.2 Read and Write Data Datapaths

The MCU read and write data datapaths block diagram is shown in FIGURE 3-21.
These datapaths queue write data from the L2 cache to the DIMMs and read data
returning from the DIMMs to the L2 cache.

The MCU read and write data datapath between the two L2 banks and the external
memory channel consists of a write data queue per L2 bank (WDQ_DP), the write
data datapath to the DRAM (WRDP_DP), and the read data return datapath to the
L2 banks (READDP_DP). The MCU read and write data datapath supports 2
databus size interface modes to external memory - full size memory databus (128
bits data and 16 bits ECC) , and half size memory databus (64 bits data and 8 bits
ECC).
Chapter 3 Memory Control Unit (MCU) 3-53

FIGURE 3-21 Read and Write Datapaths Block Diagram

64

64

Write Data
From L2 Bank1

Write Data
From L2 Bank0

Read Data
To L2 Bank0 Bank1

128-bit data

To FBDWR
Datapath

From FBDRD
Datapath

l2clk
ddr_cmp_en

28 ECC

drl2clk

rddata_en1

drl2clk

rddata_en0

Nibbles Data Correct

ECC Data Error Detect

Data Correct

ECC Multi Error Detect

drl2clk

128

L2 ECC Gen

drl2clk

scrb_wd_en3

drl2clk
scrb_wd_en2

drl2clk
scrb_wd_en1

drl2clk
scrb_wd_en0

drl2clk

0

64

ECC Syndrome Gen

scrub wdata
scrub wecc

scrub wdata

scrub wecc

ECC Err Inj

drl2clk

 [63:0] [127:64] [127:64]

drl2clk

[7:0] [15:8] [15:8]

16-bit ECC

 8 8 64 64

128-bit data 16-bit ECC

drl2clk
ldrif1_wdq_radr ldrif0_wdq_radr

ldrif0_wdq_wadr

drl2clk

l2clk
ldrif1_wdq_wadr

l2clk

l2clk

128 Data

l2clk l2clk

128

128

128

XOR

ECC Syndrome Gen

error_inj

l2clk

drl2clk

readdp_dp

readdp_dp

wrdp_dp

wdq_dp

64

Failover muxes Failover muxes
Failover muxesFailover muxes
3-54 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

Write Data Queue Datapath (WDQ_DP)

The Write Data Queue stores the L2 write data to be written to the external memory.
There are two Write Data Queues in each MCU module, one for each L2 cache bank
that it communicates with. Each queue is composed of two dual port 1R/1W
register files, each of which is 32 entries by 66 bits wide.

The L2 Cache Interface Control (L2IF_CTL) module controls write access to the
WDQ_DP. The L2 write data is written to the write data queue at the rate of
64bits/cycle for 8 l2clk cycles to complete 1 L2 cache line (64 bytes). Write enables
are used to enable writing to one register file at a time.

Read access to the WDQ is controlled by the DRAM Interface Control (DRIF_CTL)
module in the drl2clk domain. The output ports of the register files are concatenated
and read as a single 128-bit bus.

Write Data Datapath (WRDP_DP)

The Write Data datapath block sends write data to the IO pads. A multiplexer
controlled by the DRIF_CTRL module selects between the two Write Data Queues
and scrubbed data coming from the Read Data Return datapath.

16 bits of ECC is generated for each 128 bits of data, and 144 bits of data and ECC
are sent to the SDRAM for four cycles in the normal configuration. In single-channel
mode, the 144 bits data are multiplexed into 2 72-bit data packets and sent to the
SDRAM over eight cycles.

Read Data Datapath (READDP_DP)

The 128 bits of data and 16 bits of ECC from the SDRAM are flopped in the drl2clk
domain for ECC error detection and correction. In the single-channel mode, two 64-
bit data packets are combined before ECC error detection and correction.

ECC is regenerated based on the 128 bits of data read from the SDRAMs and is
compared with the ECC bits read from the SDRAMs. If a single bit error is detected,
it is corrected in the data correction logic; however, if multiple errors are detected,
no correction is done. The data are transferred from the dr2clk domain to the l2clk
domain upon the assertion of the ddr_cmp_sync_en signal, or if the data is from a
scrubbing request, it is sent to the Write Data datapath module.

All ECC errors on L2 cache reads and scrubbing reads are signaled to the L2 cache
(mcu_l2t_scb_secc_err, mcu_l2t_scb_mecc_err, mcu_l2t_secc_err_r2, and
mcu_l2t_mecc_err_r2) as well as being flagged in the MCU Error Status Register.
Chapter 3 Memory Control Unit (MCU) 3-55

In the l2clk domain, the L2 cache ECC is generated on the 128 bits received from the
drl2clk domain. The L2 cache uses a 7-bit Hamming code for to protect each 32-bit
word, allowing single-bit error correction and double-bit error detection per 32 bits.
(The algorithm for generating this L2 ECC is found in section A.4 of the OpenSPARC
T2 Programmer’s Reference Manual.) After ECC is generated, the 128 bits of data
and 28 ECC bits are then sent back to the L2 cache.

3.8.1.3 FBD Write and Read Datapaths (FBDWR_DP, FBDRD_DP)

The datapath portion of the FBD Controller will stage write data or the B and C
command portions of the frame and generate all of the CRC values. There are six
CRC generators required for each FBD channel, four in the FBDWR_DP and two in
the FBDRD_DP.

FIGURE 3-22 shows the FBD Write Datapath and the following four CRC generation
blocks:

1. CRC[13:0] for command A portion of 10-bit mode SB frame, generated from 26
bits of data.

2. CRC[9:0] for command A portion of 10-bit failover mode SB frame, generated
from 26 bits of data.

3. CRC[21:0] for command BC/data portion of 10-bit mode SB frame, generated
from 72 bits of data.

4. CRC[9:0] for command BC/data portion of 10-bit failover mode SB frame,
generated from 72 bits of data.
3-56 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 3-22 FBD Write Datapath

FIGURE 3-23 shows the FBD Read Datapath and the following two CRC generation
blocks:

1. CRC[11:0] for read data of 14-bit mode NB frame, generated from 72-bits of data,
compared to transmitted CRC.

2. CRC[5:0] for read data of 14-bit failover mode NB frame, generated from 72-bits
of data, compared to transmitted CRC.

If there is a CRC error on a read frame, the FBDRD_DP Signals the DRIF_CTL and
FBDIF_CTL blocks for error reporting and to try to recover from the error.

CRC14-26 CRC10-
72
(failover)

CRC10-
26
(failover)

CRC22-72

From
WR_DP

From
FBDIF_CTL

From
FBDIF_CTL

CMD A CMD B/C
or Write Data

CRC CRC

FBDWR_DP To Southbound SERDES
Chapter 3 Memory Control Unit (MCU) 3-57

FIGURE 3-23 FBD Read Datapath

3.8.1.4 FSR to MCU Cross-Domain FIFO (FBD_DP)

The recovered clock from the SERDES runs at the same speed as the drl2clk;
however, the two clocks are asynchronous. Therefore, an asynchronous FIFO is
needed to pass data between these clock domains. A FIFO is required for each
northbound bit lane since each generates its own clock. The FIFOs are implemented
in flip-flops. The FIFOs are 12 bits wide and 4 entries deep. Once enabled, data will
be written to the write port every cycle and read from the read port every cycle. The
write pointer is in the recovered clock domain and is enabled once the MCU has
seen 16 sync Signals from the SERDES receiver. The read pointer is in the drl2clk
domain and is enabled by the same write pointer enable signal after being sent
through a synchronizer. After both the read and write pointers are enabled, data
placed into the FIFO should be stable for approximately 2 clocks drl2clk’s before
being read out. As long as the phase difference between the two clocks does not
drift by +- 1 period, no data will be lost. If the phase drift is greater that +-1 period,
data may get dropped in which case the MCU will detect an error and may have to
retrain the link to reestablish the cross-domain relationship.

CRC12-72 CRC6-72
(failover)

Northbound
Frame Data

To READ_DPTo FBDIF_CTL
(CRC Error)

Alert/Idle/
Status Detect

=

To FBDIF_CTL

FBDRD_DP
3-58 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 3-24 FBD Cross Domain Logic

3.8.2 MCU Control Logic
The MCU control logic provides the interface between the two L2 banks and the
external memory channel. The MCU control logic block diagram is shown in
FIGURE 3-25:

Requests enter the L2IF_CTL blocks from the L2 cache banks. The requests are
passed to the DRQ_CTL blocks with the cmp_ddr_sync_en Signals where they are
placed in the Read or Write Request Queues. Write arbitration occurs between the
two Write Request Queues, and the requests are then placed in the Write ordering
queue. Read request arbitration occurs between the requests in one Read Request
Queue. The second level of arbitration selects a request from the Write Ordering
Queue or one of the Read Request Queues to issue to the FBDs. Details of the
control flow are given in the following sections.

rxbclk

drl2clk

en en en en

wren[3:0]

en

rden[3:0]

decode

decode

en

synch
(drl2clk)

rxbclk

drl2clk

frame lock

ent0 ent1 ent2 ent3

+1

+1

wptr

rptr
Chapter 3 Memory Control Unit (MCU) 3-59

FIGURE 3-25 MCU Control Logic Block Diagram

3.8.2.1 MCU - L2 Cache Interface Control (L2IF_CTL)

The L2 Cache Interface Control module handles incoming read and write requests
from the L2 cache. It controls the synchronization of these requests to the drl2clk
domain, the writing of data to the Write Data Queues, and the return of read data to
the L2 cache or scrubbed data back to the SDRAMs. Section 6 discusses the protocol

l2clk

From L2:
Read Request
Read Request ID

To L2:
Read Request Ack
Read Data Valid
Read Data ID
Read Data SubAddress

write req queue

l2clk

From L2:
Write Request
Write Data Valid

To L2:
Write Request Ack

l2clk

read req queue

drl2clk

W

ADDR_GEN
RAS/CAS/Bank

Scrub Bank
Valid Decode

Scrub Addr
Counter

drl2clk

Read Bank
Valid Decode

OR

L2 Bank0 L2 Bank1

Write Bank
Valid Decode

Activate Cycle
Picked

Read/Write
Cycle Picked

FBD Access

Read req ack
Data id, vld, subaddr

ddr_cmp_sync_en

vld, rrqindx, bank select,
rank select

From: adr_dp
rank, stack, bank

l2clk
cmp_ddr_sync_en

Identical to L2 Bank0

From: adr_dp
rank, stack, bank

l2clk
cmp_ddr_sync_en

vld, wrqindx, bank select,
rank select

req_vld
data id, vld, subaddr

l2clk

Write req ack

ddr_cmp_sync_en

req_vld

L2 Bank0 RAS Req Addr

L2 Bank1 RAS Req Addr

L2 Bank0 CAS Req Addr

L2 Bank1 CAS Req Addr

l2if_ctl

drif_ctl

drq_ctl

write ordering queue

Read Bank
Valid Decode

Write Bank
Valid Decode

First level of read
arbitration

First level of write arbitration

Second level of arbitration
for reads and writes
3-60 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

the MCU uses for communicating with the L2 cache.

When a read request comes in from the L2 cache, it is held in a staging register in the
L2IF_CTL block and loaded with the signal l2if_cmp_ddr_sync_en. The
acknowledge is always sent back one cycle after l2if_cmp_ddr_sync_en, and the
request information is moved to the MCU Request Queue Control block at the rising
edge of the next drl2clk.

Write requests are handled similarly except that the L2 cache does not limit the
number of write requests it issues, so the MCU must handle this. The L2IF_CTL
block receives information from the DRQ_CTL block telling how many Write
Request Queue entries are free. If all eight entries are used, the ninth request is held
in the L2IF_CTL block until one frees up, at which time the write request
information is passed to the DRQ_CTL. Once the acknowledge is sent to the L2
cache, the L2 cache will start sending the write data 64 bits at a time, and the
L2IF_CTL will control the loading of data into the Write Data Queue.

3.8.2.2 MCU Request Queue Control (DRQ_CTL)

Upon receiving a read or write request from an L2 bank, the MCU Request Queue
Control (DRQ_CTL) logic generates the write enables to enqueue the incoming
request in the read or write request address queue. The information required for
request arbitration is stored in the read or write request queue within the DRQ_CTL
block. Every drl2clk cycle, the arbitration logic must look at all entries in the read
and write request queues in parallel to determine the next request to be scheduled.
A request’s entry in the read or write request queue will be invalidated upon the
completion of the memory access.

The Read and Write Request Queues are implemented in registers as collapsing
queues. The newest entry is placed at the tail of the queue; however, the oldest
entry is not necessarily the first to be removed. The arbitration algorithm decides
which entry to select, and when it is removed, the remaining queue entries which
entered after it collapse to fill the empty entry.

Read Request Queue (RRQ)

The following information from the incoming L2 read request is stored in the 8-entry
read request queue:

1. L2 read request valid - 1b

2. Index of DIMM address in the read request address queue - 3b

3. DIMM rank select - 2b

4. DIMM internal bank select - 3
Chapter 3 Memory Control Unit (MCU) 3-61

This information is used by the arbitration logic for request scheduling.

Write Request Queue (WRQ)

The following information from the incoming L2 write request is stored in the 8-
entry write request queue:

1. L2 write request valid - 1b

2. Index of DIMM address in the write request address and write data queues - 3b

3. DIMM rank select - 2b

4. DIMM bank select - 3b

This information is used by the arbitration logic for request scheduling.

3.8.2.3 Write Ordering Queue (WOQ)

The Write Ordering Queue controls the issuing of write data to the FBDs. The WOQ
uses round-robin arbitration to choose between the two write request queues when
selecting a request to issue. Within a WRQ, the WOQ looks for a transaction going
to a different FBD than where the previous two transactions were issued. (This
helps the MCU be able to schedule multiple write requests later.) If a transaction for
a different FBD is not found, the first request in the WRQ is selected. The data
corresponding to the selected request is sent to be buffered in the AMB and the
request is placed in the WOQ. This ensures that write requests will be sent to the
FBDs in the same order that the write data was sent.

When a write request is issued to an FBD, the read pointer for the WOQ is
incremented; however, the information for the request remains in the WOQ data
structure. Another pointer (the outstanding write transaction (owt) pointer) points
to the head of all requests that have been sent to the FBDs but have not been verified
as having completed. When a write is issued, the MCU waits that time that a read
would take. Once this time elapses, the owt pointer is incremented; however, the
transaction is not considered complete until an Idle Frame or a Status Frame has
been seen after this point. A third pointer , the woq error pointer, points to the head
of requests that should have completed but for which the MCU has not yet seen an
Idle or Status Frame. If an error occurs, all writes from this woq error pointer to the
tail of the WOQ will be reissued. If no error occurs, the woq error pointer is
updated to the location of the owt pointer once an Idle or Status Frame is received.

The WOQ has 16 entries and holds the same information as the WRQ; however, each
entry has an additional bit that points to the source L2 bank.
3-62 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

3.8.2.4 MCU - DDR2 Interface Control (DRIF_CTL)

The MCU arbitrates among 3 memory access request sources - memory refresh
requests, memory scrubbing requests, and L2 cache memory access requests. The
priority among the 3 request types is as follows:

1. Memory refresh

2. Memory scrubbing requests

3. L2 cache read and write requests

Memory Refresh Request

DDR2 SDRAMs require a refresh of all rows within the memory every 7.8s. The
MCU has a programmable refresh counter, clocked with drl2clk, to keep track of the
refresh time interval. At every refresh interval, a memory refresh request is issued
successively to each rank present.

With a drl2clk of 400 MHz, the programmable refresh counter value is calculated as
follows:

refresh counter value = 7.8s / 2.5ns = 3120 (0xC30)

Memory Scrubbing Request

At intervals defined by the DRAM Scrub Frequency Register, scrub read requests are
issued to the SDRAMs. The purpose of these requests is to detect and correct
transient memory errors. More detail on the scrubbing procedure is given in the
RAS section of the document.

First-level Write Request Arbitration

Because write data is buffered in the AMBs on the FBDs, it is advantageous to send
the write data to the DIMMs early and arbitrate for the write requests later. When
write requests are available in the write request queue, the write scheduler will issue
the write data in frames to the FBDs whenever free time slots are available. When a
write request is selected, its data is sent out to the FBDs, and the request is placed in
the Write Ordering Queue for the second level of arbitration. When the write
commands are eventually issued, the ordering of write transactions to a given FBD
must be maintained; however, write transactions to different FBDs can bypass each
other.
Chapter 3 Memory Control Unit (MCU) 3-63

First-level Read Arbitration

Each Request Queue Control block (DRQ_CTL) sends read memory requests to the
DRIF_CTL arbiter, and the Write Ordering Queue within the DRIF_CTL provides
write requests to the arbiter. The DRIF_CTL uses a first-come-first-served algorithm
at the first level of arbitration for reads, selecting the oldest read request in the Read
Request Queue whose bank is available.

Second-level Read and Write Arbitration

At the second level of arbitration, the DRQ_CTL does a round-robin selection of
requests from the two DRQ_CTL read request queues. Reads have highest priority
and will be scheduled when ready. A maximum of one read per frame can be
scheduled. One or two write requests from the write ordering queue can be
scheduled simultaneously with the read if they target different FBDs than the read.
If there are no read read requests ready, up to three write requests can be scheduled
if they all target different FBDs.

Each read or write transaction must be issued over two consecutive cycles. On the
first cycle, an Activate command is issued to activate a bank and row within an FBD.
On the following cycle, the read or write command is issued with the bank and
column addresses. The MCU uses the DDR2 SDRAM Posted CAS feature, so the
read or write commands are delayed internal to the SDRAMs by the Additive
Latency (AL) value programmed in the SDRAMs’ extended mode register.

An Auto-Refresh command is issued when the MCU state machine transitions to the
refresh state. Transactions to the rank being refreshed are blocked until the refresh
completes.

Requests issued to the DIMMs are arbitrated every drl2clk cycle and are prioritized
as follows, in order of descending priority:

Command slot A:

1. Scrub Read Activate requests

2. Read Activate requests from read request queues

3. Write Activate requests from write ordering queue

Command Slot B:

1. Autorefresh

2. Write data

3. Write Activate request

Command Slot C:
3-64 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

1. Power Down mode exit

2. Power Down mode enter

3. Write data

4. Write Activate request

Write Starvation Prevention

A write starvation counter ensures that writes do not get starved out. There is a
separate write starvation counter in each DRQ_CTL block. Initially, reads have
priority, and each write starvation counter is incremented whenever there are 8
pending write requests total (between the DRQ and the WOQ). It is reset whenever
there are less than 8 pending writes or when a write request is issued from the
WOQ. If either starvation counter reaches 64 (meaning there has been 8 pending
writes for 64 consecutive cycles), then starvation mode is entered. Once in starvation
mode, write activation requests from the write ordering queue are given priority
over read activate requests (i.e. the priorities of 2 and 3 for Command Slot A above
are reversed). During starvation mode, the starvation counter that reached 64 is
decremented each cycle, and once it reaches 0, starvation mode is exited, and reads
are again given priority.

Scheduling Writes in Command Slots B and C

When there are no higher priority requests for command slots B and C, write
requests can be sent out. These write requests can only be sent to DIMMs whose
read-to-write delay has been satisfied, and they must be scheduled so that no write
data collisions occur on the FBD data buses. Also, in order to simplify scheduling,
these requests cannot be selected on the same cycle as a read or write in command
slot A.

Read-after-Write Hazards

It is possible for the MCU to receive a read request to a physical address that
matches the address of a write request pending in the write request queue. If this
occurs, the MCU must ensure that the write completes first. (Whenever there is an
address match between a read and a write, it is guaranteed that the write has
preceeded the read. Write-after-read hazards are handled by the L2 cache itself.)

When a read transaction wins arbitration, its address is compared against all of the
valid entries in the write request queue for the L2 bank from which the read request
came. If there is a match, the read request is not sent out, and the write request
Chapter 3 Memory Control Unit (MCU) 3-65

queue entry that matches the read is flagged. Writes are given priority until the
flagged write request queue entry is issued to the FBDs. After the write request is
issued, reads are given priority.

Scheduling State Machines

In a fully populated FBD channel, there can be 8 dual rank dimms for a total of 16
ranks. Each rank supports DIMMs with up to 8 banks. Thus, there can be 128 banks
per channel.

There are 16 state machines to keep track of available banks. Each is dedicated to a
set of DRAM banks depending on the configuration. The equations below show
which state machine will be used for a given address:

4-bank DRAMs, double-sided DIMMs: state_machine = {dimm[0], rank, bank[1:0]};

4-bank DRAMs, single-sided DIMMs: state_machine = {dimm[1:0], bank[1:0]};

8-bank DRAMs, double-sided DIMMs: state_machine = {rank, bank[2:0]};

8-bank DRAMs, single-sided DIMMs: state_machine = {dimm[0], bank[2:0]};

ECC Error Handling

The DRIF_CTL block handles errors that have occurred. Information on the read
request that caused the error is received from the RDPCTL_CTL block and stored in
a register FIFO. The FIFO has eight entries to hold all outstanding reads that may
generate ECC errors. Once an error is detected, the DRIF_CTL stops issuing
requests, and after all outstanding requests have completed, it begins retrying each
transaction from the error FIFO. Refer to Section 12.4 for an explanation of the error
handling scheme.

3.8.2.5 FBD Interface Control (FBDIC_CTL)

The FBD Interface Control block is responsible for FBD channel initialization,
channel error detection, and frame encoding and decoding. All of the channel
configuration registers also reside in this block.

At power-on, software is responsible for sequencing the FBD controller through the
initialization sequence. The FBD channel initialization sequence is described in
Section 3.3.1, “FBD Channel Initialization” on page 3-11..

After initialization is complete and the AMBs are in the L0 state, software must
program various registers in the AMBs using channel commands, and when it is
ready to accept SDRAM commands, the FBDIC_CTL Signals the DRIF_CTL. The
3-66 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FBDIC_CTL will encode the channel and SDRAM commands using the frame
formats described in section 4.2.1 using the CRC data provided by the FBD_DP
block. This information is sent to the FBD SERDES IO block to be transmitted to the
FBDs.

The Latency Queue (latq) informs the FBDIC_CTL when read data is returning.
When a request is issued, a timestamp is placed in the latq (current time plus
channel latency). When the current time matches the timestamp at the head of the
latq, the read data (or other reponse, such as a Status Frame) is expected. If a CRC
error occurs or an Alert or Idle Frame is detected, the DRIF_CTL is signaled so that
it can retry the read. If an error is detected on the second read, the FBDIC_CTL
module tries to recover with a Soft Channel Reset or a Fast Reset, if necessary. If
neither of these revives the FBD channel, software is signalled to handle the
recovery.

If a Status Frame shows an error has occurred or if an Alert Frame is received on the
NB channel, this indicates an error has occurred on the SB channel. Again, a Soft
Channel Reset, and possibly a Fast Reset, will be issued, afterwhich software will
signalled if the condition persists.

3.8.2.6 MCU Read Datapath Control (RDPCTL_CTL)

The Read Data Path Control module controls the portion of the READDP_DP within
the drl2clk domain and prepares the data valid and error Signals to be returned to
the L2 cache banks. Error logging is also performed in this block.

The following information is received from the DRIF_CTL block to keep track of the
read requests outstanding to the FBDs:

■ L2 bank - 1 bit

■ read/write - 1 bit

■ starting quadword - 2 bits

■ read request id - 3 bits

■ location in read or write request queue - 3 bits

■ out-of-bound address error on read - 1 bit

The information is stored in a FIFO implemented in registers. The FIFO depth is 16
and only holds outstanding reads. Reads are freed from this FIFO when a read
transaction’s data returns correctly.

If a CRC error occurs on the Southbound channel, all transactions in the
RDPCTL_CTL FIFO must be retried in their original order after the channel is reset.
If a CRC or ECC error occurs on the Northbound channel, only the transaction with
an error must be retried.
Chapter 3 Memory Control Unit (MCU) 3-67

If a CRC error occurs on the Southbound channel, all transactions in the
RDPCTL_CTL FIFO must be retried in their original order after the channel is reset.
If a CRC or ECC error occurs on the Northbound channel, only the transaction with
an error must be retried.

3.8.2.7 MCU Read Data Control (RDATA_CTL)

The Read Data Control block sends the data valid, qword id and read request id
Signals to the L2 cache banks, and responds to the L2 cache dummy read requests.
It also generates the address generation control Signals for the ADRGEN_DP blocks
in the Address Datapath block and acts as a bridge between the IO and MCU clock
domains for CSR reads and writes.

3.8.3 UCB CSR Interface
The Unit Control Block (UCB) provides the CSR interface to the MCU. The NCU
communicates with the UCB module through a 4-bit bus. For register writes, the
UCB assembles the 4-bit packets received into a 32-bit address and a 64-bit data
word, and conversely for reads, breaks the 64-bit read data into 4-bit packets to send
back to the NCU.Interconnect Built-In Self Test (IBIST) Engine

The FBDIMM standard requires an IBIST engine within the MCU that will stress the
FBDIMM channel electrical connections. When the FBDIMM channel initialization
reaches the Testing stage, the IBIST engine will take control of the channel after the
TS1 header is issued.

The following registers are implemented by the MCU:

SBFIBPORTCTL: 0x84_0000_0E80

Since the MCU will always be a master on the southbound port, bit 1 and bits 6
through 23 of this register are not used by the MCU and will be read only. Bit [1]
will be 1’b1, and bits [23:6] will be 18’h00000.

SBFIBPGCTL: 0x84_0000_0E84

SBFIBPATTBUF1: 0x84_0000_0E88

SBFIBTXMSK: 0x84_0000_0E8C

SBFIBTXSHFT: 0x84_0000_0E94

SBFIBPATTBUF2: 0x84_0000_0EA0

SBFIBPATT2EN: 0x84_0000_0EA4

SBFIBINIT: 0x84_0000_0EB0
3-68 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

SBIBISTMISC: 0x84_0000_0EB4

NBFIBPORTCTL: 0x84_0000_0EC0

Since the MCU will always be a slave on the northbound port, Bits 0, 1, 22, and 23
will not be used by the MCU and will be read only. Bit [1] will be 1’b0, and bits
[23:22] will be 2’h0.

NBFIBPGCTL: 0x84_0000_0EC4

NBFIBPATTBUF1: 0x84_0000_0EC8

NBFIBRXMSK: 0x84_0000_0ED0

NBFIBRXSHFT: 0x84_0000_0ED8

NBFIBRXLNERR: 0x84_0000_0EDC

NBFIBPATTBUF2: 0x84_0000_0EE0

NBFIBPATT2EN: 0x84_0000_0EE4

The following registers are not implemented:

SBFIBRXMSK

SBFIBRXSHFT

SBFIBRXLNERR

NBFIBTXMSK

NBFIBTXSHFT

NBFIBINIT

NBIBISTMISC
Chapter 3 Memory Control Unit (MCU) 3-69

3.9 SDRAM Power Reduction and Reduced-
Configuration Operating Modes
The SDRAMs in a system consume a large portion of the power budget and ways to
limit the power consumption in certain configurations or at certain times. A single-
channel mode is available that allows one DIMM per MCU channel, power throttling
limits the number of SDRAM transactions over a period of time, and the SDRAMs
can also be put in self refresh modes.

3.9.1 Single Channel Mode
Normally, the memory will be configured in dual-channel mode. In order to reduce
system power, a single-channel mode has been added which supports one DIMM
per channel. In this mode, 72 bits of data and ECC are driven externally per
memory cycle. The burst length for this mode is 8 to maintain the 64-byte cache line
size per memory transaction.

To enable single channel mode, the single channel mode register, address
0x84_0000_0148 must be set to 1. Also, for proper operation, the Trrd
(0x84_0000_0080) and Trc (0x84_0000_0080) must be increased by 2.

3.9.2 MCU Programmable Power Throttle
There are two registers per controller that control power throttling. The DRAM Open
Bank Max Register designates the maximum number of DRAM bank openings that
can occur in a time period. The time period is determined by the DRAM
Programmable Time Counter Register whose value is a count of DRAM clock cycles.
There is a counter that counts the number of DRAM banks that are opened. If this
counter exceeds the maximum number of open banks, the DRAM controller is
blocked from issuing anymore DRAM accesses until the counter is reset. A second
counter counts DRAM clock cycles. When this counter is greater than or equal to the
programmable time counter value, both this counter and the DRAM open bank
counter are reset to zero.

The registers in the four controllers should be programmed to the same values. The
chip will still operate correctly if they are programmed differently, but there may
performance penalties (e.g. if one controller stops much earlier than the others) and
power may not be as effectively controlled. Also, a mechanism is needed to ensure
that all of the controllers are working with in the same time window of DRAM clock
cycles. This will ensure that all controllers stop and start at approximately the same
3-70 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

time. When any of the Programmable Time Counter Registers is written, a reset
signal will be sent to the other three controllers to reset their DRAM clock cycle
counters.

3.9.3 SDRAM Self-Refresh Mode
The DDR2 SDRAMs support Self-Refresh mode allows the OpenSPARC T2 MCU to
be reset without data loss in the SDRAMs.

For Self-Refresh mode, when the clock control unit Signals the MCU to enter this
mode, the MCU waits until all requests have completed and then issues a Self-
Refresh Entry command to the FBDs. In order to leave this mode, the clock and
other external control must be stable for at least one clock cycle. The MCU issues a
Self-Refresh Exit command and waits 200 cycles before returning to normal
operation.

3.9.4 FBD L0s State
Some AMBs provide a low-power state. When an AMB receives a Sync frame with
the ’Enter L0s’ bit set, it transitions to the L0s state for a time period determined by
its L0s_Duration register. This register value is between 32 and 42, and must be less
than the minimum interval between Sync frames defined in the AMB’s Sync Train
Interval register. Once the timer for the L0s state expires, the AMB transitions back
to the L0 state. After exiting the L0s state, the first command that the host must
issue is another Sync frame in order to ensure that the AMB clocks remain locked.
With this Sync frame, it is also possible to put the AMBs back into the L0s state for
another low-power interval.

The MCU must be programmed to decide when to transition to this state. This is
enabled by setting bit [6] of the L0s Duration Register. When this mode is enabled
and there are no pending transactions when a Sync frame is being sent out, the el0s
bit will be set in the Sync frame.

There is Thermal_Trip information returned in NB status frames which indicates that
a thermal threshold has been exceeded and that power throttling may be required.
This information is held in the Thermal Trip Status Register that software can check
to decide when to enable L0s mode.
Chapter 3 Memory Control Unit (MCU) 3-71

3.9.5 Power Down Mode
Power Down mode is a low power mode for the DRAMs. The MCU can optionally
use this mode. When a transaction enters the MCU, a counter for the destination
DIMM is incremented. When the transaction completes, DIMM counter is
decremented. When any counter goes from 0 to 1, an Exit Power Down command
will be sent to the corresponding DIMM. When a counter goes from 1 to 0, an Enter
Power Down command will be sent to the DIMM.

3.9.6 Partial Bank Mode
Partial bank mode is a mode where less than 8 L2 banks are used in the system. In
4-bank mode, 2 MCUs are used and in 2-bank mode, 1 MCU is used. In these
modes, the addressing to the DIMMs is changed. In 4-bank mode, the MCU left-
shifts address bits [39:7] by 1 bit before applying the normal address decoding. In 2-
bank mode, the MCU left-shifts address bits [39:7] by 2 bits before applying the
normal address decoding.

When in partial bank mode, the MCU will detect out-of-bound errors on a smaller
address range for a given configuration as compared to a system with all MCUs
enabled. In 4-bank mode, the system will have half of the memory of a full system
with the same configuration and one-fourth the memory when in 2-bank mode. The
MCUs must be configured with twice the memory in 4-bank mode and 4 times the
memory in 2-bank mode to provide the same address space as a full system. If the
full system uses the maximum memory configuration, then the tests must reside in
the lower half or quarter of memory in order to execute properly in a 4-bank or 2-
bank configured system, respectively.

3.10 RAS Features

3.10.1 SDRAM ECC
The data sent to the DRAMs is protected by SEC-DED error correction. Galois field
multiplication techniques are used to generate 16 bits of ECC in this block for each
128 bits of data.
3-72 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

3.10.2 Memory Scrubbing
Memory scrubbing refers to the regeneration of ECC for data in memory and the
correction of single-bit errors and detection of double-bit errors. When scrubbing is
enabled, at the end of the time interval defined by the DRAM Scrub Frequency
Register, a memory scrub request is issued to the DIMMs. The scrubbing requests
have priority over L2 cache requests. First, a scrubbing read request is issued to the
DIMMs. When the scrubbing read data returns, the error detection and correction
logic is used on the data. ECC is regenerated and compared with the ECC data read
from memory. If an error is detected, a single-bit and double-bit error is flagged in
the DRAM Error Status Register as well as being signalled to the L2 cache; then the
MCU generates additional requests to the SDRAMs to collect more information on
the error which is detailed in the following section. After the scrubbing transaction
completes, the L2 cache requests are able to proceed.

Once a scrubbing request is sent, the time interval counter is reset and begins
counting down again, and the scrub address is incremented to the next memory
location.

3.10.3 Data Poisoning
Data poisoning involves marking known corrupt data in memory with bad ECC so
that any later access will get an ECC error. MCU memory poisoning is performed
by flipping ECC check bits 15, 9, 5 and 0. This will generate a failing syndrome of
0x8221 which, when encountered on a read, will most likely indicate poisoned data.
The L2 cache asserts l2b_mcu_data_mecc which causes the MCU to corrupt the ECC
for the corresponding 64-bit data word.

3.10.4 ECC Error Handling
When an error occurs on a scrub read or an L2 cache read request, the MCU will flag
the error and then try to determine if the error is a hard error or a transient error.
After the error occurs, the MCU will first perform another Read and log its ECC
status. If the second read does not have an uncorrectable error, the corrected read
data is written back to the SDRAM, and a third read is issued, and its status is also
logged. Only the status from the first read will be sent to the L2 cache bank. One of
the cores must perform a register read to check the status of the subsequent reads.
Chapter 3 Memory Control Unit (MCU) 3-73

3.10.5 FBD Channel Errors
There are several ways that errors may be detected on the SB or NB channels. Alerts
and Status Frames show when CRC errors have occurred on the SB channel. CRC
errors on data frames and corrupted Idle or Status Frames show errors on the NB
channel. When a channel error occurs on the SB channel, all transactions not
guaranteed to have completed before the problem was detected must be reissued.
When an error occurs on the NB channel, only the transaction with an error must be
reissued.

1. Alert Frame: The MCU will stop issuing transactions and will issue a Soft
Channel Reset (SCR) frame to attempt to reset the state of the AMBs and try to
determine which AMB has detected an error. If errors persist, the MCU will issue
a Fast Reset. If errors still persist after the Fast Reset, the MCU will log an
Unrecoverable error in the MCU ESR, log an Alert Frame error in the MCU
Syndrome Register and assert mcu_l2t0_scb_mecc_err to the L2. If at any point in
the error processing the MCU is able to recover from the error condition, the
MCU will instead assert mcu_l2t0_scb_secc_err to the L2 and set the Recoverable
error bit in the ESR. Any outstanding reads or subsequent reads must still be
returned to the L2 after the error processing is completed. If the channels are not
working, these reads will be seen as Unrecoverable CRC errors.

2. Status Frame with Alert asserted: This indicates that the asserting AMB has
detected an error on the SB channel. If this is the only error detected, the MCU
will wait for the next Status Frame. If no other error occurs before or in the next
Status Frame, the MCU will flag an Alert Asserted error in the syndrome register,
set the Recoverable error bit in the MCU ESR, and assert mcu_l2t0_scb_secc_err to
the L2. If any other error type occurs before or in the next Status Frame,
processing proceeds as for that error condition.

3. Status Frame Parity Error: If there is a parity error in a Status Frame, the MCU
will wait for the next Status frame. If the error persists, the MCU will attempt a
Soft Channel Reset and if necessary, a Fast Reset. If the error persists the MCU
will flag a Status Frame Error in the syndrome register, log a Status Parity error in
the MCU Syndrome Register and assert mcu_l2t0_scb_mecc_err to the L2. If at
any point in the error processing tthe MCU is able to recover from the error
condition, the MCU will instead assert mcu_l2t0_scb_secc_err to the L2 and set
the Recoverable error bit in the ESR. Any outstanding reads or subsequent reads
must still be returned to the L2 after the error processing is completed. If the
channels are not working, these reads will be seen as Unrecoverable CRC errors.

4. CRC Error on Read Data: The MCU will discard the data and retry the
transaction. If it fails again, the MCU will issue a Fast Reset of the FBD channel.
If the error persists after the Fast Reset, the MCU will flag an Unrecoverable error
in the ESR, flag a CRC error in the Syndrome register and assert
mcu_l2t_mecc_err_r3 to the L2 along with the bad data. If there is no CRC error
on any of the retries, the MCU will flag a Recoverable Error in the ESR and assert
mcu_l2t0_scb_secc_err once to the L2 and then send the correct read data.
3-74 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

When a Soft Channel Reset command is issued to the FBDIMMs, it will be followed
by a CKE command (to enable all CKEs) and a precharge all command to put the
DRAMs in a legal operating state. In order for the CKE commands to be issued
correctly, the FBD Per Rank CKE Register must be set correctly and the CKE bit in
the DIMM Initialization Register must be set.

When two channels are operating in lock-step, the MCU will perform error handling
as if the same error occurred on both channels.

3.10.6 Interrupts
The MCU has two interrupt types that it can send to the NCU based on certain MCU
errors. The error types are Correctable ECC Error Count and Recoverable FBD
Channel Error Count . When one of these errors is generated, the MCU will send a
single cycle pulse to the NCU in the iol2clk domain. Either of FBD errors will also
generate a syndrome which is stored in the MCU Syndrome register if no other FBD
error is pending.

The NCU also has a mechanism for generating these error types and an
Unrecoverable FBD Channel Error. When one of these Signals is asserted, the MCU
will inject that type of error within its logic to verify that the error detection and
reporting logic is operating correctly.

Correctable ECC Error Count Interrupt

When the MCU Error Count Register reaches zero, the MCU will generate an
interrupt on mcu_ncu_ecc, asserting it for one iol2clk cycle. No syndrome is
reported, and no more of this type of interrupt will be generated until the software
writes to the Error Count Register to enable interrupt generation.

If ncu_mcu_ecci is asserted, the MCU will inject a single correctable error on the
lowest ECC bit on the next read packet. If the Error Count Register is already zero,
nothing happens. Otherwise, the error count will be decrement by one. If the MCU
Error Count Register goes to zero, then the Correctable ECC Error Interrupt will be
generated. This ECC error should also be reported to the L2 regardless of the value
of the Error Count Register.

Recoverable FBD Channel Error Count Interrupt

A Recoverable FBD Channel Error Interrupt will be generated whenever the
Recoverable FBD Channel Error Count Regiser reaches zero. The MCU will assert
mcu_ncu_fbr to the NCU for one iol2clk cycle. Once the count value is zero, no
more interrupts of this type will be generated until software writes a non-zero value
to the count register.
Chapter 3 Memory Control Unit (MCU) 3-75

If ncu_mcu_fbri is asserted from the NCU to the MCU, the MCU will inject an error
within the FBD channel. The source of the error will be determined by the Injected
Error Source Register. The MCU will handle the error as if it had actually occurred
in hardware. If the Recoverable FBD Channel Error Count Regiser reaches zero,
then mcu_ncu_fbr will be asserted to the NCU.

Unrecoverable FBD Channel Error Interrupt Injection

Thee is no error generated to the NCU for Unrecoverable FBD Channel Errors.
These types of errors will only be indicated through the L2 cache.

If ncu_mcu_fbui is asserted from the NCU to the MCU, the MCU will inject an error
within the FBD channel. The source of the error will be determined by the Injected
Error Source Register. The MCU will handle the error as if it had actually occurred
in hardware.

3.11 Test Features

3.11.1 DFT Features

3.11.1.1 Debug Reset

During Debug Reset, the MCU needs to keep the FBD links active so that runs can
be reproducible. By keeping them active, the channel latencies and the SERDES to
MCU asynchronous crossings will not change between test runs.

In order to achieve this, a small part of the MCU must be protected from warm reset,
and the clock to it needs to remain active during reset. For each MCU, there is an
additional clock stop signal, tcu_mcu*_fbd_clk_stop, and a common test mode
signal, tcu_mcu_testmode. The subblock mcu_fdout_ctl contains the logic that
remains active during the Debug Reset. Its clock is taken directly from dr_gclk, not
from the output of a cluster header. The tcu_mcu*_fbd_clk_stop signal goes directly
to the L1 headers in mcu_fdout_ctl, and these clock stop Signals are not asserted
during the Debug Reset. The tcu_mcu_testmode signal is used to qualify the scan
and reset Signals. tcu_scan_en, tcu_aclk and tcu_bclk are ANDed with
tcu_mcu_testmode in mcu_fdout_ctl. tcu_mcu_testmode is asserted for Power-On
Reset and for a normal Warm Reset, but not for Debug Reset. tcu_mcu_testmode is
also used to control a mux which bypasses the protected flops on the scan chain
when it is not asserted but inclues them when not asserted.
3-76 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

3.11.2 Deterministic Test Mode (DTM)
Deterministic Test Mode is a mode in which all of the IO units operate at the same
speed so that test runs may be reproducible on a tester. The mode is entered when
the ccu_serdes_dtm is set to 1’b1. In this mode different data will be sent by the
MCU to the debug bus. Also, since the tester will be "sourcing" transactions, the
MCU will act as a slave device during channel initialization and must respond to
transactions on the NB channel in order to enter a predictable state.

3.11.2.1 Debug Signals

For DTM, the MCU will provide CRC data from the southbound FBD frames to the
Debug unit. Each frame contains 22 bits of CRC, so since there are two channels per
MCU, there will be 44 bits of CRC data per MCU. The MCU will take the CRC from
the two channels and XOR them; however, either channel’s CRC can be masked off
before the XOR by setting the appropriate bit in the Debug Trigger Enable Register.
This data will then be sent to the UCB module to be multiplexed with the normal-
mode debug Signals. One additional bit needs to be sent to the Debug unit since the
current debug bus signal count is 21 bits. The MCU will use the ccu_serdes_dtm
signal to select the CRC data for sending to the Debug unit.

These debug Signals will be taken from the drl2clk domain to the iol2clk domain;
however, they will not need to be synchronized since they will only be used for
DTM where the drl2clk and iol2clk will be driven from the same source.

3.11.2.2 Initialization for Testing

When in DTM mode, the northbound FBD channel still needs to be initalized by
northbound TS0 patterns. Therefore, the tester must send enough TS0 patterns to
achieve bit lock, frame lock and lane deskew within the MCU. After these are
achieved, the tester must then cause the MCU to transition to the L0 state in order to
enable southbound transactions and to enable recognition of northbound
transactions.

After reset, the MCU’s FBD initialilzation state machine will be in the Disable state,
and the DTM state machine will begin in the IDLE state. The MCU’s initialization
state machine must be in the Disable state before DTM testing begins. The tester
will send TS0 patterns to train the northbound link. The DTM state machine will
transition to the TS0 state once it sees the TS0 patterns on the NB channel. This will
also cause the MCU state machine to transition to the TS0 state, and the MCU will
begin sending southbound TS0 patterns. Once in the TS0 state, the DTM state
machine will wait until it sees at least 4 northbound frames containing all 0’s. At
this point, the MCU’s initalization state machine will be transitioned to the L0 state,
and the DTM state machine will return to IDLE. Once the MCU enters the L0 state,
operation will proceed as in normal system mode.
Chapter 3 Memory Control Unit (MCU) 3-77

Since the Polling state will be bypassed during the initialization for DTM, the
channel latency register must be programmed to match the channel latency used for
generating the test vectors.

In order to achieve operating rates that the tester can support, the RXTX_RATE field
of the SERDES Configuration Bus Register must be set to Half Rate (2’b01) or
Quarter Rate (2’b10) as required. The required link rates for supported operating
frequencies are given in the DTM section of the CCU spec.

3.11.3 SERDES Blunt-End Loopback
SERDES Blunt-End Loopback within the MCU is controlled by the Loopback Mode
Control Register. This register controls both links within an MCU. When bit 1 is set,
data received on a northbound FBD channel will be placed on the corresponding
southbound channel. Since there are 14 northbound lanes and only 10 southbound
lanes, bit 0 selects which northbound lanes map to which southbound lanes. If bit 0
is 1’b0, then northbound lanes 0 through 9 are mapped to the southbound lanes. If
bit 0 is 1’b1, then northbound lanes 4 through 13 are mapped to the southbound
lanes.

Since the data on the northbound channel must be synchronized from the recovered
clock domain into the MCU’s drl2clk domain, TS0 patterns must be sent on the
northbound channel in order to achieve frame lock. Once frame lock is achieved, the
cross domain FIFO will be enabled, and data will be forwarded from the northbound
channel to the southbound channel.

This increase in size would change the MCU’s Y dimension to about 1750 µm due to
the addition of the FBDWR_DP and FBDRD_DP. (The size of the MCU as of June 10,
2004 is 1744µm x 847µm.) The X dimension would have to be reduced and the
aspect ratios of the control blocks would have to change in order to use up any
whitespace created.

A break down of the area changes per block is given in the following sections.
3-78 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

3.12 MCU Level I/O
TABLE 3-22 MCU Level I/O

Signal Name I/O Description

Clocks, Reset, Etc.

iol2clk I System bus clock

drl2clk I DRAM clock

l2clk I CPU domain clock

mcu_ce I DRAM module clock enable

ccu_mcu_ddr_cmp_sync_en I Dram to Cmp clock synchronization

ccu_mcu_cmp_ddr_sync_en I Cmp to Dram clock synchronization

ccu_mcu_io_cmp_sync_en I Sys to Cmp clock synchronization

ccu_mcu_cmp_io_sync_en I Cmp to Sys clock synchronization

clspine_mcu_selfrsh I Enter hardware self-refresh mode

rst_por_ I Power-on reset signal

rst_wmr_ I Warm reset signal

mcu_pt_sync_in0 mcu_pt_sync_in1
mcu_pt_sync_in2

I Incoming power throttling counter synchronizing Signals

mcu_pt_sync_out O Outgoing power throttling counter synchronizing signal

mcu_id[1:0] I MCU ID for error reporting

mcu_clk_en I Clock enable to synchronize MCU clock domain to external
DRAM clock

Test

scan_in I Scan in

scan_out O Scan out

tcu_aclk I

tcu_bclk I

tcu_soc_cmp_clk_stop I Clock stop signal for l2clk domain

tcu_soc5dr_clk_stop I Clock stop signal for drl2clk domain

tcu_soc6io_clk_stop I Clock stop signal for iol2clk domain

tcu_pce_ov I Clock enable override signal
Chapter 3 Memory Control Unit (MCU) 3-79

tcu_dectest I

tcu_scan_en I Scan enable

tcu_se_scancollar_in I Scan enable for memory input flops

tcu_se_scancollar_out I Scan enable for memory output flops

tcu_array_wr_inhibit I Inhibit memory array updates

tcu_array_bypass I Bypass memory array

tcu_mbist_bisi_en I Enable MBIST engine

tcu_mcu_mbist_start I Start MBIST sequence

mcu_tcu_mbist_done O MBIST done

mcu_tcu_mbist_fail O MBIST fail

tcu_mcu_mbist_scan_in I MBIST module scan in

mcu_tcu_mbist_scan_out O MBIST module scan

Debug

mcu_dbg1_rd_req_in_0[3:0] O Read request received from L2 bank 0

mcu_dbg1_rd_req_in_1[3:0] O Read request received from L2 bank 1

mcu_dbg1_rd_req_out[4:0] O Read data returned to L2 bank

mcu_dbg1_wr_req_in_0 O Write request received from L2 bank 0

mcu_dbg1_wr_req_in_1 O Write request received from L2 bank 1

mcu_dbg1_wr_req_out[1:0] O Number of writes retired

mcu_dbg1_mecc_err O Multiple nibble ECC error

mcu_dbg1_secc_err O Single nibble ECC error

mcu_dbg1_fbd_err O FBD channel error

mcu_dbg1_err_mode O MCU in error processing mode

mcu_dbg1_err_event O Debug error event when debug trigger is enabled

NCU Interface

ncu_mcu_data[3:0] I NCU to MCU module CSR bus

ncu_mcu_stall I Stall signal from NCU for outgoing transactions

ncu_mcu_vld I Incoming CSR data valid

ncu_mcu_ecci I Inject Correctable Error Count

ncu_mcu_fbri I Inject FBDIMM Channel Recoverable Error

TABLE 3-22 MCU Level I/O (Continued)

Signal Name I/O Description
3-80 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

ncu_mcu_fbui I Inject FBDIMM Channel Unrecoverable Error

mcu_ncu_data[3:0] O MCU module to NCU CSR bus

mcu_ncu_stall O Stall incoming transactions

mcu_ncu_vld O Outgoing CSR data valid

mcu_ncu_ecc O Correctable Error Count Interrupt

mcu_ncu_fbr O FBDIMM Channel Recoverable Error Interrupt

ncu_mcu_pm I Enables partial-bank mode

ncu_mcu_ba01 I L2 banks 0 and 1 are enabled in partial-bank mode

ncu_mcu_ba23 I L2 banks 2 and 3 are enabled in partial-bank mode

ncu_mcu_ba45 I L2 banks 4 and 5 are enabled in partial-bank mode

ncu_mcu_ba67 I L2 banks 6 and 7 are enabled in partial-bank mode

MCU-L2 Interface

l2b0_mcu_data_mecc_r5
l2b1_mcu_data_mecc_r5

I Signal to inject ecc errors in write data

l2b0_mcu_data_vld_r5
l2b1_mcu_data_vld_r5

I Data valid signal from L2 cache

l2b0_mcu_wr_data_r5[63:0]
l2b1_mcu_wr_data_r5[63:0]

I Data from L2 cache

l2t0_mcu_addr_39to9[39:7]
l2t0_mcu_addr_5
l2t1_mcu_addr_39to9[39:7]
l2t1_mcu_addr_5

I L2 cache transaction address

l2t0_mcu_rd_dummy_req
l2t1_mcu_rd_dummy_req

I Dummy read request from L2

l2t0_mcu_rd_req l2t1_mcu_rd_req I L2 cache read request signal

l2t0_mcu_rd_req_id[2:0]
l2t1_mcu_rd_req_id[2:0]

I L2 cache read request ID

l2t0_mcu_wr_req l2t1_mcu_wr_req I L2 cache write request signal

mcu_l2t0_data_vld_r0
mcu_l2t1_data_vld_r0

O L2 cache read data valid signal

mcu_l2t0_rd_ack mcu_l2t1_rd_ack O Read request acknowledge signal to L2 cache

mcu_l2t0_scb_mecc_err
mcu_l2t1_scb_mecc_err

O MCU scrub multiple ECC error indication to L2 cache

TABLE 3-22 MCU Level I/O (Continued)

Signal Name I/O Description
Chapter 3 Memory Control Unit (MCU) 3-81

mcu_l2t0_scb_secc_err
mcu_l2t1_scb_secc_err

O MCU scrub single ECC error indication to L2 cache

mcu_l2t0_wr_ack mcu_l2t1_wr_ack O Write request acknowledge signal to L2 cache

mcu_l2t0_wr_addr_err
mcu_l2t1_wr_addr_err

O Write address error signal to L2 cache

mcu_l2t0_qword_id[1:0]
mcu_l2t1_qword_id[1:0]

O Quadword of data being returned from MCU

mcu_l2t0_mecc_err_r3
mcu_l2t1_mecc_err_r3

O MCU multiple ECC error indication to L2 cache

mcu_l2t0_rd_req_id_r0[2:0]
mcu_l2t1_rd_req_id_r0[2:0]

O Read request ID for L2 cache read data

mcu_l2t0_secc_err_r3
mcu_l2t1_secc_err_r3

O DRAM single ECC error indication to L2 cache

mcu_l2b_data_r3[127:0] O Read data to L2 cache

mcu_l2b_ecc_r3[27:0] O ECC data for read data to L2 cache

MCU-FBD IO Interface

mcu_fsr0_data[119:0]
mcu_fsr1_data[119:0]

O Southbound FBD Channel Data

mcu_fsr0_cfgpll_enpll
mcu_fsr1_cfgpll_enpll

O Enable PLLs for FBD Channels

mcu_fsr01_cfgpll_lb[1:0] O PLL Loopback for Channels 0 and 1

mcu_fsr01_cfgpll_mpy[3:0] O PLL Multiplier for Channels 0 and 1

mcu_fsr0_cfgrx_enrx
mcu_fsr1_cfgrx_enrx

O Enable SERDES receivers

mcu_fsr0_cfgrx_align
mcu_fsr1_cfgrx_align

O Enable Alignment detection for FBD SERDES

mcu_fsr0_cfgrx_los[1:0]
mcu_fsr1_cfgrx_los[1:0]

O Enable Loss-of-Signal (Electrical Idle) detection

mcu_fsr0_cfgrx_invpair[13:0]
mcu_fsr0_cfgrx_invpair[13:0]

O Invert RXP and RXN per bit

mcu_fsr01_cfgrx_eq[3:0] O Enable and configure adaptive equalizer

mcu_fsr01_cfgrx_cdr[2:0] O Configure clock/data recovery algorithm

mcu_fsr01_cfgrx_term[2:0] O Set input termination

mcu_fsr0_cfgtx_entx
mcu_fsr1_cfgtx_entx

O Enable SERDES transmitters

TABLE 3-22 MCU Level I/O (Continued)

Signal Name I/O Description
3-82 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

3.13 MCU Registers
MCU register definitions are detailed in the OpenSPARC T2 Programmer’s
Reference Manual. This document will only provide a list of registers and a cross
reference to their locations in the OpenSPARC T2 Programmer’s Reference Manual.

mcu_fsr0_cfgtx_enidl
mcu_fsr1_cfgtx_enidl

O Enable Electrical Idle on Transmitter

mcu_fsr0_cfgtx_invpair[9:0]
mcu_fsr1_cfgtx_invpair[9:0]

O Invert TXP and TXN per bit

mcu_fsr01_cfgtx_enftp O Enable fixed phose on TXBCLKIN

mcu_fsr01_cfgtx_de[3:0] O Set transmitter output de-emphasis

mcu_fsr01_cfgtx_swing[2:0] O Set transmitter output swing

mcu_fsr01_cfgtx_cm O Adjust common mode.

fsr0_mcu_rxbclk[13:0]
fsr1_mcu_rxbclk[13:0]

I Clocks for Northbound FBD Channels

fsr0_mcu_data[167:0]
fsr1_mcu_data[167:0]

I Northbound FBD Channel Data

fsr0_mcu_stspll_lock
fsr1_mcu_stspll_lock

I SERDES PLLs are locked

fsr0_mcu_stsrx_sync[13:0]
fsr1_mcu_stsrx_sync[13:0]

I Header alignment signal from SERDES Receivers

fsr0_mcu_stsrx_losdtct[13:0]
fsr1_mcu_stsrx_losdtct[13:0]

I Electrical Idle signal from SERDES Receivers

TABLE 3-22 MCU Level I/O (Continued)

Signal Name I/O Description
Chapter 3 Memory Control Unit (MCU) 3-83

3.13.1 Control and Status Registers

TABLE 3-23 Control and Status Registers

Register Offset Register Name
OpenSPARC T2 PRM

Section

0x00000000 CAS Address Width Register 25.10.1

0x00000008 RAS Address Width Register 25.10.2

0x00000010 CAS Latency Register 25.10.3

0x00000018 Scrub Frequency Register 25.10.4

0x00000020 Refresh Frequency Register 25.10.5

0x00000038 Refresh Counter Register 25.10.6

0x00000040 Scrub Enable Register 25.10.7

0x00000080 RAS to RAS Different Bank Delay Register 25.10.8

0x00000088 RAS to RAS Same Bank Delay Register 25.10.9

0x00000090 RAS to CAS Delay Register 25.10.10

0x00000098 Write to Read CAS Delay Register 25.10.11

0x000000A0 Read to Write CAS Delay Register 25.10.12

0x000000A8 Internal Read to Precharge Delay Register 25.10.13

0x000000B0 Active to Precharge Delay Register 25.10.14

0x000000B8 Precharge Command Period Register 25.10.15

0x000000C0 Write Recovery Period Register 25.10.16

0x000000C8 Autorefresh to Active Period Register 25.10.17

0x000000D0 Mode Register Set Command Period Register 25.10.18

0x000000E0 Internal Write to Read Command Delay Register 25.10.19

0x000000E8 Precharge Wait Register During Power Up 25.10.20

0x00000108 DIMM Stacked Register 25.10.21

0x00000110 Extended Mode 2 Register 25.10.22

0x00000118 Extended Mode 1 Register 25.10.23

0x00000120 Extended Mode 3 Register 25.10.24

0x00000128 8 Bank Mode Register 25.10.25

0x00000138 Branch Disabled Register 25.10.27

0x00000140 Select Low Order Address Bits Register 25.10.28

0x000001A0 DIMM Initialization Register 25.10.29
3-84 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

3.13.1.1 Changes to DIMM Initialization Register- 0x84_0000_01A0

The DIMM Initialization Register for OpenSPARC T2 has the following format:

0x00000208 Mode Register Write Status Register 25.10.33

0x00000210 Initialization Status Register 25.10.34

0x00000218 DIMMs Present Register 25.10.35

0x00000220 Fail-Over Status Register 25.10.36

0x00000228 Fail-Over Mask Register 25.10.37

TABLE 3-24 DRAM Initialization Register

Field Bit position Initial value R/W Description

RSVD [62:2] 0x0 RO Reserved

CKE [1] 0x0 RW Enabled CKE to DIMMs

INIT [0] 0x1 RW Set to 1 during software initialization of DRAMs;
cleared by software when done.

TABLE 3-23 Control and Status Registers (Continued)

Register Offset Register Name
OpenSPARC T2 PRM

Section
Chapter 3 Memory Control Unit (MCU) 3-85

3.13.1.2 Single Channel Mode Regiser - 0x84_0000_0148

3.13.1.3 Four Activate Window Register

3.13.2 Error Registers

3.13.2.1 Changes to Error Status Regiser - 0x84_0000_0280

TABLE 3-25 Single Channel Mode Register

Field Bit position Initial value R/W Description

RSVD [62:1] 0x0 RO Reserved

MODE [0] 0x0 RW Enable use of 1 FBD channel for memory transactions.
Burst length becomes 8.

TABLE 3-26 Four Activate Window Register

Field Bit position Initial value R/W Description

RSVD [62:5] 0x0 RO Reserved

MODE [4:0] 0xA RW tFAW. Number of cycles in which 4 Activate commands
may be issued to a DIMM. Preserved on warm reset.

TABLE 3-27 Error Registers

Register Offset Register Name
OpenSPARC T2 PRM
Section

0x00000280 Error Status Register 12.12.1

0x00000288 Error Address Register 12.12.2

0x00000290 Error Injection Register 12.12.3

0x00000298 Error Counter Register 12.12.4

0x000002A0 Error Location Register 12.12.5
3-86 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

The MCU Error Status Register has 3 additional bits:

TABLE 3-28 MCU Error StatusRegister

Field Bit Position Initial Value R/W Description

MEB [56] 0x0 R/W1C Multiple Out-of-Bound Errors

FBU [55] 0x0 R/W1C FBDIMM Channel Unrecoverable Error

FBR [54] 0x0 R/W1C FBDIMM Channel Recoverable Error
Chapter 3 Memory Control Unit (MCU) 3-87

3.13.2.2 Error Retry Register - 0x84_0000_02a8

3.13.3 Power Management Registers

3.13.3.1 Power Down Mode Register - 0x84_0000_0238

This register enables the use of Power Down mode for power savings. When
enabled, an FBD will be placed in Power Down mode when there are no pending or
outstanding transactions to that FBD.

TABLE 3-29 Error Entry Register

Field Bit Position
Initial
Value R/W Description

VALID [63] 0x0 RW Error Retry Register is valid

RSVD [62:50] 0x0 RO Reserved

SYNDROME2 [49:34] 0x0 RW Syndrome from second retry read

TYPE2 [33:32] 0x0 RW Result of second retry read

RSVD [31:18] 0x0 RO Reserved

SYNDROME1 [17:2] 0x0 RW Syndrome from second retry read

TYPE1 [1:0] 0x0 RW Result of second retry read:
00: No read
01: No error
10: Correctable Error
11: Uncorrectable Error

TABLE 3-30 Power Management Registers

Register Offset Register Name
OpenSPARC T2 PRM
Section

0x00000028 Open Bank Max Register 26.3.1

0x00000048 Programmable Time Counter Register 26.3.2

TABLE 3-31 Power Down Mode Register

Field Bit Position Initial Value R/W Description

RSVD [63:1] 0x0 RO Reserved

ENABLE [0] 0x0 RW Enable use of Power Down mode if 1.
3-88 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

3.13.4 Performance Registers

3.13.5 Changes to Debug Trigger Enable Register

3.13.6 State Registers for FBD Branch
FBD controller register address space will be a subset of the MCU’s address space,
differentiated by some upper bits.

TABLE 3-32 Performance Registers

Register Offset Register Name OpenSPARC T2 PRM Section

0x00000400 Performance Control Register 10.3

0x00000408 Performance Counter Register 10.3

TABLE 3-33 Debug Trigger Enable Register

Field Bit Position
Initial
Value R/W Description

RSVD [63:6] 0x0 RO Reserved

DTM_ATSPEED [5] 0x0 RW If set, Debug bus sends normal mode data in DTM mode

DTM_MASK1 [4] 0x0 RW If set, mask off CRC data from Channel 1 going to Debug
bus

DTM_MASK0 [3] 0x0 RW If set, mask off CRC data from Channel 0 going to Debug
bus

DBG_EN [2] 0x0 RW Enable error events to Debug unit

MASK_ERR [1] 0x0 RW Mask LFSR related errors on NB FBD links

KP_LNK_UP [0] 0x0 RW Keep FBD links up during Warm Reset
Chapter 3 Memory Control Unit (MCU) 3-89

3.13.6.1 Channel State Register - 0x84_0000_0800

3.13.6.2 Fast Reset Flag - 0x84_0000_0808

TABLE 3-34 Channel State Register

Field Bit Position
Initial
Value R/W Description

RSVD [63:8] 0x0 RO Reserved

MDISABLE [7] 0x0 RW Disable AMB data merging for TS2 patterns

AMBID [6:3] 0x0 RW Target AMB for training sequences

STATE [2:0] 0x0 RW State in initialization sequence
0x0 = Disable, 0x1 = Calibrate,
0x2 = Training, 0x3 = Testing,
0x4 = Polling, 0x5 = Config,
0x6 = L0

TABLE 3-35 Fast Reset Flag

Field Bit Position
Initial
Value R/W Description

RSVD [63:4] 0x0 RO Reserved

SYNC_IER [3] 0x0 RW Enables use of IER bit in Sync command. IER will be issued
in last Sync frame before a Channel Reset.

SYNC_R [2:1] 0x0 RW Indicates which status register will be received from AMBs

FASTRESET [0] 0x0 RW Causes MCU to enter use Fast Reset sequence for channel
initialization
3-90 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

3.13.6.3 Channel Reset (Initialization) Flag - 0x84_0000_0810

3.13.6.4 TS1 Southbound to Northbound Mapping Register -
0x84_0000_0818

3.13.6.5 TS1 Test Paramater Register - 0x84_0000_0820

TABLE 3-36 Channel Reset (Initialization) Flag

Field Bit Position Initial Value R/W Description

RSVD [63:2] 0x0 RO Reserved

FBDINITERR [1] 0x0 RW Set to 1 if an error occurred during the FBD
Channel initialization.

FBDINIT [0] 0x0 RW Causes FBD Channel to be initialized. Uses
fast reset sequence if Fast Reset Flag is set,
otherwise performs full initialization
(including Calibration). Reset to 0 when
initialization is complete.

TABLE 3-37 TS1 Southbound to Northbound Mapping Register

Field Bit Position Initial Value R/W Description

RSVD [63:4] 0x0 RO Reserved

IBRX_CHNL [3] 0x0 RW Selects which NB channel will be checked by
the IBIST Receive engine

MAPPING [2:0] 0x0 RW Determines how targetted AMB maps data
from SB bit lanes to NB bit lanes

TABLE 3-38 TS1 Test Paramater Register

Field Bit Position Initial Value R/W Description

RSVD [63:24] 0x0 RO Reserved

PARAM [23:0] 0x0 RW AMB test parameters for TS1 sequence
Chapter 3 Memory Control Unit (MCU) 3-91

3.13.6.6 TS3 Failover Configuration Register - 0x84_0000_0828

3.13.6.7 Electical Idle Detected Register - 0x84_0000_0830

3.13.6.8 Disable State Period Register - 0x84_0000_0838

TABLE 3-39 TS3 Failover Configuration Registers

Field Bit Position
Initial
Value R/W Description

RSVD [63:16] 0x0 RO Reserved

SBCONFIG1 [15:12] 0xF RW Indicates which southbound lanes for channel 1 will be
used.

NBCONFIG1 [11:8] 0xF RW Indicates which northbound lanes for channel 1 will be
used.

SBCONFIG0 [7:4] 0xF RW Indicates which southbound lanes for channel 0 will be
used.

NBCONFIG0 [3:0] 0xF RW Indicates which northbound lanes for channel 0 will be
used.

TABLE 3-40 Electrical Idle Detected Registers

Field Bit Position Initial Value R/W Description

RSVD [63:28] 0x0 RO Reserved

ELECTIDLE1 [27:14] 0x3ff RO Electrical Idle detected from bit lanes

ELECTIDLE0 [13:0] 0x3ff RO Electrical Idle detected from bit lanes

TABLE 3-41 Disable State Period Registers

Field Bit Position
Initial
Value R/W Description

RSVD [63:10] 0x0 RO Reserved

COUNT [9:0] 0xFF RW Counter value for Disable state. Once Disable state is
entered, a counter will count to this value. Once it
reaches it, the Disable_Done bit in the Disable State
Period Done Register will be set.
3-92 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

3.13.6.9 Disable State Period Done Register - 0x84_0000_0840

3.13.6.10 Calibrate State Period Register - 0x84_0000_0848

3.13.6.11 Calibrate State Period Done Register - 0x84_0000_0850

TABLE 3-42 Disable State Period Done Registers

Field Bit Position
Initial
Value R/W Description

RSVD [63:1] 0x0 RO Reserved

DONE [0] 0x0 RW Indicates that counter for Disable state period has completed
counting.

TABLE 3-43 Calibrate State Period Registers

Field Bit Position
Initial
Value R/W Description

RSVD [63:20] 0x0 RO Reserved

COUNT [19:0] 0x0 RW Counter value for Calibrate state. Once Calibrate state is
entered, a counter will count to this value. Once it reaches it,
the Calibrate_Done bit in the FBD Status Register will be set.

TABLE 3-44 Calibrate State Period Registers

Field Bit Position
Initial
Value R/W Description

RSVD [63:1] 0x0 RO Reserved

DONE [0] 0x0 RW Indicates that counter for Disable state period has completed
counting.
Chapter 3 Memory Control Unit (MCU) 3-93

3.13.6.12 Training State Minimum Time Register - 0x84_0000_0858

3.13.6.13 Training State Done Register - 0x84_0000_0860

3.13.6.14 Training State Timeout Register - 0x84_0000_0868

TABLE 3-45 Training State Minimum Time Registers

Field Bit position Initial value R/W Description

RSVD [63:16] 0x0 RO Reserved

COUNT [15:0] 0xFF RW Minimum number of
frames for Training
state before starting
to check for Done.

TABLE 3-46 Training State Done Registers

Field Bit Position Initial Value R/W Description

RSVD [63:2] 0x0 RO Reserved

TIMEOUT [1] 0x0 RW Set when timeout
period has elapsed
before Done has
been asserted.

DONE [0] 0x0 RW Set when Training
state has completed.

TABLE 3-47 Training State Timeout Registers

Field Bit Position Initial Value R/W Description

RSVD [63:8] 0x0 RO Reserved

PERIOD [7:0] 0xFF RW Number of frames
for Training state to
complete after
minimum number of
frames have elapsed.
3-94 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

3.13.6.15 Testing State Done Register - 0x84_0000_0870

3.13.6.16 Testing State Timeout Register - 0x84_0000_0878

3.13.6.17 Polling State Done Register - 0x84_0000_0880

TABLE 3-48 Testing State Done Registers

Field Bit Position Initial Value R/W Description

RSVD [63:2] 0x0 RO Reserved

TIMEOUT [1] 0x0 RW Set when timeout
period has elapsed
before Done has
been asserted.

DONE [0] 0x0 RW Set when Testing
state has completed.

TABLE 3-49 Testing State Timeout Registers

Field Bit Position Initial Value R/W Description

RSVD [63:8] 0x0 RO Reserved

PERIOD [7:0] 0xFF RW Number of frames
for Testing state to
complete.

TABLE 3-50 Polling State Done Registers

Field Bit Position Initial Value R/W Description

RSVD [63:2] 0x0 RO Reserved

TIMEOUT [1] 0x0 RW Set when timeout
period has elapsed
before Done has
been asserted.

DONE [0] 0x0 RW Set when Polling
state has completed.
Chapter 3 Memory Control Unit (MCU) 3-95

3.13.6.18 Polling State Timeout Register - 0x84_0000_0888

3.13.6.19 Config State Done Register - 0x84_0000_0890

3.13.6.20 Config State Timeout Period Register - 0x84_0000_0898

3.13.6.21 Per Rank CKE Register - 0x84_0000_08A0

Writing this register or the CKE bit of register 0x84_0000_01A0 sends a CKE
command to the FBDIMMs. Each bit corresponds to a rank in a fully populated
FBDIMM system. Bit 0 is for DIMM0, rank0; bit 1 is for DIMM0, rank1; etc. The
enable bits are qualified by the number of DIMMs and whether they are stacked

TABLE 3-51 Polling State Timeout Registers

Field Bit Position Initial Value R/W Description

RSVD [63:8] 0x0 RO Reserved

PERIOD [7:0] 0xFF RW Number of frames
for Polling state to
complete.

TABLE 3-52 Config State Done Registers

Field Bit Position Initial Value R/W Description

RSVD [63:2] 0x0 RO Reserved

TIMEOUT [1] 0x0 RW Set when timeout
period has elapsed
before Done has
been asserted.

DONE [0] 0x0 RW Set when Config
state has completed.

TABLE 3-53 Config State Timeout Period Registers

Field Bit Position Initial Value R/W Description

RSVD [63:8] 0x0 RO Reserved

PERIOD [7:0] 0xFF RW Number of frames
for Config state to
complete.
3-96 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

before the CKE command is issued to the DIMMs.

TABLE 3-54 Per Rank CKE Registers

Field Bit Position Initial Value R/W Description

RSVD [63:16] 0x0 RO Reserved

D7R1 [15] 0x1 RW CKE enable for DIMM 7 Rank 1

D7R0 [14] 0x1 RW CKE enable for DIMM 7 Rank 0

D6R1 [13] 0x1 RW CKE enable for DIMM 6 Rank 1

D6R0 [12] 0x1 RW CKE enable for DIMM 6 Rank 0

D5R1 [11] 0x1 RW CKE enable for DIMM 5 Rank 1

D5R0 [10] 0x1 RW CKE enable for DIMM 5 Rank 0

D4R1 [9] 0x1 RW CKE enable for DIMM 4 Rank 1

D4R0 [8] 0x1 RW CKE enable for DIMM 4 Rank 0

D3R1 [7] 0x1 RW CKE enable for DIMM 3 Rank 1

D3R0 [6] 0x1 RW CKE enable for DIMM 3 Rank 0

D2R1 [5] 0x1 RW CKE enable for DIMM 2 Rank 1

D2R0 [4] 0x1 RW CKE enable for DIMM 2 Rank 0

D1R1 [3] 0x1 RW CKE enable for DIMM 1 Rank 1

D1R0 [2] 0x1 RW CKE enable for DIMM 1 Rank 0

D0R1 [1] 0x1 RW CKE enable for DIMM 0 Rank 1

D0R0 [0] 0x1 RW CKE enable for DIMM 0 Rank 0
Chapter 3 Memory Control Unit (MCU) 3-97

3.13.6.22 L0s Duration - 0x84_0000_08A8

3.13.6.23 Sync Frame Frequency Register - 0x84_0000_08B0

TABLE 3-55 L0s Duration

Field Bit Position Initial Value R/W Description

RSVD [63:7] 0x0 RO Reserved

ENABLE [6] 0x0 RW Enables use of L0s
mode when MCU is
idle.

COUNT [5:0] 0x2A RW Determines the
number of frames
that the branch will
be in the L0s state.
Legal values are
0x20 to 0x2A.
Values below 0x20
will be treated as
0x20 and values
above 0x2A will be
treated as 0x2A.

TABLE 3-56 Sync Frame Frequency Registers

Field Bit Position Initial Value R/W Description

RSVD [63:6] 0x0 RO Reserved

FREQ [5:0] 0x2A RW Frequency at which
sync frames are
issued on the
FBDIMM channels
3-98 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

3.13.6.24 Channel Read Latency Register - 0x84_0000_08B8

3.13.6.25 Channel Capability Register - 0x84_0000_08C0

3.13.6.26 Loopback Mode Control Register - 0x84_0000_08C8

TABLE 3-57 Channel Read Latency Registers

Field Bit Position Initial Value R/W Description

RSVD [63:16] 0x0 RO Reserved

LATENCY1 [15:8] 0xFF RW Read latency for channel 1. Determined during Polling
state.

LATENCY0 [7:0] 0xFF RW Read latency for channel 0. Determined during Polling
state.

TABLE 3-58 Channel Capability Registers

Field Bit Position Initial Value R/W Description

RSVD [63:10] 0x0 RO Reserved

CAPABIL1 [9:5] 0x0 RO Channel capabilities for selected AMB in channel
1. Only valid during Polling state.

CAPABIL0 [4:0] 0x0 RO Channel capabilities for selected AMB in channel
0. Only valid during Polling state.

TABLE 3-59 Loopback Mode Control Registers

Field Bit Position Initial Value R/W Description

RSVD [63:2] 0x0 RO Reserved

MODE [1:0] 0x0 RW Loopback Mode:
0x: Loopback Mode disabled
10: Place low-order NB data on SB bus
11: Place high-order NB data on SB bus
Chapter 3 Memory Control Unit (MCU) 3-99

3.13.6.27 SERDES Configuration Bus Register - 0x84_0000_08D0

3.13.6.28 SERDES Tranmitter and Receiver Differential Pair Inversion
Register - 0x84_0000_08D8

TABLE 3-60 SERDES Configuration Bus Registers

Field Bit Position
Initial
Value R/W Description

RSVD [63:25] 0x0 RO Reserved

RXTX_RATE [29:28] 0x0 RW Receiver/Transmitter Operating Rate

TX_CM [27] 0x0 RW Transmitter Common Mode

TX_SWING [26:24] 0x1 RW Transmitter Output Swing

TX_DE [23:20] 0x0 RW Transmitter De-emphasis

TX_ENFTP [19] 0x0 RW Tranmitter Enable

RX_TERM [18:16] 0x0 RW Receiver Termination

RSVD [15] 0x0 RO Reserved

RX_CDR [14:12] 0x0 RW Receiver Clock/Data Recovery Algorithm

RX_EQ [11:8] 0x0 RW Receiver Adaptive Equalizer Configuration

RSVD [7:6] 0x0 RO Reserved

PLL_MPY [5:2] 0x0 RW PLL Multiplier

PLL_LB [1:0] 0x0 RW Loop bandwidth

TABLE 3-61 SERDES Transmitter and Receiver Differential Pair Inversion Registers

Field Bit Position Initial Value R/W Description

RSVD [63:48] 0x0 RO Reserved

TX1_INVPAIR [47:38] 0x0 RW Invert Channel 1 TXPi/TXNi if bit is 1.

TX0_INVPAIR [37:28] 0x0 RW Invert Channel 0 TXPi/TXNi if bit is 1.

RX1_INVPAIR [27:14] 0x0 RW Invert Channel 1 RXPi/RXNi if bit is 1.

RX0_INVPAIR [13:0] 0x0 RW Invert Channel 0 RXPi/RXNi if bit is 1.
3-100 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

3.13.6.29 SERDES Test Configuration Bus Register - 0x84_0000_08E0

TABLE 3-62 SERDES Test Configuration Bus Registers

Field Bit Position
Initial
Value R/W Description

RSVD [63:32] 0x0 RO Reserved

FSR1_TX_ENTEST [31] 0x0 RW Enable testing of FSR1 Transmit ports

FSR0_TX_ENTEST [30] 0x0 RW Enable testing of FSR0 Transmit ports

FSR1_RX_ENTEST [29] 0x0 RW Enable testing of FSR1 Receive ports

FSR0_RX_ENTEST [28] 0x0 RW Enable testing of FSR0 Receive ports

FSR1_INVPATT [27] 0x0 RW FSR1 Invert Polarity

FSR1_RATE [26:25] 0x0 RW FSR1 Operating Rate

FSR1_ENBSPLS [24] 0x0 RW FSR1 Receiver pulse boundary scan

FSR1_ENBSRX [23] 0x0 RW FSR1 Receiver boundary scan

FSR1_ENBSTX [22] 0x0 RW FSR1 Transmitter boundary scan

FSR1_LOOPBACK [21:20] 0x0 RW FSR1 Loopback

FSR1_CLKBYP [19:18] 0x0 RW FSR1 Clock bypass

FSR1_ENRXPATT [17] 0x0 RW FSR1 Enable Rx patterns

FSR1_ENTXPATT [16] 0x0 RW FSR1 Enable Tx patterns

FSR1_TESTPATT [15:14] 0x0 RW FSR1 Test pattern

FSR0_INVPATT [13] 0x0 RW FSR0 Invert Polarity

FSR0_RATE [12:11] 0x0 RW FSR0 Operating Rate

FSR0_ENBSPLS [10] 0x0 RW FSR0 Receiver pulse boundary scan

FSR0_ENBSRX [9] 0x0 RW FSR0 Receiver boundary scan

FSR0_ENBSTX [8] 0x0 RW FSR0 Transmitter boundary scan

FSR0_LOOPBACK [7:6] 0x0 RW FSR0 Loopback

FSR0_CLKBYP [5:4] 0x0 RW FSR0 Clock bypass

FSR0_ENRXPATT [3] 0x0 RW FSR0 Enable Rx patterns

FSR0_ENRXPATT [2] 0x0 RW FSR0 Enable Tx patterns

FSR0_TESTPATT [1:0] 0x3 RW FSR0 Test pattern
Chapter 3 Memory Control Unit (MCU) 3-101

3.13.6.30 SERDES PLL Status Register - 0x84_0000_08E8

3.13.6.31 SERDES Test Status Register - 0x84_0000_08F0

3.13.6.32 Configuration Register Access Address Register -
0x84_0000_0900

TABLE 3-63 SERDES PLL Status Registers

Field Bit Position Initial Value R/W Description

RSVD [63:6] 0x0 RO Reserved

FSR1_STSPLL [5:3] 0x0 RO PLL Lock Status for FSR1 macros

FSR0_STSPLL [2:0] 0x0 RO PLL Lock Status for FSR0 macros

TABLE 3-64 SERDES Test Status Registers

Field Bit Position Initial Value R/W Description

RSVD [63:48] 0x0 RO Reserved

FSR1_TX_TESTFAIL [47:38] 0x0 RO Test Status for FSR1 Transmit ports

FSR0_TX_TESTFAIL [37:28] 0x0 RO Test Status for FSR0 Transmit ports

FSR1_RX_TESTFAIL [27:14] 0x0 RO Test Status for FSR1 Receive ports

FSR0_RX_TESTFAIL [13:0] 0x0 RO Test Status for FSR0 Receive ports

TABLE 3-65 Configuration Register Access Address Registers

Field Bit Position Initial Value R/W Description

RSVD [63:16] 0x0 RO Reserved

CHANNE
L

[15] 0x0 RW Channel of Configuration Register Access.

AMB [14:11] 0x0 RW AMB ID of Configuration Register Access.

DATA [10:2] 0x0 RW Address for Configuration Register read or write.

RSVD [1:0] 0x0 RO Reserved
3-102 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

3.13.6.33 Configuration Register Access Data Register - 0x84_0000_0908

3.13.6.34 FBD Thermal Trip Status Register - 0x84_0000_0A00

TABLE 3-66 Configuration Register Access Data Registers

Field Bit Position Initial Value R/W Description

RSVD [63:32] 0x0 RO Reserved

DATA [31:0] 0x0 RW Data for Configuration Register read or write.
Writing to this register generates a Configuration
Register Write on the FBD Channel; reading from this
register generates a Configuration Register Read on
the FBD Channel.

TABLE 3-67 FBD Thermal Trip Status Registers

Field Bit Position
Initial
Value R/W Description

RSVD [63:48] 0x0 RO Reserved

TTRIP1_11 [47:46] 0x0 RO Thermal Trip information for AMB 11, Channel 1

TTRIP1_10 [45:44] 0x0 RO Thermal Trip information for AMB 10, Channel 1

TTRIP1_9 [43:42] 0x0 RO Thermal Trip information for AMB 9, Channel 1

TTRIP1_8 [41:40] 0x0 RO Thermal Trip information for AMB 8, Channel 1

TTRIP1_7 [39:38] 0x0 RO Thermal Trip information for AMB 7, Channel 1

TTRIP1_6 [37:36] 0x0 RO Thermal Trip information for AMB 6, Channel 1

TTRIP1_5 [35:34] 0x0 RO Thermal Trip information for AMB 5, Channel 1

TTRIP1_4 [33:32] 0x0 RO Thermal Trip information for AMB 4, Channel 1

TTRIP1_3 [31:30] 0x0 RO Thermal Trip information for AMB 3, Channel 1

TTRIP1_2 [29:28] 0x0 RO Thermal Trip information for AMB 2, Channel 1

TTRIP1_1 [27:26] 0x0 RO Thermal Trip information for AMB 1, Channel 1

TTRIP1_0 [25:24] 0x0 RO Thermal Trip information for AMB 0, Channel 1

TTRIP0_11 [23:22] 0x0 RO Thermal Trip information for AMB 11, Channel 0

TTRIP0_10 [21:20] 0x0 RO Thermal Trip information for AMB 10, Channel 0

TTRIP0_9 [19:18] 0x0 RO Thermal Trip information for AMB 9, Channel 0

TTRIP0_8 [17:16] 0x0 RO Thermal Trip information for AMB 8, Channel 0

TTRIP0_7 [15:14] 0x0 RO Thermal Trip information for AMB 7, Channel 0
Chapter 3 Memory Control Unit (MCU) 3-103

TTRIP0_6 [13:12] 0x0 RO Thermal Trip information for AMB 6, Channel 0

TTRIP0_5 [11:10] 0x0 RO Thermal Trip information for AMB 5, Channel 0

TTRIP0_4 [9:8] 0x0 RO Thermal Trip information for AMB 4, Channel 0

TTRIP0_3 [7:6] 0x0 RO Thermal Trip information for AMB 3, Channel 0

TTRIP0_2 [5:4] 0x0 RO Thermal Trip information for AMB 2, Channel 0

TTRIP0_1 [3:2] 0x0 RO Thermal Trip information for AMB 1, Channel 0

TTRIP0_0 [1:0] 0x0 RO Thermal Trip information for AMB 0, Channel 0

TABLE 3-67 FBD Thermal Trip Status Registers (Continued)

Field Bit Position
Initial
Value R/W Description
3-104 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

3.13.6.35 MCU Syndrome Register - 0x84_0000_0C0

3.13.6.36 Injected Error Source Register - 0x84_0000_0C08

TABLE 3-68 MCU Syndrome Registers

Field Bit Position
Initial
Value R/W Description

VALID [63] 0x0 RW Error Status is Valid

RSVD [62:30] 0x0 RO Reserved

ALERT1 [29:18] 0x0 RW AMB’s on Channel 1 with Status Alert Asserted

ALERT0 [17:6] 0x0 RW AMB’s on Channel 0 with Status Alert Asserted

SOFTRESET [5] 0x0 RW Soft Channel Reset Performed on Channel

FASTRESET [4] 0x0 RW Fast Reset Performed on Channel

SOURCE [3:0] 0x0 RW Source(s) of error (multiple may be asserted:
0xXXX1: CRC Error
0xXX1X: Alert Frame
0xX1XX: Status Alert Asserted
0x1XXX: Status Frame Parity Error

TABLE 3-69 Injected Error Source Registers

Field Bit Position Initial Value R/W Description

RSVD [63:2] 0x0 RO Reserved

SOURCE [1:0] 0x0 RW Source for Injected Error:
0x0 - CRC Error
0x1 - Alert Frame
0x2 - Status Alert Asserted
0x3 - Status Frame Parity Error
Chapter 3 Memory Control Unit (MCU) 3-105

3.13.6.37 MCU FBR Count Register - 0x84_0000_0C10

3.14 Other Registers

3.14.1 Self-Refresh Registers
The Clock Control Register in the Clock Control Unit (CCU), described in Section
11.1 of the OpenSPARC T2 Programmer’s Reference Manual, controls self-refresh
mode for the MCU upon assertion of warm reset.

TABLE 3-70 MCU FBR Count Registers

Field Bit Position Initial Value R/W Description

RSVD [63:17] 0x0 RO Reserved

COUNTONE [16] 0x0 RW Hardware behaves as if count was always one, i.e.
it will always generate an interrupt

COUNT [15:0] 0x0 RW Number of recoverable errors before a recoverable
error interrupt will be sent to NCU
3-106 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

CHAPTER 4

Test Control Unit (TCU)

This document defines the architecure for the Test Control Unit (TCU) for
OpenSPARC T2 . It is intended for RTL design engineers of other OpenSPARC T2
blocks, verification engineers, and DFT engineers. The document contains the
functional description, and some level of implementation detail for the TCU, test
control unit.

This chapter contains the following sections:

■ Section 4.1, “Introduction” on page 4-2

■ Section 4.2, “JTAG” on page 4-3

■ Section 4.3, “UCB Interface” on page 4-17

■ Section 4.4, “L2 Access via SIU” on page 4-22

■ Section 4.5, “Scan” on page 4-26

■ Section 4.6, “Clock Stop” on page 4-35

■ Section 4.7, “Transition Testing” on page 4-44

■ Section 4.8, “Boundary Scan” on page 4-50

■ Section 4.9, “TCU Debug Interface to SPC Cores” on page 4-52

■ Section 4.10, “TCU Debug Interface to SOC Logic” on page 4-58

■ Section 4.11, “TCU Debug Registers” on page 4-60

■ Section 4.12, “Memory BIST Control” on page 4-63

■ Section 4.13, “Logic BIST Control” on page 4-75

■ Section 4.14, “Shadow Scan” on page 4-78

■ Section 4.15, “Array Guidelines to Support Scan Test” on page 4-83

■ Section 4.16, “Reset Sequencing” on page 4-87

■ Section 4.17, “EFuse” on page 4-92

■ Section 4.18, “TCU Local CSR Assignments” on page 4-94
4-1

4.1 Introduction
The TCU is the OpenSPARC T2 Test Control Unit and provides access to the chip
test logic. It also participates in Reset, EFuse programming, clock stop/start
sequencing, and chip debug. The TCU including JTAG is completely stuck-fault
testable via ATPG manufacturing scan.

4.1.1 Features
The features available for debug or test, implemented in OpenSPARC T2 and
supported by the TCU are as follows:

■ ATPG or Manufacturing scan for stuck-fault testing.

■ TAP and Boundary Scan (JTAG) - support for IEEE 1149.1 and 1149.6

■ JTAG scan for scan chain loading and unloading.

■ JTAG shadow scan - allows for inspection of specific registers while part is
running in system.

■ Support for Macrotest.

■ JTAG UCB - Allows CREG access via instructions sent to the NCU which will
then intermix the transaction with normal requests. The NCU will then take the
results and pass them back to the TCU which can then send out TDO.

■ EFuse - Control and programming

■ Transition fault testing - This is done on the tester while PLLs are locked; slower
domains may be driven via pins directly.

■ MBIST - Memory Built-in Self Test; tests Array bit cells and write/read
mechanisms. BISI (Built-in Self Initialization) allows arrays to be initialized.

■ LBIST - Logic BIST, implemented in cores.

■ Reset - Handshaking with RST unit to control scan flop reset and clock stop/start
sequencing.

■ L2 Access - via JTAG through the SIU.

■ Debug Support.

■ Support for SerDes - ATPG, STCI, boundary scan
4-2 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

4.2 JTAG
The JTAG block resides in the TCU. This interface will be used to access not only
standard JTAG services but also implementation of specific debug features. The
JTAG architecture is designed to be compliant with the IEEE 1149.1 Standard.

JTAG provides these features:

1. Access to JTAG ID code

2. Implementation of JTAG public instructions (see Note)

3. Ability to load/unload chip scan chains as a single chain, or individually

4. Initiation and control of Shadow scan

5. Initiation and control of Boundary scan

6. Control of MBIST or BISI

7. Control of LBIST

8. Interface to Chip UCB

9. Interface to E-Fuse Unit

10. Interface to various debug features

11. Control of clock domains (starting, stopping)

12. Write/read access to L2

The following JTAG pins are implemented for OpenSPARC T2:

■ TDI

■ TDO

■ TMS

■ TRST_L

■ TCK

Note – The JTAG unit implements all instructions specified as mandatory in the
1149.1 and 1149.6 standards along with a number of private instructions that help
the debugger to access specific debug features. However, not all I/O on OpenSPARC
T2 support the HIGHZ and SAMPLE instructions. HIGHZ and SAMPLE are not
supported on SerDes I/O. In addition, some non-SerDes I/O do not implement
HIGHZ correctly.
Chapter 4 Test Control Unit (TCU) 4-3

4.2.1 Instruction Register
The instruction register provides 8 bits to access up to 256 instructions. On the rising
edge of TCK in the capture-IR state, the instruction register shift portion is updated
to the IDCODE instruction. The instruction register update portion loads the
IDCODE instruction on the falling edge of TCK in the reset state, or when TRST_L
goes low.

4.2.2 Reset State and TRST_L
The TRST_L pin provides an asynchronous reset for the JTAG state machine and

associated registers. When TRST_L is activated (low), the TMS pin should be held
high and it is recommended that TCK be held off. When TRST_L goes low:

■ the TAP state machine is put in the test-logic-reset state

■ the Instruction Register is set to the IDCODE instruction

■ All data registers internal to the JTAG block are reset to their default states

After TRST_L is deasserted it is recommended to keep TCK off until JTAG is to be
used, and then allow TCK to run with TMS be held high for a few cycles to allow the
reset state inside JTAG to stabilize before entering the Run-Test-Idle state.

Synchronous resetting of the TAP is done by entering the test-logic-reset state via
control of TMS and TCK. This does not necessarily reset private data registers to
their default states.

4.2.3 Instruction Summary
Unimplemented or undefined instructions will default to the BYPASS instruction.

TABLE 4-1 JTAG Instruction Register

Instruction Decode Value on Reset

7:0 IDCODE Instr: 8b 0000 0001

TABLE 4-2 JTAG Public Instructions

Instruction Encoding Description

TAP_BYPASS 0xFF Mandatory; selects BYPASS REGISTER

TAP_EXTEST 0x00 Mandatory; selects BOUNDARY SCAN REGISTER

TAP_IDCODE 0x01 Optional per standard; selects IDCODE DR
4-4 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

TAP_CLAMP 0x04 Optional per standard

TAP_EXTEST_PULSE 0x05 Mandatory for 1149.6

TAP_EXTEST_TRAIN 0x06 Mandatory for 1149.6

TABLE 4-3 JTAG Private Instructions

Instruction Encoding Description

TAP_SAMPLE_PRELOAD 0x02 Mandatory; shared encoding allowed per standard; selects
BOUNDARY SCAN REGISTER - SerDes I/O do not support
SAMPLE part of this instruction

TAP_HIGHZ 0x03 Optional per standard - SerDes I/O do not support HIGHZ,
and some DBG_DQ I/O have weak pullup/down resistors.

UNDEFINED 0x07 --

TAP_CREG_ADDR 0x08 Stores address to be used for system access to control reg
(ASI/IO mapped)

TAP_CREG_WDATA 0x09 Stores data to be used for system access to control reg

TAP_CREG_RDATA 0x0A Captures data from system access

UNDEFINED 0x0B --

TAP_NCU_WRITE 0x0C Initiates write to system control register

TAP_NCU_READ 0x0D Initiates read from system control register

TAP_NCU_WADDR 0x0E Combination of TAP_CREG_ADDR and TAP_NCU_WRITE

TAP_NCU_WDATA 0x0F Combination of TAP_CREG_WDATA and TAP_NCU_WRITE

TAP_NCU_RADDR 0x10 Combination of TAP_CREG_ADDR and TAP_NCU_READ

UNDEFINED 0x11-0x12 --

TAP_MBIST_CLKSTPEN 0x13 Enables clock stop for mbist via cycle counter

TAP_MBIST_BYPASS 0x14 Select engines to by excluded from MBIST operation; using
mbist_bypass data register

TAP_MBIST_MODE 0x15 Specify serial/parallel, diag. mode or bist/bisi modes via
mbist_mode data reg

TAP_MBIST_START 0x16 Initiate MBIST

UNDEFINED 0x17 --

TAP_MBIST_RESULT 0x18 Query 2-bit done/fail register: and/or of all MBIST engines

TAP_MBIST_DIAG 0x19 Run MBIST on one array; MBIST engine & arrays are data reg

TAP_MBIST_GETDONE 0x1A Query 48-bit done data register, one bit per MBIST engine

TABLE 4-2 JTAG Public Instructions

Instruction Encoding Description
Chapter 4 Test Control Unit (TCU) 4-5

TAP_MBIST_GETFAIL 0x1B Query 48-bit fail data register, one bit per MBIST engine

TAP_DMO_ACCESS 0x1C Set DMO Mode - enables DMO logic and package pins

TAP_DMO_CLEAR 0x1D Clears DMO Mode

TAP_DMO_CONFIG 0x1E Access 48-bit DMO configuration register

TAP_MBIST_ABORT 0x1F Stop any MBIST activity and reset MBIST controls

UNDEFINED 0x20-0x27 --

TAP_FUSE_READ 0x28 Shift out 32 bits selected by ROW_ADDR; selects EFUSE DR

TAP_FUSE_BYPASS_DATA 0x29 Provides user-data directly to EFU; selects EFUSE DR

TAP_FUSE_BYPASS 0x2A Starts EFU control using bypass data provided by user

TAP_FUSE_ROW_ADDR 0x2B Shift in 7-bit row address for EFU access; selects EFU ROW
ADDRESS DR

TAP_FUSE_COL_ADDR 0x2C Shift in 5-bit column address for EFU programming; selects
EFU COLUMN ADDRESS DR

TAP_FUSE_READ_MODE 0x2D Configures EFU with 3 bits for EFU access; selects EFU READ
MODE DR

TAP_FUSE_DEST_SAMPLE 0x2E Samples EFU destination redundancy value from the
destination specified

TAP_FUSE_RVCLR 0x2F Access 7-bit redundancy value clear register

TAP_SPCTHR0_SHSCAN 0x30 Samples thread 0 for all available cores

TAP_SPCTHR1_SHSCAN 0x31 Samples thread 1 for all available cores

TAP_SPCTHR2_SHSCAN 0x32 Samples thread 2 for all available cores

TAP_SPCTHR3_SHSCAN 0x33 Samples thread 3 for all available cores

TAP_SPCTHR4_SHSCAN 0x34 Samples thread 4 for all available cores

TAP_SPCTHR5_SHSCAN 0x35 Samples thread 5 for all available cores

TAP_SPCTHR6_SHSCAN 0x36 Samples thread 6 for all available cores

TAP_SPCTHR7_SHSCAN 0x37 Samples thread 7 for all available cores

TAP_L2T_SHSCAN 0x38 Samples specified error registers in the 8 L2 Tags

UNDEFINED 0x39-0x3F --

TAP_CLOCK_SSTOP 0x40 Soft Stop of clocks; cores only

TAP_CLOCK_HSTOP 0x41 Hard Stop of clocks

TAP_CLOCK_START 0x42 Start clocks

TAP_CLOCK_DOMAIN 0x43 Specify entry clock domain for stopping/starting clocks

TABLE 4-3 JTAG Private Instructions

Instruction Encoding Description
4-6 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

TAP_CLOCK_STATUS 0x44 2-bit status indicating if clock stop/start routine finished

TAP_CLKSTP_DELAY 0x45 7-bits; Specify up to 128 cycle delay between successive
clk_stop Signals

TAP_CORE_SEL 0x46 8-bit register to specify target SPC cores for clock operations.

UNDEFINED 0x47 --

TAP_DE_COUNT 0x48 Access 32-bit Debug Event Counter

TAP_CYCLE_COUNT 0x49 Access 64-bit Reset/Cycle Counter

TAP_TCU_DCR 0x4A Access 4-bit TCU Debug (event) Control Register

UNDEFINED 0x4B --

TAP_CORE_RUN_STATUS 0x4C Access 64-bit CMP core-running-status reg.

TAP_DOSS_ENABLE 0x4D Access 64-bit disable overlap/single step mode enable register

TAP_DOSS_MODE 0x4E Specify either disable overlap or single step mode; [1]=enable,
[0]=single step if set to ‘1’, disable overlap if set to ‘0’

TAP_SS_REQUEST 0x4F Pulse single step request signal; need to go through update-dr

TAP_DOSS_STATUS 0x50 8-bit status for disable overlap or single step completion

TAP_CS_MODE 0x51 Specify cycle-step mode. 1-bit register. set to ‘1’ to enable; uses
Cycle Counter for cycle-step operation.

TAP_CS_STATUS 0x52 Read 1-bit status indicating cycle stepping has completed.

UNDEFINED 0x53-0x57 --

TAP_L2_ADDR 0x58 Load L2 Address (to be written to or read from)

TAP_L2_WRDATA 0x59 Load L2 Write Data

TAP_L2_WR 0x5A Initiate write to L2: WRDATA to ADDR

TAP_L2_RD 0x5B Initiate read from L2 at ADDR and receive L2 data

UNDEFINED 0x5C-0x5F --

TAP_LBIST_START 0x60 Initiate Logic BIST

TAP_LBIST_BYPASS 0x61 Bypass Logic BIST for specified cores; 1 bit per core

TAP_LBIST_MODE 0x62 Control program mode; paralle/serial modes

TAP_LBIST_ACCESS 0x63 Place one Logic BIST controller between TDI-TDO

TAP_LBIST_GETDONE 0x64 Determine if Logic BIST is done across all selected cores

TAP_LBIST_ABORT 0x65 Abort any Logic BIST currently in progress

UNDEFINED 0x66-0x7F --

TABLE 4-3 JTAG Private Instructions

Instruction Encoding Description
Chapter 4 Test Control Unit (TCU) 4-7

TAP_SERSCAN 0x80 Access internal scan chains; selects INTERNAL SCAN FLOPS
as DATA REGISTER

TAP_CHAINSEL 0x81 Select all or one of 32 chains for serial scan mode using CHAIN
SELECT DR

TAP_MT_ACCESS 0x82 Enables Macro Test mode for JTAG Scan

TAP_MT_CLEAR 0x83 Clears Macro Test mode

TAP_MT_SCAN 0x84 Similar to TAP_SERSCAN but drives TCK onto clock tree for
capture pulses during RTI state

UNDEFINED 0x85-0x87 --

TAP_TP_ACCESS 0x88 Enables Test Protect mode to block inputs to TCU and other
blocks such as RST, CCU, and DMU

TAP_TP_CLEAR 0x89 Clears Test Protect mode

UNDEFINED 0x8A-0x8F --

TAP_STCI_ACCESS 0x90 Enables STCI mode for SerDes Test Configuration Interface Bus

TAP_STCI_CLEAR 0x91 Clears STCI mode for SerDes Test Configuration Interface Bus

UNDEFINED 0x92-0x9F --

TAP_JTPOR_ACCESS 0xA0 Enables JTAG access window during POR sequence

TAP_JTPOR_CLEAR 0xA1 Clears JTAG access window during POR sequence

TAP_JTPOR_STATUS 0xA2 JTAG access window status: returns ‘1’ if window is active

TAP_SCKBYP_ACCESS 0xA3 Enables Bypass for SCK counter in NCU

TAP_SCKBYP_CLEAR 0xA4 Clears Bypass for SCK counter in NCU

UNDEFINED 0xA5-0xFE --

TABLE 4-3 JTAG Private Instructions

Instruction Encoding Description
4-8 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

4.2.4 Data Registers
The data registers accessible via JTAG are listed in Table 4-4 on page 9. The least
significant bit (lsb: bit 0, the rightmost bit) is always closest to tdo. An update of

TABLE 4-4 JTAG Data Registers

Data Register Width Capture Update Description & JTAG Instructions

Boundary Scan ~ 3 x
I/O’s

Yes Yes I/O pin boundary scan cells; see private instructions

Bypass 1 Yes No Selected via bypass instr. or any undefined instr.

ID Code 32 Yes No See following section; TAP_IDCODE

Chain Select 6 No Yes Active during JTAG Serial Scan; TAP_CHAINSEL

Serial (Internal) Scan ~1200K No via scan Chip scan chains; TAP_SERSCAN, TAP_MT_SCAN

Macrotest Enable 1 No Yes Enables write/read control of arrays during serial
scan; set with TAP_MT_ACCESS, clear with
TAP_MT_CLEAR

Test Protect Enable 1 No Yes Enables Test Protect mode; set with
TAP_TP_ACCESS, clear with TAP_TP_CLEAR

EFUSE 32 Yes No Contents of 1 row in EFuse array, per Row Addr.;
TAP_FUSE_READ

EFUSE Bypass_Data 32 No Yes Data for BYPASSING EFuse Array;
TAP_FUSE_BYPASS_DATA

EFUSE Row_Address 7 Yes Yes Select one row in the EFuse array;
TAP_FUSE_ROW_ADDR

EFUSE Column_Address 5 Yes Yes EFUSE Column, only for programming;
TAP_FUSE_COL_ADDR

EFUSE Read_Mode 3 Yes Yes See EFUSE document; TAP_FUSE_READ_MODE

EFUSE Dest_Sample 32 Yes No See EFUSE Document; TAP_FUSE_DEST_SAMPLE

EFUSE RVCLEAR 7 No Yes TAP_FUSE_RVCLR bit[6]=enable; bits[5:0]=RV_ID

MBIST Result 2 Yes (1) No Bit 1=1 when MBIST Done, Bit 0=1 if MBIST failed;
TAP_MBIST_RESULT

MBIST Bypass 48 Yes Yes MBIST: Specify engines to bypass during MBIST;
TAP_MBIST_BYPASS

MBIST Done 48 Yes (1) No MBIST engine Done status bits;
TAP_MBIST_GETDONE

MBIST Fail 48 Yes (1) No MBIST engine Fail status bits;
TAP_MBIST_GETFAIL
Chapter 4 Test Control Unit (TCU) 4-9

MBIST Diag Variable No via scan All registers in an MBIST engine. Updated via scan
only. TAP_MBIST_DIAG

MBIST Mode 4 No via scan Select serial or parallel modes; bisi; user mode
TAP_MBIST_MODE

CREG Address 40 No Yes 40-bit address for system control register;
TAP_CREG_ADDR, TAP_NCU_WADDR,
TAP_NCU_RADDR

CREG Write_Data 64 No Yes 64-bit data to be written to system control register;
TAP_CREG_WDATA, TAP_NCU_WDATA

CREG Read_Data 65 Yes No 65-bit data read from system control register;
TAP_CREG_RDATA; due to sentinel bit, scan-out
data is blocked to TDO during shiftDR

Core Shadow_Scan 8*len Yes via scan Shadow scan for all available cores concatenated,
spc0 to spc7; TAP_SPCTHR0_SHSCAN-
TAP_SPCTHR7_SHSCAN

L2TAG Shadow_Scan 8*len Yes via scan Shadow scan for all l2 tags concatenated, l2t0 to
l2t7; TAP_L2T_SHSCAN

Clock Domain 32 Yes (1) Yes Specify starting points for turning clocks on or off;
TAP_CLOCK_DOMAIN; bits [31:24] reserved,
should be loaded to zeros.

Clock Status 2 Yes (1) No TAP_CLOCK_STATUS
bits = 00 --> clock sequencer is running
bits = 01 --> clock sequencer has started all clocks
bits = 10 --> clock sequencer has stopped all clocks
bits = 11 --> should not happen; indeterminate

Clock Stop Delay 7 Yes (1) Yes Delay between successive clk_stop’s to clk domains;
TAP_CLKSTP_DELAY

Core Select 8 Yes (1) Yes Enables clock stop to target cores; TAP_CORE_SEL

Debug Event Counter 32 Yes (2) Yes Decrementing counter to delay debug action by
counting debug events; TAP_DE_COUNT

Cycle Counter 64 Yes (2) Yes Decrementing counter triggered by debug event;
upper word is Reset Counter; TAP_CYCLE_COUNT

TCU Debug Control 4 Yes (1) Yes Control reg. for TCU debug events; TAP_TCU_DCR

(CMP) Core Run Status 64 Yes (1) No Thread (CMP) running status register;
TAP_CORE_RUN_STATUS

DOSS Enable 64 Yes Yes Disable Overlap (do) and Single Step (ss) enable
bits, per thread; TAP_DOSS_ENABLE

TABLE 4-4 JTAG Data Registers

Data Register Width Capture Update Description & JTAG Instructions
4-10 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

“Yes” means there is an update register loaded during UpdateDR; an update of “via
scan” means there is no separate update register.

For notes (1) and (2) in the Capture field of Table 4-4 please see Section 4.2.7 on
page 14.

Note (3): L2_Addr and L2_Write_Data registers cannot be observed during shiftDR
due to a bug in the RTL - see errata for details.

DOSS Mode 2 Yes Yes Controls disable overlap or single step modes;
TAP_DOSS_MODE

DOSS Status 8 Yes (1) No Indicates completion of disable overlap or single
step per SPC; TAP_DOSS_STATUS

Cycle Step Enable 1 Yes (1) Yes Enable cycle step mode; TAP_CS_MODE

Cycle Step Status 1 Yes (1) No Indicates cycle step is complete; TAP_CS_STATUS

L2_Addr 65 No
(3)

Yes 64-bit address to L2 for write or read; bit 0 ignored;
TAP_L2_ADDR

L2_Write_Data 65 No
(3)

Yes 64-bit data to write to L2; bit 0 ignored;
TAP_L2_WRDATA

L2_Read_Data 65 Yes (1) No 64-bit data received from L2 per ADDR; bit 0
indicates data is valid, bits 64:1 are data;
TAP_L2_RD

LBIST Bypass 8 Yes Yes One bit per core, to bypass an engine set to ‘1’;
TAP_LBIST_BYPASS

LBIST Mode 2 No via Scan bit[1]: enable user (program) mode
bit[0]: 0=serial, 1=parallel
TAP_LBIST_MODE

LBIST Access No via Scan Place one Logic BIST controller between TDI-TDO;
TAP_LBIST_ACCESS

LBIST Done 8 Yes (1) No Read status of all enabled Logic BIST controllers;
TAP_LBIST_GETDONE

DMO Config 48 Yes (2) Yes Access 48-bit DMO Configuration register;
TAP_DMO_CONFIG

JTAG POR Status 1 Yes (1) No Access 1-bit status for JTAG POR Access;
TAP_JTPOR_STATUS

TABLE 4-4 JTAG Data Registers

Data Register Width Capture Update Description & JTAG Instructions
Chapter 4 Test Control Unit (TCU) 4-11

4.2.4.1 Boundary Scan

The boundary scan data register is selected by EXTEST, SAMPLE/PRELOAD,
HIGHZ and CLAMP and is defined by the BSDL (Boundary Scan Description
Language) file for OpenSPARC T2. It is also selected by the 1149.6 instructions
TAP_EXTEST_TRAIN and TAP_EXTEST_PULSE and is part of the internal scan
register when selected by manufacturing scan.

The HIGHZ instruction is not supported by the SerDes I/O, and also some of the
DBG_DQ pins have weak pullup or pulldown resistors. So the HIGHZ instruction is
not fully supported by OpenSPARC T2. See the JTAG errata section for details.

The SAMPLE instruction (encoded with PRELOAD) is not supported by the SerDes
I/O, but the PRELOAD instruction is supported.

4.2.4.2 Bypass Register

This is a one-bit register. The bypass register loads "0" on the rising edge of TCK in
the capture-DR state when the bypass register is selected. All non-specified
instructions cause the bypass register to be selected, so that it is placed between TDI
and TDO.

4.2.4.3 ID Code Register

The ID Code register is a 32-bit read-only register defined as:

The ID Code register is always placed between TDI and TDO when the select-DR
state is reached directly after the test-logic-reset state with no intervening instruction
register programming. The lsb is closest to the TDO as required by the standard.

4.2.4.4 CMP Data Registers

Access for all CMP registers will be via UCB (TAP_CREG_ and TAP_NCU_
instructions).

TABLE 4-5 ID Code Register

Version Field Part Number Field Manufacturing
ID Field

lsb

[31:28] [27:12] [11:1] [0]

Initially 0x0; updated per BSDL change 0x2aaa 0x03e 1
4-12 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

Threads in each core are virtual cores; for those CMP registers specifying physical
cores each physical core is assigned 8 bits in a 64-bit register; allowed values are
8’b11111111 and 8’b00000000 The assigned 8 bits are [63:56] = core 7; [55:48] = core 6;
[47:40] = core 5; [39:32] = core 4; [31:24] = core 3; [23:16] = core 2; [15:8] = core 1; [7:0]
= core 0.

4.2.5 JTAG SCK Bypass
To get around the SSI lock loss issue in OpenSPARC T2 (see bug 97461) , NCU
implements a down counter that would decrement to zero starting from the first
iol2clk after flush reset completion (part of POR and Warm resets). After this counter
expires (reaches 0 count), NCU will send out the first fetch on SSI interface by
asserting SSI_MOSI. By this time the FPGA would have relocked against the
SSI_SCK coming from OpenSPARC T2.

To remove this 5-6 msec wait on the tester, TCU supports a bit that is programmable
through JTAG on the tester between deasssertion of TRST_L and assertion of POR2
by the reset block. This bit preserves its value on POR2 and WARM resets and is sent
by the TCU to the NCU as a signal tcu_sck_bypass . When this signal is a 1, (bit
programmed to 1’b1 for the tester), the NCU bypasses the counter to assert
SSI_MOSI (thereby eliminating the 5-6 msec wait time on the tester). If this signal is
a 0, (POR1 reset state of the bit in TCU) then the NCU honors the counter and waits
till the counter expires before asserting SSI_MOSI. This would be the configuration
in the system.

The TAP_SCKBYP_ACCESS and TAP_SCKBYP_CLEAR instructions are used to set
and reset, respectively, the tcu_sck_bypass signal sent from TCU to NCU.

4.2.6 JTAG Access to SerDes STCI
JTAG provides access to the SerDes STCI bus. There are four inputs, STCICLK,
STCICFG[1:0], and STCID, and one output STCIQ. To enable JTAG access to STCI,
the JTAG instruction TAP_STCI_ACCESS should be executed. During STCI JTAG
Access, STCICLK and STCICFG are driven as shown in FIGURE 4-1, while STCID is
connected to TDI and STCIQ to TDO. To clear JTAG access to STCI, use
TAP_STCI_CLEAR or reset the TAP state machine. The updateDR, clockDR
andshiftDR are as specified in the IEEE 1149.1 spec., while capture_dr_state is active
during the Capture DR TAP state.
Chapter 4 Test Control Unit (TCU) 4-13

FIGURE 4-1 SerDes STCI Bus Control

4.2.7 JTAG Errata

Erratum #1 JTAG accesses to some registers in CMP clock
domain may result in erratic read values.

Symptom: JTAG reads of some registers which exist in CMP clock domain may
result in erratic read data, if the registers are being updated when the read occurs.

Description: There are several JTAG instructions that can sample data from registers
contained in the CMP clock domain. These are sampled with TCK in the JTAG block
without synchronization. Consequently, if those registers are changing in the cmp
domain, the read results will be indeterminate. The indeterminism results from the

0

1

tcu_stciclk

stci_acc_mode

mio_tcu_stciclk

~updateDR
 &
 (clockDR | ~shiftDR)

0

1

tcu_stcicfg[0]

stci_acc_mode

mio_tcu_stcicfg[0]

~shiftDR

0

1

tcu_stcicfg[1]

stci_acc_mode

mio_tcu_stcicfg[1]

capture_dr_state d q

en
4-14 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

asynchronous nature of TCK with respect to the CMP clock. It is permissible to read
these registers directly after they are written with JTAG, before their correpsonding
activity is initiated, to verify contents were correctly written.

For the first class of registers the data will generally be stable when reading, or at
least changing very infrequently. Thus, it is recommended that when reading these
registers, back to back reads be performed so that the contents can be compared; if
the same, then the read is successful.

JTAG Registers in this class are indicated with a (1) in the Capture column of
Table 4-4:

■ Clock Domain[31:0]

■ Core Run Status[63:0]

■ MBIST Done[47:0]

■ MBIST Fail[47:0]

■ MBIST Result[1:0]

■ LBIST Done[7:0]

■ L2_Read_Data[64:0]

■ Clock Stop Delay[6:0]

■ Clock Status[1:0]

■ Core Select[7:0]

■ TCU Debug Control[3:0]

■ DOSS Status[7:0]

■ Cycle Step Enable[0]

■ Cycle Step Status[0]

■ JTAG POR Status[0]

For the second class of registers, the data may be changing every cycle. In this case it
is recommended that the user refrain from reading these until the contents are stable
- this can be determined by examination of the associated status registers.

Registers in this class are indicated with a (2) in the Capture column of Table 4-4

■ Debug Event Counter[31:0]

■ Cycle Counter[63:0]

■ DMO Config[47:0]

Workaround: JTAG users should either 1) read the registers in the first group
multiple times until two stable values are obtained, or 2) read the status registers
associated with the registers in the second group to make sure hardware is not
updating them.
Chapter 4 Test Control Unit (TCU) 4-15

Erratum #2 JTAG view of some CSR registers is not

Symptom: When accessing certain JTAG registers that are also accessible via SW as
CSR’s, there is a possibility that the JTAG view of the register can be inconsistent
with the SW view. The SW view will always be correct, but the JTAG view may be
incorrect.

Description: The TCU does not properly synchronize the update signal for writes to
certain JTAG registers when written by SW. There are two copies of certain JTAG
registers, one in the TCK clock domain inside JTAG, and one in the IO clock domain
which services UCB access by SW. These registers are supposed to be coherent, but if
SW writes to one of these registers it may be possible for the JTAG register to miss
the data and be incoherent, or even to update with indeterminate data.

The registers affected by this condition (with their bit positions relative to JTAG) are:

■ MBIST Mode[3:0]

■ MBIST Bypass[47:0]

■ MBIST Abort[0]

■ LBIST Mode[1:0]

■ LBIST Bypass[7:0]

One way that these registers can become incoherent is when SW writes its copy, the
logic in JTAG also tries to write the same data into the JTAG register. But, the write
pulse is not synchronized and may be missed depending on the relative frequencies
of TCK and the IO clock. Hence, it is possible that the JTAG register will not be
updated, or it may be updated (corrupted) with indeterminate data.

A second way that these registers can become incoherent is if the TCK is not
running. In order to maintain coherency, the TCK clock must be running. However,
the JTAG clock - TCK - is not required to run for functional operation, so there is no
guarantee that TCK is even active when SW writes its register. So the JTAG version
of the register is not updated.

Workaround: Given these problems, and since it is always the JTAG view which
may be incorrect, the JTAG user should be aware that if SW writes these registers
then the JTAG view may be incorrect.

Erratum #3 HIGH-Z Boundary Scan instruction is not
supported

Symptom: Pins associated with DBG_DQ bus in the MIO have weak pullups or
pulldowns, and thus do not go to a high-z state when instructed to do so. In
addition, SerDes pins do not support the high-z state.
4-16 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

Description: The JTAG TAP_HIGHZ instruction is intended to put all output pins in
a high-z state (tristate) and is typically used during manufacturing board test to
prevent overdriving Signals. Due to the use of SerDes macros which do not support
the high-z capability, and the use of pullups and pulldowns in the DBG_DQ bus
pins, many of the OpenSPARC T2 output pins can not go to a high-z state even
when instructed to do so by the TCU.

Workaround: Do not use the TAP_HIGHZ instruction. Support for the JTAG
TAP_HIGHZ instruction has been moved from the public to the private section of
the boundary scan description language file (BSDL); this is legal since HIGHZ is
optional per the IEEE 1149.1 standard. The actual JTAG instruction, TAP_HIGHZ,
has been kept in place but is now a private instruction. This was done since the RTL
still supports the TAP_HIGHZ instruction. Moving it to private means it is not a
supported public instruction and should not be used.

4.3 UCB Interface
The Unit Control Bus interface is a protocol for transmission of packets via the NCU
between units. It is implemented inside the TCU and allows access via JTAG to IO
mapped registers, and some ASI registers. A register’s address and data in the case
of writes are loaded via JTAG into holding registers in the TCU. The TCU then uses
its UCB interface to communicate to the NCU which puts the new transaction
(packet) into the data flow. The interface allows both reading and writing. On
OpenSPARC T2, UCB access through the crossbar to the l2 and cores is not available
so access to the L2 is done via a separate interace between the TCU and the SIU.

For a WRITE, a 40-bit address and 64 bits of data must be provided by JTAG to the
UCB. For a READ, a 40-bit address is needed, with the data received from the NCU
captured into a register in the TCU. To implement a READ, a sentinel bit is used
since the exact timing of the read return is not deterministic. The system is only
allowed to have 1 read outstanding at one time. There is no protection built in
against this, adherence is left to the user.
Chapter 4 Test Control Unit (TCU) 4-17

4.3.1 UCB Simple Block Diagram

FIGURE 4-2 UCB Interface Inside the TCU

4.3.2 JTAG Instructions used to Access the UCB
The following descriptions are excerpts from the OpenSPARC T1 DFT specification
and the OpenSPARC T1 DFT User’s Guide but have been ported to OpenSPARC T2.

TAP_CREG_ADDR

Load System Address: Causes a 40-bit address register to become accessible from TDI.
The target system address is loaded during shift-DR. On Update-DR a transfer
occurs from the TCK domain to a 40-bit holding register in the IO CLK domain.

tcu_ncu_data[7:0]

tcu_ncu_vld

ncu_tcu_stall

ucbout_buf[127:0]

ucbout_outdata_wr

ucbout_outdata_busy

ucbout_vec[15:0]

ncu_tcu_vld

ncu_tcu_data[7:0]

tcu_ncu_stall

ucbin_buf_vld

ucbin_buf[127:0]

csr_ack_ack

UCB
OUT

UCB
IN

stall_a1

vld

data[7:0]

stall

indata_buf[127:0]

indata_buf_vld

outdata_buf_wr

outdata_buf_in[127:0]

outdata_buf_busy

outdata_vec_in[15:0]
stall

vld

data[7:0]

TCU
4-18 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

TAP_CREG_WDATA

Load System Write Data: Causes a 64-bit data register to become accessible from TDI,
into which the data for the specified system address is loaded during shift-DR. On
Update-DR a transfer occurs from the TCK domain to a 64-bit holding register in the
IO CLK domain.

TAP_CREG_RDATA

Load System Read Data: Causes a 65-bit data register to become accessible from TDO.
The 65th bit is used as a sentinel to allow driver software to synchronize with the
read operation. While the read is outstanding the sentinel bit remains zero. Once the
NCU has returned valid data then the read is complete and the sentinel bit is set to
one. To use this, the JTAG is kept in ShiftDR and TCK is clocked until the TDO reads
a “1”, this indicates the sentinel bit has been set. When the sentinel bit becomes one,
the next 64 bits shifted out are the valid read data.

The TCU can only issue a single access at a given time to the NCU. The user is
responsible for ensuring that this is the case. Note too that the TCU does not report
erroneous reads made to the NCU. Therefore, the driver software should time out on
a read, assuming an error if this occurs.

TAP_NCU_WRITE

Initiate Write Transaction: Causes a write transaction to be initiated on Update-IR.

TAP_NCU_READ

Initiate Read Transaction: Causes a read transaction to be initiated on Update-IR

TAP_NCU_WADDR

Load System Address and Initiate Write Transaction: Causes a 40-bit address register to
become accessible from TDI. The target system address is loaded during shift-DR.
On Update-DR a transfer occurs from the TCK domain to a 40-bit holding register in
the IO_CLK domain. In the cycle after the transfer is complete the contents of the
address register is forwarded to the UCB interface and a write transaction is
initiated. This instruction is a combination of TAP_CREG_ADDR and
TAP_NCU_WRITE.

TAP_NCU_WDATA

Load Write Data and Initiate Write Transaction: Causes a 64-bit data register to become
accessible from TDI, into which the data for the specified system address is loaded
during shift-DR. On Update-DR a transfer occurs from the TCK domain to a 64-bit
Chapter 4 Test Control Unit (TCU) 4-19

holding register in the IO_CLK domain. In the cycle after the transfer is complete the
contents of the address register and data register are forwarded to the UCB interface
to initiate a write transaction. This instruction is a combination of
TAP_CREG_WDATA and TAP_NCU_WRITE.

TAP_NCU_RADDR

Load System Address and Initiate Read Transaction: Causes a 40-bit address register to
become accessible from TDI. The target system address is loaded during shift-DR.
On Update-DR a transfer occurs from the TCK domain to a 40-bit holding register in
the IO_CLK domain. In the cycle after the transfer is complete the contents of the
address register is forwarded to the UCB interface and a read transaction is initiated.
This instruction is a combination of TAP_CREG_ADDR and TAP_NCU_READ.

4.3.3 Expected Data and Address Format
The data to be written is 64 bits in length. A 40 bit address is also loaded into the ucb
address register.

4.3.4 TCU as a Slave for UCB
The OpenSPARC T1 implementation provided only that TCU be a master for UCB
interactions. To support debug requirements for OpenSPARC T2, the TCU will also
act as a slave for UCB. The interface remains the same, the only changes will be in
the TCU. For joint access between JTAG and UCB the result is indeterminate. The list
of registers accessible via SW inside the TCU is provided in “TCU Local CSR
Assignments” on page 94.

Reading local TCU CSR’s via JTAG UCB protocol is not supported; local TCU CSR’s
should be accessed directly via the appropriate JTAG instructions. Note that the
register bit ordering may not be consistent between both methods.

TCU is not designed to handle burst read requests, that is, a read request cannot be
followed immediately by another read request, otherwise the second one may be
dropped and no read data will be returned and the thread issuing the second request
may hang. Users should program the second read request after the data for the first
one has returned. In the case of multiple threads accessing TCU CSR registers, some
mechanism (such as a semaphore lock) should be used to guarantee only one thread
accesses any TCU CSR register at a given time. See “UCB Erratum” on page 21.
4-20 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

Note – Read requests to internal non-existent TCU CSRs (base address
85_0000_0000) cause TCU to respond with a READ_ACK instead of a READ_NACK.
This means that TCU responds with garbage data. The requesting thread doesn’t
hang. Writes to undefined CSR addresses within TCU appear to complete but do not
write to any real TCU registers; this is expected behavior. Reads appear to complete
also but the READ_ACK is not correct behavior since TCU should respond with a
READ_NACK. This behavior will not be fixed. A workaround is to never allow
software to request data from undefined TCU CSRs. Software should take care to
access only valid TCU register addresses.

4.3.5 UCB Erratum

Erratum #3 TCU UCB hangs on reads from SPARC core

Symptom: A thread hangs while reading a TCU CSR.

Description: Multiple threads can access CSR’s inside the TCU and cause the NCU
to send back-to-back reads to the TCU. As the TCU sends data back in response to
these requests, the NCU may become overloaded and stall the TCU. If the stall lasts
for more than one cycle, this will cause the TCU to drop any request that the NCU is
sending at the time of the stall.

The TCU is not designed to handle burst read requests where the NCU has to stall
the TCU for more than one cycle to receive the data the TCU is returning.

The problem is that the TCU does not provide a buffer for catching incoming
requests when stalled, and drops the incoming request. The TCU does not hang, but
the thread that issued the request will hang since its request is not serviced by TCU.

This issue only appears with multiple threads. A single thread cannot issue back-to-
back read requests since it will always wait for return data before issuing the next
request. Only multiple threads can send read requests which appear back-to-back to
the NCU and TCU.

Also, this issue requires several back-to-back reads to cause enough activity for the
NCU to stall the TCU. Simulation shows that for 4 back-to-back reads, the NCU
stalls the TCU on the 3rd request. Consequently, the TCU drops the 4th request.

Workaround: Users should program the second TCU CSR read request to wait until
after the data for the first read request has returned. In the case of multiple threads
accessing TCU CSR registers, some mechanism (such as a semaphore lock) should be
used to guarantee only one thread accesses any TCU CSR register at a given time.
Chapter 4 Test Control Unit (TCU) 4-21

4.4 L2 Access via SIU

4.4.1 JTAG L2 Access Registers
It is possible to write and read the L2 addresses while the chip is running using
JTAG. The L2_Addr register is accessed via TAP_L2_ADDR; the L2_Write_Data

register is accessed via TAP_L2_WRDATA; and the L2_Read_Data register is
accessed via TAP_L2_RD as described below. The L2_Write_data and L2_Read_Data
registers are the same physical register.

The TCU to L2 interface thru SIU is 4B aligned. The SIU will force bit 2 = 0.

4.4.2 Write
To write the L2 an address and data must be loaded via JTAG using TAP_L2_ADDR
and TAP_L2_WRDATA, followed by TAP_L2_WR. When the TAP_L2_WR
instruction is active, the run-test-idle state (0xC) of the TAP state machine is used to
transfer the address and data to the L2 and at least 128 TCK clocks must be cycled
while in RTI state for the transfer to complete. The RTI state should be avoided
except for the actual transfer of data, and once entered should not be reentered
during the write operation.

TABLE 4-6 L2 Access Registers

Register JTAG Instr. Bits[64:1] Bit[0]

L2_Addr[64:0] TAP_L2_ADDR bit[64]=1: jtag access
bits[63:57] = 000 0001 for read request
bits[63:57] = 000 0010 for write request
bits[56:41] = Unused
bits[40:1] = Physical address (8 byte boundary)

Ignored

L2_Write_Data[64:0] TAP_L2_WRDATA bits[64:1] = 8-bytes of Data to write to L2a Ignored

L2_Read_Data[64:0] TAP_L2_RD bits[64:1] = 8-bytes of Data returned from L2 1 = Data Valid
4-22 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

4.4.3 Read
A Read is accomplished by loading an address using TAP_L2_ADDR followed by a
TAP_L2_RD. When the TAP_L2_RD instruction is active, only 64 TCK clocks need be
cycled while in RTI to transfer the address to the L2. Then, repeated passes through
capture-DR and shift-DR should be used to retrieve the data returned by the L2.
Valid data is indicated during TAP_L2_RD at TDO in the shift-DR state by the
presence of a leading ‘1’ (bit[0] of the 65-bit L2_Read_Data register), otherwise
another pass through capture-DR should be implemented, without intervening visits
to run-test-idle. Note: bit 0 is not the same as the “sentinel bit” of the creg access.
Note: The RTI state should be avoided except for the actual transfer of data, and
once entered should not be reentered during the read operation.

Further details on the Addr (Header) and Data (Payload) can be found in the SOC
RAS specification. Only one write or read may be outstanding at any time. Also,
since non-JTAG logic is used the POR reset sequence should be performed before
using this feature (or at least the POR1 section of the reset sequence).

4.4.4 Diagram
The Signals used between TCU and SIU are:

■ tcu_sii_data - Sends L2_Addr[64:1] as address followed by L2_Write_Data[64:1] as
data to SIU (Data only present for Write, absent for Read). Bit 1 is sent first for
both address and data. Output from TCU.

■ tcu_sii_vld - Pulsed when bit 1 of L2_Addr or L2_Write_Data goes onto
tcu_sii_data. Output from TCU.

■ sio_tcu_data - Input to TCU containing data returned from a Read request, bit 0
first.

• sio_tcu_vld - Input to TCU, pulsed when bit 0 is on sio_tcu_data
Chapter 4 Test Control Unit (TCU) 4-23

FIGURE 4-3 TCU Interface with SIU

A sample waveform is shown in FIGURE 4-4.

tcu_sii_data

TCU

SII

SIO

tcu_sii_vld

sio_tcu_data

sio_tcu_vld
4-24 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 4-4 JTAG Write to L2 via SIU - Waveform

U
pd

D
R

R
T

I -
 T

A
P

_L
2_

W
R

C
M

P
C

LK

S
el

D
R

T
C

K

tc
u_

si
i_

vl
d

tc
u_

si
i_

da
ta

ata
D_2L

rdd
A_2L

C
M

P
C

LK

tc
u_

si
i_

vl
d

tc
u_

si
i_

da
ta

1
2

3
4

5
6

64
 C

M
P

 C
lo

ck
s

64
 C

M
P

 C
lo

ck
s

1
2

3
4

5
6

64
63

ata
D_2L

rdd
A_2L
Chapter 4 Test Control Unit (TCU) 4-25

4.5 Scan

4.5.1 Manufacturing Scan
There are 32 scan chains in the chip available in parallel during manufacturing
(ATPG) scan mode. In manufacturing scan mode they will be accessed through the
32 scan in and 32 scan out pins. These 64 pins will be shared with functional pins;
the dedicated testmode pin is used to configure the pins as scan inputs and scan
outputs.

Clocks in this mode are provided by the tester (the PLL is not used) but will be
multiplexed onto the clock domain trees outside of the TCU, under control of the
pll_bypass and testmode pins. In order to allow tester control of clock domains
individually during ATPG test, most clock domains will have separate pin control.
Serdes is a special issue; the serdes logic will have some of their configuration
Signals sourced from the pins. Also, even though the TCU might provide a scan
clock the serdes will still need 2 test clocks from the pins for transmit and receive
timing information in the manufacuring test modes that TI requires.

TCU participates passively in manufacturing scan; during manufacturing scan the
JTAG logic and the TCU itself is included in one of the 32 scan chains and is testable
via ATPG patterns.

TABLE 4-7 Manufacturing Parallel Scan Chains

Chain Contents TCU Input TCU Output

0 SPC 0 internal chain 0 spc0_tcu_scan_in[0] tcu_spc0_scan_out[0]

1 SPC 0 internal chain 1 spc0_tcu_scan_in[1] tcu_spc0_scan_out[1]

2 SPC 1 internal chain 0 spc1_tcu_scan_in[0] tcu_spc1_scan_out[0]

3 SPC 1 internal chain 1 spc1_tcu_scan_in[1] tcu_spc1_scan_out[1]

4 SPC 2 internal chain 0 spc2_tcu_scan_in[0] tcu_spc2_scan_out[0]

5 SPC 2 internal chain 1 spc2_tcu_scan_in[1] tcu_spc2_scan_out[1]

6 SPC 3 internal chain 0 spc3_tcu_scan_in[0] tcu_spc3_scan_out[0]

7 SPC 3 internal chain 1 spc3_tcu_scan_in[1] tcu_spc3_scan_out[1]

8 SPC 4 internal chain 0 spc4_tcu_scan_in[0] tcu_spc4_scan_out[0]

9 SPC 4 internal chain 1 spc4_tcu_scan_in[1] tcu_spc4_scan_out[1]

10 SPC 5 internal chain 0 spc5_tcu_scan_in[0] tcu_spc5_scan_out[0]
4-26 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

Clusters are ordered as shown with scan-in feeding the left-most block. Boundary
scan cells inside the MIO and MCU clusters are included in chain 30. The BScan
(boundary scan) chain is ordered from scan-in (TDI) to scan-out (TDO) as MCU0-
MCU1-MCU3-MCU2-MIO.

4.5.2 MacroTest Scan
MacroTest on OpenSPARC T2 is primarily a subset of manufacturing scan. During
MacroTest mode, control of the array write inhibit signal, scan enables for scan collar
input (sesci) flops for arrays, and the array_bypass Signals is different than non-
macrotest scan. This additional control allows arrays to be accessed and written to or
read from via scan. To enable MacroTest mode, a control flop for array write inhibit,
sesci and array_bypass must be set. For manufacturing scan this may be controlled
with cell constraints.

11 SPC 5 internal chain 1 spc5_tcu_scan_in[1] tcu_spc5_scan_out[1]

12 SPC 6 internal chain 0 spc6_tcu_scan_in[0] tcu_spc6_scan_out[0]

13 SPC 6 internal chain 1 spc6_tcu_scan_in[1] tcu_sp6_scan_out[1]

14 SPC 7 internal chain 0 spc7_tcu_scan_in[0] tcu_spc7_scan_out[0]

15 SPC 7 internal chain 1 spc7_tcu_scan_in[1] tcu_spc7_scan_out[1]

16 CCX[0], SII soca_tcu_scan_in tcu_soca_scan_out

17 CCX[1], MCU0 socb_tcu_scan_in tcu_socb_scan_out

18 MCU 1:2, SIO socc_tcu_scan_in tcu_socc_scan_out

19 DMU socd_tcu_scan_in tcu_socd_scan_out

22 NCU, MCU3 socg_tcu_scan_in tcu_socg_scan_out

23 L2B 0:7 soch_tcu_scan_in tcu_soch_scan_out

24 L2T 0:1, L2D 0:1 soc0_tcu_scan_in tcu_soc0_scan_out

25 L2T 2:3, L2D 2:3 soc1_tcu_scan_in tcu_soc1_scan_out

26 L2T 4:5, L2D 4:5 soc2_tcu_scan_in tcu_soc2_scan_out

27 L2T 6:7, L2D 6:7 soc3_tcu_scan_in tcu_soc3_scan_out

30 TCU, DB1, DB0, MIO, EFU, RST,
CCU, BScan

soc6_tcu_scan_in tcu_soc6_scan_out

31 SerDes Macros srd_tcu_atpgq tcu_srd_atpgd

TABLE 4-7 Manufacturing Parallel Scan Chains

Chain Contents TCU Input TCU Output
Chapter 4 Test Control Unit (TCU) 4-27

MacroTest on OpenSPARC T2 is also be a subset of serial (JTAG) scan. To set JTAG
MacroTest mode, the instruction TAP_MT_ACCESS should be programmed; this will
set the MacroTest enable flop (default is off). The instruction TAP_MT_SCAN can
then be used to perform MacroTest scan accesses. To clear the MacroTest enable flop,
use TAP_MT_CLEAR. This mode exists solely to satisfy debug requirements for scan
access to arrays.

FIGURE 4-5 Signals Controlled for Macrotest (in TCU)

JTAG MacroTest is used extensively in debug to access the arrays, and to allow
control using JTAG the PLL is bypassed to allow TCK to be placed onto the clock
tree during MacroTest mode. Before entering JTAG MacroTest mode the clocks to the
chip should be stopped via a hard stop since TCK will need to be routed onto the
gclk distribution. JTAG MacroTest will access all clock domains, there is no user
control over individual domains.

Procedure for Entering JTAG MacroTest

Because the JTAG MacroTest must be run with the PLL locked, a special sequence is
used to enter this mode. This sequence puts the chip in JTAG MacroTest mode while
not disrupting the CCU (PLL), TCU or RST blocks.

1. Lock PLL : POR sequence (optional; can run in pll bypass mode with slow clock)

JTAG

1

0

tcu_*array_wr_inhibit

testmode

1

0 io_scan_en

testmode
jtag_scan_enjtag_mt_mode

MT
=1

MacroTest
Enable Flop

1

0

sesci
io_scan_en

testmode

jtag_scan_en

array_bypass

(se_scancollar_in)
4-28 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

2. Run Diag (optional)

3. Stop Clocks : TAP_CLOCK_HSTOP or via Debug Event

4. Set Test Protect : TAP_TP_ACCESS

5. Set Macro Test Mode : TAP_MT_ACCESS

6. Set Chain Select if desired : TAP_CHAINSEL

7. Perform JTAG SCAN : TAP_MT_SCAN

4.5.3 Serial Scan
Serial scan refers to concatenating the 32 internal scan chains into a single chain
primarily for observation during debug. Serial scan is initiated via JTAG
instructions, where the scan chains are configured into a single long chain and
placed between TDI and TDO.

Two JTAG instructions are available to control serial scan; the TAP_SERSCAN
instruction places all 32 scan chains between TDI and TDO excluding the TCU, CCU
and RST blocks. The chains will be concatenated in the order specified in Table 4-7
on page 26. One of the 32 scan chains may also be selected via TAP_CHAINSEL; See
“Chain Select Register” on page 31

During serial scan the scan clocks (aclk, bclk) are generated from the leading and
trailing edges of TCK during ShiftDR. The scan enable signal drives the l1clk to ‘1’;
prior to unloading a scan chain with JTAG the clock should be stopped to that
chain’s clock domain(s) using the JTAG clock stop instructions. The PLL is locked
and running typically during serial scan but serial scan does not rely on the PLL.
There is no ability to perform capture clocks during serial scan. A sample waveform
is shown in FIGURE 4-6.
Chapter 4 Test Control Unit (TCU) 4-29

sc
an

_e
n

T
D

I/T
D

O

S
el

D
R

C
ap

D
R

S
hi

ftD
R

E
xi

t1
D

R
P

au
se

D
R

E
xi

t2
D

R
S

hi
ftD

R
E

xi
t1

D
R

U
pd

D
R

T
C

K

bc
lk

ac
lk

T
D

O
_e

n

T
hr

ee
 s

ca
n

sh
ift

s
ar

e
sh

ow
n

ac
ro

ss
 tw

o
S

hi
ftD

R
 c

yc
le

s.
C

ap
tu

re

l1
cl

k

cl
k_

st
op
4-30 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 4-6 JTAG Serial Scan Sample Waveform

4.5.3.1 Chain Select Register

In order to observe and update the state of OpenSPARC T2, parallel scan chains 0 to
31 can be put between TDI and TDO by programming the TAP_SERSCAN
instruction. The behavior is qualified by the Chain Select register. The internal scan
register consists of the chains specified in Table 6-1 on page 22. This is a 6-bit register
selected via the TAP_CHAINSEL instruction. It is only recognized when the
TAP_SERSCAN (or TAP_MT_SCAN) instruction is programmed and allows one of
32 scan chains in OpenSPARC T2 to be selected with all others bypassed if the msb
is set to ‘1’. If the msb (bit 5) is 0 then the chain selection field is ignored and chains
Chapter 4 Test Control Unit (TCU) 4-31

0 to 30 are concatenated during the serial scan operation. This register has no effect

TABLE 4-8 Chain Select Register

Enable Bit Chain Selection Field

bit [5] bits [4:0]

Enables the chain selection
field when set to ‘1’

0

1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

If enabled, specifies one of 31 chains to be placed between TDI and TDO

x_xxxx -> Selects chains 0-30 concatenated

0_0000 -> Selects chain 0 & 1 of SPC0
0_0001 -> Selects chain 0 & 1 of SPC0
0_0010 -> Selects chain 0 & 1 of SPC1
0_0011 -> Selects chain 0 & 1 of SPC1
0_0100 -> Selects chain 0 & 1 of SPC2
0_0101 -> Selects chain 0 & 1 of SPC2
0_0110 -> Selects chain 0 & 1 of SPC3
0_0111 -> Selects chain 0 & 1 of SPC3
0_1000 -> Selects chain 0 & 1 of SPC4
0_1001 -> Selects chain 0 & 1 of SPC4
0_1010 -> Selects chain 0 & 1 of SPC5
0_1011 -> Selects chain 0 & 1 of SPC5
0_1100 -> Selects chain 0 & 1 of SPC6
0_1101 -> Selects chain 0 & 1 of SPC6
0_1110 -> Selects chain 0 & 1 of SPC7
0_1111 -> Selects chain 0 & 1 of SPC7

1_0000 -> Selects chain 16
1_0001 -> Selects chain 17
1_0010 -> Selects chain 18
1_0011 -> Selects chain 19
1_0100 -> Selects chain 20
1_0101 -> Selects chain 21
1_0110 -> Selects chain 22
1_0111 -> Selects chain 23
1_1000 -> Selects chain 24
1_1001 -> Selects chain 25
1_1010 -> Selects chain 26
1_1011 -> Selects chain 27
1_1100 -> Selects chain 28
1_1101 -> Selects chain 29
1_1110 -> Selects chain 30
1_1111 -> Ignored
4-32 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

on chain 31 which is reserved for SERDES scan flops, which means that chain 31 is
not accessible via jtag serial scan. Scan chains for Boundary Scan, TCU, CCU and
RST units are not accessible via jtag serial scan; when chain_sel[4:0]=30 only the peu,
mio, efu, db0 and db1 scan flops will be returned.

The Chain Select register is reset with TRST_L or entering TLR. The chain selection
field is directly decoded to specify a chain from 0 to 30. Chain 31 is not selectable.
Selecting either chain in a SPC core will result in both SPC scan chains being
concatenated. The MBIST and shadow scan chains in each SPC will be concatenated
to that SPC’s chain[0] and chain[1], respectively.

Note – The length of the scan chain during JTAG serial scan will change between
POR1/POR2 and WMR1/2. The chain will be longer during POR1/POR2 due to
inclusion of MCU logic as shown in the next subsection “Logic Included in JTAG
Serial Scan”. Use of JTAG POR (See “JTAG Access During POR” on page 90) pauses
the POR sequence during POR2 and the MCU logic will be included during JTAG
serial scan. A subsequent warm reset will move the chip out of POR2 and cause the
MCU FBD logic to be excluded from JTAG serial scan.

Note – Unpredictable behavior will result if you do a JTAG (tap) reset after
scandumping any of the soc chains (this includes the “all chain” scan dump mode)
since the TAP_TP_ACCESS command will be reset (See “Protecting TCU During
Serial Scan: Test Protect Mode” on page 34). This will expose the logic protected by
TAP_TP_ACCESS to any random data scanned during the SOC scan process, with
indeterminate results.

4.5.3.2 Logic Included in JTAG Serial Scan

During jtag serial scan this logic is included:

■ MBIST engines

■ MCU FBD logic (during JT POR access in POR2)

■ shadow scan - both spc & l2t

■ Unavailable SPC cores and Banks

This logic is NOT included during jtag serial scan:

■ cluster headers

■ MCU FBD logic (when not in POR2 - i.e., during diag scan dumps)

■ boundary scan flops

■ any flops non-scannable for manufacturing scan

■ CCU, RST and TCU
Chapter 4 Test Control Unit (TCU) 4-33

■ SerDes (chain 31)

4.5.3.3 Protecting TCU During Serial Scan: Test Protect Mode

When JTAG serial scan is performed, random Signals can be generated to TCU
inputs. If the TCU responds to these they can disrupt the JTAG serial scan; for
example random debug requests from a SPC while it is being scanned can disrupt
the TCU jtag scan process. To protect against this it is up to the user to tell TCU to
protect itself. Two jtag instructions are available for this: TAP_TP_ACCESS to set the
Test Protect mode, and TAP_TP_CLEAR to clear it. Setting the Test Protect mode will
cause TCU to assert a signal tcu_test_protect which will block incoming SPC debug
requests and incoming UCB requests. This signal also goes to RST and CCU and
other blocks which need to block random UCB requests which may occur when
scanning the SOC blocks (specifically NCU). This mode is also needed during MBIST
scan operations, and possibly LBIST scan operations. The expected usage is to set the
Test Protect mode before performing the test operations, and then clear it when
done. For Transition Test and Macro Test the mode should be set via scan operations
if needed.

Setting Test Protect mode should not interfere with PLL lock, but it may interfere
with diags trying to change clock frequency or generate resets.

Note – When accessing any scan chains via JTAG mode, the TAP_TP_ACCESS
protocol should be followed. This includes TAP_MBIST_DIAG and
TAP_LBIST_ACCESS.instructions as well as variations of TAP_SERSCAN or
TAP_MT_SCAN.

4.5.4 SerDes Scan
TCU supports scan for Serdes by connecting the SerDes macros onto chain 31.
Package pin SCAN_IN31 becomes tcu_srd_atpgd and connects to ATPGD of fsr0,
and then ATPGQ and ATPGD are connected to daisy-chain the SerDes macros, with
ATPGQ of fsr4 connecting through TCU tsrd_tcu_atpgq to SCAN_OUT31. The scan-
enable signal for SerDes is tcu_srd_atpgse and is driven by TCU from package pin
io_scan_en. The following outlines the mode under which SerDes operates; bits [1:0]
are accessible only via scan and bit [2] is driven directly from io_test_mode. The atpg
mode bus tcu_srd_atpgmode[2:0] ultimately connects to the TESTCFG[18:16] of the
SerDes macros.

■ tcu_srd_atpgmode[2:0]

■ 000: for normal operation

■ 001, 010, 011: reserved
4-34 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

■ 100: for stuck-at atpg

■ 101: to select 2-clock transition test

■ 110: to select 3-clock transition test

■ 111: to select 4-clock transition test

4.6 Clock Stop
On OpenSPARC T2 the ability to stop clocks to various sections of the chip is
provided via the TCU. Clocks can be stopped via JTAG directly or as a result of a
debug or other event. Clocks are also stopped before any flush reset and then
restarted after the flush reset is finished.

There are 2 modes of clock stops: a hard clock stop and a soft clock stop. The
purpose of the hard clock stop is to stop as fast as possible, without waiting for the
chip to become quiet. The 2nd method, soft clock stop, only applies to the cores and
upon receiving a request the TCU will wait for the requesting core to settle into a
quiescent state (via the core_running register) before stopping the clock to that core.
Multiple cores may also be stopped this way. This allows the core(s) the possibility
to restart after clocks are restarted. Clocks for the chip can be stopped either in
parallel or serially across clock domains. After a clock stop, data can then be shifted
out for debug via JTAG which allows the user to determine the state of the chip.

4.6.1 Serial and Parallel Clock Stop Modes
Stopping all clock domains in parallel may not be advisable due to excessive current
fluctuations across the chip. Because of these di/dt concerns there is a serial clock
stop mode where the clocks are stopped over several predefined clock domains with
128 cpu clock cycles between each clock stop activation. Stopping the clocks in such
a staggered fashion with intervening delays is expected to lessen the di/dt concern.
In the serial mode, via JTAG or software the user can update a clock domain register
to specify which clock domain should be stopped first. Subsequent domains will
then be stopped in a predetermined order, but the order is fixed.

During a parallel clock stop, the clocks will all be stopped relative to the same cpu
clock cycle from the TCU. For both the serial and parallel clock stop methods, due to
division ratios between the cpu and other clock domains, the actual cpu clock cycle
at which a non cpu clock domain stops may vary between those domains, although
it should be repeatable. To specify a parallel stop, all bits in the clock domain
register should be set to 1, signifying they should all stop first.
Chapter 4 Test Control Unit (TCU) 4-35

Specification of serial or parallel is controlled by setting the 32-bit Clock Domain
register with JTAG TAP_CLOCK_DOMAIN instruction, ordered as specified in
Table 4-9 (bit == stop number). Setting only one bit indicates the starting point for
serial stopping. If serial and parallel clock stop modes are mixed, that is multiple
bits are set in the clock_domain register, the clocks will stop in both serial and
parallel across the specified bit fields. Originally tcu only supported either
sequential or parallel without mixed modes but flexibility was given to allow the
modes to work together. This results in a mixed behavior, with all bits set to ’1’
stopping in parallel, but with sequential stop behavior across the remaining fields of
’0’ bits. The user should consider this when programming mixed serial and parallel
clock stopping.

Because the ability to stop selected domains in parallel would mainly be used for
scan dump purposes, it doesn’t matter if the remaining bits stop sequentially as
described since the object of the scan dump should be in the domains that are set to
stop in parallel.

4.6.2 Hard Clock Stop
A hard clock stop request will result in the clocks being stopped without waiting for
the chip to quiesce. The clocks may be stopped either in serial or parallel mode. In
all cases the clocks will be stopped over all the chip as specified by the Clock
Domain register, except the RST, CCU and TCU clocks will not be stopped.

A hard clock stop may be initiated in response to a flush request, a specific JTAG
request via TAP_CLOCK_HSTOP, or in response to a debug event. A status register
can be polled via TAP_CLOCK_STATUS to determine the state of the clock
sequencer. When the status indicates clocks are stopped, a scan dump via
TAP_SERSCAN can be done. To restart clocks, the JTAG TAP_CLOCK_START is
used.

4.6.3 Soft Clock Stop
A soft clock stop request will not be serviced until the core requesting the soft clock
stop is quiesced. The cores are the only clusters that can request a soft clock stop,
and only the clocks to the target cores will be stopped by any soft stop request. A
soft clock stop may be initiated in response to a JTAG request via
TAP_CLOCK_SSTOP or in response to a debug event. Via JTAG, multiple cores can
be soft-stopped. A debug event can only stop a single core as a default, however,
setting bit 3 of the TCU DCR causes the TCU to soft stop all enabled SPCs if any
requests a soft stop; See “TCU Debug Control Register” on page 61.
4-36 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

To request a soft clock stop via JTAG the target core(s) should first be parked with
UCB access to the 64-bit Core Run register; the user is responsible for setting all 8
bits per each core to be parked to ‘0’. When status is indicated via
TAP_CORE_RUN_STATUS that the target threads are parked (64-bits), the clocks
may be stopped via TAP_CLOCK_SSTOP.

For example, to quiesce and stop SPC cores 2 and 5 only, first check with
TAP_CORE_RUN_STATUS and then set the Core Run register to 64’hkkkk 00kk
kk00 kkkk. This sets bits 23:16 for core 2, and 47:40 for core 5 to all 0’s; ‘k’ means
keep previous value read with TAP_CORE_RUN_STATUS. Check that the target
threads are parked with TAP_CORE_RUN_STATUS. Set the target cores that should
respond to a clock stop using TAP_CORE_SEL (in this case, cores 2 and 5) to set the
core select register; any subsequent TAP_CLOCK_SSTOP will only stop clocks to
cores 2 and 5. Note that TAP_CLOCK_START will clear the core select register.

In response to a debug event the requesting core’s clock will be stopped similarly.

When the clocks are stopped a status register is set indicating the clocks are stopped.
Polling of this status register can be done with TAP_CLOCK_STATUS to determine
when it is safe to do a subsequent scan dump of the stopped cores. To restart the
clock to the target core, the JTAG TAP_CLOCK_START is used.

The TAP_CORE_SEL instruction allows the user to enable cores to respond to a soft
clock stop JTAG request using TAP_CLOCK_SSTOP and assumes all cores were
already quiesced. If it is used without quiescing the cores you will get in effect a
hard stop across only the cores. See the section “Cycle Step Mode” on page 57 for
usage of TAP_CORE_SEL.

When using the soft stop mode, the Clock Domain register should be all 0s if TCU
DCR bit [2] is ‘1’. This applies to JTAG TAP_CLOCK_SSTOP and a request for Soft
Stop by spc debug event when tcu_dcr[3] is set to 1 to stop all cores. In general, TCU
DCR bit [2] should be ‘0’ if any Soft Stop is used, otherwise the interaction between
the Clock Domain and Core Select registers is complex.

The TCU clock sequencer - described in the next section - is controlled directly by
the Clock Domain register. The Core Select register has no effect on the clock
sequencer inside TCU, it will sequence independently of Core Select. The sequencer
always runs through all 24 clock domains.

In soft stop mode, only the 8 outputs associated with the spc cores are allowed to
propagate. When Core Select is set and TAP_CLOCK_SSTOP issues, this begins the
clock sequencer and it should be in a default mode starting with spc0 - this is either
with Clock Domain all zeros or 24’b1. If the Clock Domain is something else, then it
will tell the clock sequencer to begin at a different starting point, or if multiple bits
are set the sequencer will stop clocks in parallel for those bits. The cores will still be
stopped, but in an unexpected order.
Chapter 4 Test Control Unit (TCU) 4-37

For example, if clock_domain = 24’h000003 then spc 1 and spc 2 will be stopped in
parallel and spc2 will be the starting point of the sequence - so spc0 will be stopped
last. If clock_domain = 24’h000083, then spc7, spc1 and spc2 will stop in parallel.

4.6.4 Stop Domains
Clock domains are partitioned so that control is achieved for disabling sections of
the chip with respect to the L2 and Core Enable/Available registers, and to minimize
di/dt. The sequence of stopping the clocks serially will always be the same given a
specific start point and defaults to the order given in Table 4-9 on page 40. The user
can program the starting point, but then the domains will stop in the predetermined
order and wrap around until reaching the first domain stopped. For instance,
stopping with spc1 first will result in spc0 being stopped last.
4-38 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 4-7 TCU Clock Sequencer

A 7-bit Clock Stop Delay counter (programmable via TAP_CLKSTP_DELAY)
provides a delay of up to 128 (default) cmp clock cycles between generation of
successive clock stop Signals from the TCU. Setting this value to zero results in a 1-
cmp clock cycle delay between clock stop Signals. This may be bypassed by setting
bits [23:0] in the Clock Domain register via JTAG, so that all clocks stop in parallel.

The general structure of the clock sequencer control logic in the TCU is shown in
FIGURE 4-7. To stop clocks starting with spc0, bit 0 of Clock Domain register is set to
‘1’ with the remaining bits all to ‘0’. The clock sequencer state machine is in an initial
state because clk_stop is low ‘0’, then the clk_stop signal is activated and held to ‘1’
to begin the sequence. When the Clock Stop Delay counter reaches 0xFF the
tcu_spc0_clk_stop is set to ‘1’ and held; when the counter next reaches 0xFF the
tcu_spc1_clk_stop is set to ‘1’ and the machine continues this sequence until all
clock domains are disabled. When the clk_stop signal is driven to ‘0’ the clk_stop
Signals are sequenced off starting with the domain specified in Clock Domain
register.

counter

== 0x7F

1

0
clk_stop

clock_domain_reg

0

soc3_clk_stop_int

1

0

1

FF

spc0_clk_stop_int

FF
tcu_spc0_clk_stop

FF FF
tcu_spc1_clk_stop

spc1_clk_stop_int

1

0

23

FF

(synch)

FF
tcu_soc3_clk_stop

soc3_clk_stop_int

soc2_clk_stop_int
Note: synchronization may occur
in destination units

(bits 31:24 reserved)
Chapter 4 Test Control Unit (TCU) 4-39

The Clock Domain register is shown in the following table.

All clock stop control logic in the TCU is in the cmp clock domain. The outgoing
Signals, tcu_*_clk_stop, are sent from the cmp clock domain and are staged at the
cpu level before reaching the cluster headers. The cluster header synchronizes the
clk_stop into the corresponding clock domain. For clusters with io or io2x clock
domains, the tcu_*_clk_stop is synchronized to the io clock domain before leaving
TCU. This is done to provide transition test the capability of controlling the clock
stop relative to the target domain. The dr clock domain clock stops are synchronized
into the dr clock domain before leaving TCU, to mesh with the top-level dr staging
flops.

Most clusters with both cmp and io clock domains have separate clock stop Signals
from TCU, one for each domain. In some cases clusters with multiple clock domains
share a single clock stop. The DB0 and DB1 clusters have both cmp and io domains,
but share a clock stop synchronized to the io clock domain. The same holds for MIO.
The RDP, RTX and TDP clusters have both io and io2x but share a clock stop
synchronized to the io clock domain. The effect of this is that for clock stopping, the
logic in these clusters will stop at different clock cycles. For example, in MIO during
a clock stop the cmp logic will stop 3 (cmp) cycles later than other cmp logic.

■ tcu_db0_clk_stop and tcu_db1_clk_stop => each is connected to cmp and io
headers

TABLE 4-9 Clock Domain Register

Stop
Number

Clock Domain Controlled Stop
Number

Clock Domain Controlled

0 SPC 0: cmp clock domain 12 Bank 4: L2 T, D, B : cmp clock domain

1 SPC 1: cmp clock domain 13 Bank 5: L2 T, D, B : cmp clock domain

2 SPC 2: cmp clock domain 14 Bank 6: L2 T, D, B : cmp clock domain

3 SPC 3: cmp clock domain 15 Bank 7: L2 T, D, B : cmp clock domain

4 SPC 4: cmp clock domain 16 MCU 0: cmp and io clock domains

5 SPC 5: cmp clock domain 17 MCU 1: cmp and io clock domains

6 SPC 6: cmp clock domain 18 MCU 2: cmp and io clock domains

7 SPC 7: cmp clock domain 19 MCU 3: cmp and io clock domains

8 Bank 0: L2 T, D, B : cmp clock domain 20 SOC0: sii, sio, ncu, efu: cmp and io clock
domains. ccx; cmp clock domain. db0,
db1, mio: io clock domain

9 Bank 1: L2 T, D, B : cmp clock domain 21 SOC1: rdp, mac, rtx, tds io and io2x clock
domains

10 Bank 2: L2 T, D, B : cmp clock domain 22 SOC2: dmu: io clock domain

11 Bank 3: L2 T, D, B : cmp clock domain 23 SOC3: peu: io and pc clock domains
4-40 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

■ tcu_rdp/rtx/tdp_io_clk_stop => each is connected to io and io2x headers

■ tcu_mio_clk_stop => connected to 4 cmp headers and one IO header

Clocks are restarted by turning off clk_stop Signals. When started serially, the 128
cmp cycle delay is used again to reduce di/dt concerns.
Chapter 4 Test Control Unit (TCU) 4-41

FIGURE 4-8 Clock Stop Sequencing through Clock Domains

4.6.5 FBD Logic in MCU
The FBD logic in the MCUs is handled differently from other SOC logic. A separate
clock stop signal is provided to each MCU, tcu_mcu[0123]_fbd_clk_stop, which is
activated only during POR1 and POR2 (to facilitate flush reset of the FBD logic) or if

cl
k_

st
op

sp
c0

_c
lk

_s
to

p_
in

t

sp
c1

_c
lk

_s
to

p_
in

t

12
8

cm
p

cy
cl

es

12
8

cm
p

cy
cl

es

so
c2

_c
lk

_s
to

p_
in

t

12
8

cm
p

cy
cl

es

so
c3

_c
lk

_s
to

p_
in

t

cl
oc

k
st

op
 s

ig
na

ls
 c

on
tin

ue
 tu

rn
in

g
on

fo
r

sp
c2

-s
pc

7,
 b

an
k0

-b
an

k7
, m

cu
0-

m
cu

3,
an

d
so

c0
-1

 b
ut

 a
re

 n
ot

 s
ho

w
n

4-42 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

the MCU is disabled via bank available or bank enable. During jtag serial scan, the
FBD logic is bypassed and left running. This is achieved with a second shared signal
to all 4 MCUs, tcu_mcu_testmode, which is ‘1’ only during POR1, POR2, or
manufacturing atpg testing.

If jtag serial scan is performed while in POR2 then the MCU FBD logic will be
included, so during the JTPOR access window (See “JTAG Access During POR” on
page 90) the jtag serial scan length will be longer than after POR2 completes.

4.6.6 Clock Stopping and Core/L2 Available and
Disable Controls

4.6.6.1 Core and L2 Available Control

SPC cores are made unavailable if these Signals are not asserted after transfer from
EFU after POR1 or POR2:

■ ncu_spc0_core_available

■ ncu_spc1_core_available

■ ncu_spc2_core_available

■ ncu_spc3_core_available

■ ncu_spc4_core_available

■ ncu_spc5_core_available

■ ncu_spc6_core_available

■ ncu_spc7_core_available

L2 Logic (L2 Tag, L2 Data, L2 Buffer) can be made unavailable if the corresponding
bits in this bus are not asserted after transfer from EFU after POR1 or POR2. Note
that the L2 Tags will not have their clocks stopped even if listed as unavailable or
disabled.

■ ncu_tcu_bank_avail[7:0]

4.6.6.2 Core and L2 Disabling Control

SPC Cores can be disabled via Software after a warm reset with these Signals:

■ ncu_spc0_core_enable_status

■ ncu_spc1_core_enable_status

■ ncu_spc2_core_enable_status

■ ncu_spc3_core_enable_status
Chapter 4 Test Control Unit (TCU) 4-43

■ ncu_spc4_core_enable_status

■ ncu_spc5_core_enable_status

■ ncu_spc6_core_enable_status

■ ncu_spc7_core_enable_status

L2 Banks (Two L2 Data and L2 Buffers along with associated MCU) can be disabled
via Software after a warm reset with these Signals:

■ ncu_spc_pm

■ ncu_spc_ba01

■ ncu_spc_ba23

■ ncu_spc_ba45

■ ncu_spc_ba67

There are certain legal combinations for the Signals controlling disabling of SPCs
and L2 Banks, for details refer to the OpenSPARC T2 Programmer”s Reference Manual.
Also, JTAG can be used to overwrite these values in certain cases such as using the
JTAG POR access window or via JTAG UCB access. TCU looks at the Available
Signals after POR1 or POR2 and deasserts clocks to any unavailable SPC or L2
(except L2 Tag clocks are not stopped since they contain top-level staging flops). This
is shown in the reset waveform Figure 4-22 on page 88. The Disabling Signals are
observed by TCU after any WMR2, and clocks will be deasserted by TCU for any
disabled SPC core or L2 bank and associated MCU (except for L2 Tags).

4.7 Transition Testing
Transition test on OpenSPARC T2 is designed to be run with the PLL locked to allow
testing of the clock domains for transition faults. The patterns will be generated via
the ATPG tools and applied on the wafer and chip testers. The testmode pin and
ac_testmode pins must both be driven to ‘1’ by the tester to enable transition test
mode. The AC_TESTTRIG pin is used to tell the internal logic to allow a
programmed number of l1clk cycles to reach the target flops.
4-44 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 4-9 Transition Test Sample Vector

S
C

A
N

_E
N

l1
cl

k

gc
lk

B
C

LK

A
C

LK

cl
k_

st
op

T
w

o
cl

oc
ks

 a
llo

w
ed

 th
ro

ug
h

on
to

 l1
cl

k

A
C

_T
E

S
T

T
R

IG

C
on

tr
ol

le
d

by
 T

es
te

r

In
te

rn
al

 S
ig

na
ls

gc
lk

 s
ou

rc
ed

 fr
om

 P
LL
Chapter 4 Test Control Unit (TCU) 4-45

4.7.1 Operation and Constraints During Transition Test
The transition test logic inside TCU is programmed via scan with a setup routine, or
via cell constraints. A counter specifies how many system clock pulses are issued.
This counter is based on the clock for the domain that is under test and is loaded
with the number of clock pulses that will be issued to the functional logic. Only one
clock domain may be active at one time since transition test across clock domains
introduces non-determinism, and only the cmp and io clock domains are supported.
During transition test the array_wr_inhibit signal from TCU is driven high into the
clusters and overrides the write inhibit generated by the cluster headers from clock
stop transitions.

When the mio_tcu_io_ac_testtrig input to TCU (package pin AC_TESTTRIG) is
driven to ‘1’ by the tester it is synchronized and used to enable the clock stop
counter. The clk_stop signal to the target clock domain and cluster(s) is generated by
TCU and pipelined out to the target cluster headers, and held to ‘0’ for the
programmed number of clock cycles. The counter is 8-bits and allows up to 255 clock
pulses to be issued. The transition test control bit used to select the clock domain
(cmp or IO) is 1 bit.

■ tcusig_ttclksel_reg

■ 0 => selects cmp clock domain (default)

■ 1 => selects io clock domain

The control register, the 8-bit counter, and the flops driving the clock_stop Signals all
must be set to the appropriate values before each transition test capture cycle. The 8-
bit counter values are true binary representations for cmp clock domain, and should
be set to a multiple of 4 for the io clock domain. So to get 2 io clock cycles during the
capture phase, the counter should be set to binary 0000_1000. The counter will start
counting aligned to the io sync enable pulses during both cmp and io clock domain
testing to achieve accurate clock counting during the io clock domain tests. A
counter value of zero is not supported for transition test.

To set the clock stop flops in the tcu, the user should scan in values of zero to all
clock stop flops, except set a one to flop _0 of all targeted domains. The values are
inverted onto the clock stop Signals. There are 24 clock domains as shown in
Table 4-9 on page 40. Bit 0 is closest to scan-in. Each clock domain has 2 flops
associated with it and MCU and SOC have extra flops for io and dr clock domains.
Flops that can be set to activate clock pulses to a domain are indicated. To select an
io clock domain, set the corresponding _0 flop and also set the transition test control
bit to ‘1’.

■ sync_ff_clk_stop_spc0_0Set to ‘1’ for SPC0 cmp clock domain

■ sync_ff_clk_stop_spc0_1

■ ...

■ sync_ff_clk_stop_spc7_0Set to ‘1’ for SPC7 cmp clock domain
4-46 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

■ sync_ff_clk_stop_spc7_1

■ sync_ff_clk_stop_bnk0_0Set to ‘1’ for BNK0 cmp clock domain

■ sync_ff_clk_stop_bnk0_1

■ sync_ff_clk_stop_l2t0_0Set to ‘1’ for L2T0 cmp clock domain

■ sync_ff_clk_stop_l2t0_1

■ ...

■ sync_ff_clk_stop_bnk7_0Set to ‘1’ for BNK7 cmp clock domain

■ sync_ff_clk_stop_bnk7_1

■ sync_ff_clk_stop_l2t7_0Set to ‘1’ for L2T7 cmp clock domain

■ sync_ff_clk_stop_l2t7_1

■ sync_ff_clk_stop_mcu0_0Set to ‘1’ for MCU0 cmp or io clock domain

■ sync_ff_clk_stop_mcu0_1

■ sync_ff_ioclk_stop_mcu0_1

■ sync_ff_drclk_stop_mcu0_1

■ ...

■ sync_ff_clk_stop_mcu3_0Set to ‘1’ for MCU3 cmp or io clock domain

■ sync_ff_clk_stop_mcu3_1

■ sync_ff_ioclk_stop_mcu3_1

■ sync_ff_drclk_stop_mcu3_1

■ sync_ff_clk_stop_soc0_0Set to ‘1’ for SOC0 cmp or io clock domain

■ sync_ff_clk_stop_soc0_1

■ sync_ff_ioclk_stop_soc0_1

■ sync_ff_clk_stop_soc1_0Set to ‘1’ for SOC1 io clock domain

■ sync_ff_ioclk_stop_soc1_1

■ sync_ff_clk_stop_soc2_0Set to ‘1’ for SOC2 io clock domain

■ sync_ff_ioclk_stop_soc2_1

■ sync_ff_clk_stop_soc3_0Set to ‘1’ for SOC3 io clock domain

■ sync_ff_clk_stop_soc3_1(cmp goes to pc clock domain, not supported)

■ sync_ff_ioclk_stop_soc3_1

The transition test counter flops are:

■ tcuregs_ttcounter_reg[7:0]Set to binary count as described above

In addition, these synchronizer flops should be scanned to ‘00’ so that they do not
interfere with the clock stop logic when in transition test mode.

■ cpu.tcu.sigmux_ctl.tap_spc7_mb_cs_sync_reg
Chapter 4 Test Control Unit (TCU) 4-47

■ ...

■ cpu.tcu.sigmux_ctl.jtag_l2t0_ss_cs_sync_reg

These flops should be scanned to 0 also. They are the first stage of pipeline flops on
the clock stop Signals as they leave TCU.

■ cpu.tcu.clkstp_ctl.clkstp_spc0stop_reg

■ cpu.tcu.clkstp_ctl.clkstp_spc1stop_reg

■ cpu.tcu.clkstp_ctl.clkstp_spc2stop_reg

■ cpu.tcu.clkstp_ctl.clkstp_spc3stop_reg

■ cpu.tcu.clkstp_ctl.clkstp_spc4stop_reg

■ cpu.tcu.clkstp_ctl.clkstp_spc5stop_reg

■ cpu.tcu.clkstp_ctl.clkstp_spc6stop_reg

■ cpu.tcu.clkstp_ctl.clkstp_spc7stop_reg

■ cpu.tcu.clkstp_ctl.clkstp_bnkstop_reg

■ cpu.tcu.clkstp_ctl.clkstp_l2tstop_reg

■ cpu.tcu.clkstp_ctl.clkstp_mcustop_reg

■ cpu.tcu.clkstp_ctl.clkstp_mcuiostop_reg

■ cpu.tcu.clkstp_ctl.clkstp_mcudrstop_reg

■ cpu.tcu.clkstp_ctl.clkstp_mcufbdstop_reg

■ cpu.tcu.clkstp_ctl.clkstp_soc0stop_reg

■ cpu.tcu.clkstp_ctl.clkstp_soc0iostop_reg

■ cpu.tcu.clkstp_ctl.clkstp_soc1iostop_reg

■ cpu.tcu.clkstp_ctl.clkstp_soc2iostop_reg

■ cpu.tcu.clkstp_ctl.clkstp_soc3stop_reg

■ cpu.tcu.clkstp_ctl.clkstp_soc3iostop_reg

Note that this listing of flops is intended to be used as a guide only and may not
include all flops necessary to implement all variations of transition test.

For IO clock domain, the counter should be set to reflect the desired io clock pulses.
For example, to get 2 io clock pulses the counter should be set to 8, for 3 io clock
pulses the counter should be set to 12, etc. One or more CMP clock domains can be
tested with transition test at the same time; the same is true for IO clock domains.
However, CMP and IO clock domains cannot be tested together during transition
test, one or the other must be specified. Finally, the dr clock domain cannot be tested
with transition test since the dr clock is asynchronous to the logic in TCU.

In mio, db0 and db1 there are both cmp and IO clock domains but a single clock stop
is sent as soc0_io_clk_stop, so in transition test these blocks cannot be tested since
they use the same clock stop for both cmp and IO cluster headers.
4-48 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

4.7.2 Procedure for Entering Transition Test
Because the transition test must be run with the PLL locked, a special sequence is
used to enter the transition test mode. This sequence makes use of the dedicated TDI
package pin to put the chip in transition test mode while not disrupting the CCU
(PLL), TCU or RST blocks.

1. Lock PLL : POR sequence

2. Stop Clocks : TAP_CLOCK_HSTOP

3. Set Test Protect : TAP_TP_ACCESS

4. Drive TDI to ’1’

5. Drive TEST_MODE to ’1’

6. Drive AC_TEST_MODE to ’1’ (active)

7. SCAN_EN to ’0’ (inactive)

8. ACLK to ’0’ (inactive)

9. BCLK to ’0’ (active)

10. AC_TESTTRIG to ’0’ (inactive)

11. Drive TDI to ’0’ and hold it

12. - this allows (6) Signals to propagate but with values unchanged

13. Enter ATPG sequence - scan_en, aclk, bclk, shifting, etc.

14. - hold TCK low and load JTAG_CTL with safe (all 0) state

Before entering TT mode, test_protect is asserted with TAP_TP_ACCESS so that it
doesn’t change when AC_TEST_MODE goes high. Test_protect is OR’d with
AC_TEST_MODE so that it is always high during TT, even during shifting, to
prevent external Signals from affecting TCU, RST and CCU during TT.

4.7.3 SerDes Transition Test
See “SerDes Scan” on page 34.
Chapter 4 Test Control Unit (TCU) 4-49

4.8 Boundary Scan
The TCU has logic to support boundary scan testing, through the use of JTAG
instructions. The interface will provide the following JTAG instructions:
Sample/Preload, Extest, HighZ, and Clamp for 1149.1 support in the MIO and some
SerDes, and Extest_Pulse and Extest_Train for 1149.6 support for SerDes. The
boundary scan cells have also been designed such that they will be included as part
of the scan chain.

Timing for boundary scan will be similar to JTAG serial scan as shown in FIGURE 4-6
with an additional update clock occuring in the Update-DR state. During
manufacturing scan the boundary scan control Signals will be driven from the
package pins through multiplexors.
4-50 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 4-10 TCU to Boundary Scan Interface

SerDes boundary scan Signals are indicated with _sbs_ in the signal name and
connect to the clusters which interface to the SerDes macros since the SerDes
boundary scan cells are located in the MCU clusters. These Signals are generated as
described in the SerDes DFT document for OpenSPARC T2.

mio_tcu_bs_scan_out

TCU

tcu_mio_bs_aclk

tcu_mio_bs_bclk

tcu_mio_bs_scan_en

tcu_mio_bs_uclk

tcu_mio_bs_clk

tcu_mio_bs_modectl

tcu_mio_bs_scan_in

tcu_sbs_enbstx

tcu_sbs_enbsrx

tcu_sbs_aclk

tcu_sbs_bclk

tcu_sbs_scan_en

tcu_sbs_uclk

tcu_sbs_aclk

tcu_sbs_acmode

tcu_sbs_bsinitclk

tcu_sbs_actestsignal

tcu_sbs_enbspt

tcu_sbs_scan_insbs_tcu_scan_out
Chapter 4 Test Control Unit (TCU) 4-51

4.9 TCU Debug Interface to SPC Cores
The TCU interfaces with the SPC cores to support debug as shown in Figure 4-11
on page 52.

FIGURE 4-11 TCU to SPC Core Debug Interface

4.9.1 Clock Interface
The TCU provides a clock stop signal to the flop headers in the core, and drives this
signal active when the core is unavailable.

tcu_spc_clk_stop

core_enabled

core_available

core_running[7:0]

scan_enable

scan_in

shadow_scan_cntrl[n:0]

tcu_shscan_scan_in

tcu_do_mode

tcu_ss_mode

tcu_ss_request

SPC Core

spc_softstop_request

spc_hardstop_request

core_running_status[7:0]

spc_trigger_pulse

scan_out

tcu_shscan_scan_out

spc_ss_complete
4-52 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

4.9.1.1 Tcu_spc_clk_stop

This signal is deasserted to allow the OpenSPARC T2 core’s clocks to run. This is the
main signal the TCU uses to control the OpenSPARC T2 core’s clocks. This signal
can be set to ’1’ at any time to stop the OpenSPARC T2 core’s clocks. Sourced from
TCU as tcu_spc7_clk_stop ... tcu_spc0_clk_stop.

4.9.1.2 Core_available & Core_enabled

Core_available is set via efuse at manufacturing time and determines whether the
physical core can be used in normal operation. It serves as a clock gate and if ’0’ will
result in the clk_stop being asserted to the core (this happens in the TCU).
Core_enabled is driven from the ASI_CMP_CORE_ENABLED register.

4.9.1.3 Core_running & Core_running_status

The core_running bus is an input from the NCU by which the TCU requests the core
to perform a soft-stop. When the core sees the core_running Signals transition from
a ’1’ to a ’0’, it will stop issuing instructions, and wait for all pending core operations
to complete. Once all core-initiated memory operations have been globally
performed, the core will raise the Soft_stop_req signal to allow the TCU to stop the
clocks to the core and also raise the core_running_status bus to indicate to the CMP
logic that the core is parked. When the soft_stop_req is a ’1’, the OpenSPARC T2 core
will not issue instructions or initiate any activity, until the TCU drives core_running
to a ’1’.

4.9.1.4 Scan_enable

Besides configuring the scan chains for scanning, this signal also gates off
OpenSPARC T2 core’s interface Signals so that other SOC units do not respond to
spurious OpenSPARC T2 core interface activity during scanning. At least the
crossbar PCX interface is protected in this way.

4.9.1.5 Hardstop_request & Softstop_request

These Signals are outputs to the TCU which indicates that the core has reached
either a hard-stop or a soft-stop condition and wants to request service from TCU.
When a hardstop_request is received, the TCU should disable the clocks to the core
using the TCU_spc_clk_stop signal. When the softstop is received, the TCU should
request a soft-stop of the entire core via the core_running bus and upon receiving the
softstop_request acknowledgement from all 8 threads in the core, the TCU will then
stop the clocks via TCU_spc_clk_stop. In both cases, the TCU should begin
Chapter 4 Test Control Unit (TCU) 4-53

decrementing the Cycle Counter when the stop_request is received; when the Cycle
Counter reaches 0 the clock_stopping sequence is initiated by the TCU. Note that the
type of stop (hard vs. soft) is determined either by the Soft_stop_req signal, or which
configured event in the DECR has occurred.

Setting bit 3 of the TCU DCR causes the TCU to soft stop all enabled SPCs if any
requests a soft stop; See “TCU Debug Control Register” on page 61.

These debug event requests will be honored when the Cycle Counter and Debug
Event counters reach zero, and the Reset Counter is not enabled.

4.9.2 Debug Event Interface
This group of core outputs Signals that either an error or a debug trigger event has
occurred. These debug event requests will be honored when the Cycle Counter and
Debug Event counters reach zero, and the Reset Counter is not enabled.

4.9.2.1 Trigger_event

This is a signal from the core to TCU. If the OpenSPARC T2 core is configured to
trigger on an event in the DECR, and the associated event occurs, this signal
transitions from a ’0’ to a ’1’. It then transitions back to ’0’, unless another enabled
DECR trigger event occurred that cycle. The TCU will pass this signal to a package
pin as the OR of the (64) bits from all cores. The trigger_event signal will be
synchronized to the I/O clock frequency.

4.9.3 Scan Interface
Not all Signals relevant to the scan interface are detailed here (e.g., not all the scan
clocks and controls are listed).

4.9.3.1 Scan_in & Scan_out

There are three scan chains in each core. All flops on this scan string are reset both at
POR and during warm reset unless protected via use of the
“warm_reset_flop_header”.

There are three external scan-out Signals per core; each corresponds to a scan-in
signal. During JTAG access via scan an entire physical core may be scanned; in this
mode the TCU will concatenate the three scan chains in the core, in addition to any
JTAG private scan chains such as for shadow scan or memory bist.
4-54 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

4.9.3.2 Shadow_scan_in

This is the scan-in for the shadow-scan string.

4.9.3.3 Shadow_scan_cntrl[n:0]

This bus controls shadow scan operation and identifies which thread’s state will be
sampled to the shadow scan string.

When the TCU wants to do a shadow scan on a particular core, it first sends the
command to the OpenSPARC T2 core on this bus. At some time later, OpenSPARC
T2 core will capture the state requested by the TCU on the internal shadow scan
flops. At that point the TCU can scan out the state by accessing the shadow scan
scan string. For details of operation See “Shadow Scan” on page 78

The Signals included in this bus are:

■ tcu_shscanid[2:0] : selects one of 8 threads

■ tcu_shscan_pce_ov : provides a capture signal to the shadow scan reg.

■ tcu_shscan_clk_stop : stops the clock to the shadow scan register to allow it to be
scanned via JTAG

■ tcu_shscan_aclk & tcu_shscan_bclk : shift clocks to perform the scan operation

■ tcu_shscan_scan_en : a separate scan_enable for the shadow scan register

4.9.3.4 Shadow_scan_out

This is the scan-out of the core’s shadow-scan string.

4.9.4 Single Step Mode
Individual threads can be placed in single step mode via JTAG. To place threads in
single step mode the following sequence is used. The user must keep one physical
core (SPC) in functional mode.

1. Specify which threads to be in single step mode via TAP_DOSS_ENABLE by
setting the corresponding bits in the 64-bit disable overlap/single step enable
register.

2. Park all threads by deasserting core_running[7:0] to the target SPCs via the
TAP_CREG_ or TAP_NCU_ instructions and accessing the corresponding 8-bit
fields in the 64-bit core run register. For any SPC to be operated in single-step
mode, all of its threads should first be parked (turned off in core run register).
Chapter 4 Test Control Unit (TCU) 4-55

3. Wait until all threads from the targeted SPCs indicate they are parked via
core_running_status[7:0]. This is done by reading the 64-bit core run status
register via TAP_CORE_RUN_STATUS. Each bit corresponds to a thread.

4. When all targeted cores are parked, set the DOSS_MODE register to ‘11’ using
TAP_DOSS_MODE. Bit [0] indicates single step mode and bit [1] enables the
mode. At this stage, the tcu_ss_mode signal is asserted to the targeted physical
cores.

5. Assert core_running to the threads that will be single-stepped, via TAP_CREG or
TAP_NCU; these threads should correspond to those set in DOSS_ENABLE to
maintain compability with future enhancements.

6. Pulse the tcu_ss_request signal by executing a TAP_SS_REQUEST (the pulse is
generated by going through the update-DR tap state); each running thread in a
physical core enabled with tcu_ss_mode will fetch/execute a single instruction.

7. When a SPC’s threads have all finished the single-step operation, then that SPC
will pulse spc_ss_complete. The TAP_DOSS_STATUS is used to check the
spc_ss_complete bit and returns 8 bits, one for each SPC. The status is held until
the next TAP_SS_REQUEST. When all SPC’s indicate they have completed,
another single-step can be requested via TAP_SS_REQUEST.

8. Steps 6 and 7 can be repeated to execute a string of ‘n’ instructions.

9. To exit single step mode, park all threads in the SPCs being single-stepped using
TAP_CREG_ or TAP_NCU_. After TAP_CORE_RUN_STATUS indicates all
threads are parked, disable the mode using TAP_DOSS_MODE to set the mode to
‘00’. The DOSS_ENABLE register should also be cleared. Then unpark the desired
threads by asserting the respective bits in the core run register using TAP_CREG_
or TAP_NCU_.

Note – Single stepping for multiple threads can be executed independently by
control of the targeted threads’ respective bits in core_running[7:0] in the above
actions.

4.9.5 Disable Overlap Mode
Placing a SPC in disable overlap mode is similar to that for single step mode:

1. Specify which threads to be in disable overlap mode via TAP_DOSS_ENABLE by
setting the corresponding bits in the 64-bit disable overlap/single step enable
register.
4-56 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

2. Park all threads by deasserting core_running[7:0] to the target SPCs via the
TAP_CREG_ or TAP_NCU_ instructions and accessing the corresponding 8-bit
fields in the 64-bit core run register. For any SPC to be operated in disable-overlap
mode, all of its threads should first be parked (turned off in core run register).

3. Wait until all threads from the targeted SPCs indicate they are parked via
core_running_status[7:0]. This is done by reading the 64-bit core run status
register via TAP_CORE_RUN_STATUS. Each bit corresponds to a thread.

4. Set the number of cycles to run during disable overlap mode using
TAP_CYCLE_COUNT to set the cycle counter.

5. When all targeted cores are parked, set the DOSS_MODE register to ‘10’ using
TAP_DOSS_MODE. Bit [0] indicates single step mode and bit [1] enables the
mode. At this stage, the TCU will automatically:

6. Assert tcu_do_mode to the target SPCs

7. Unpark the targeted threads

8. Start counting down the cycle counter, waiting until it reaches zero

9. Park the targeted SPCs

10. Set the DOSS_STATUS register

11. Status can be checked with TAP_DOSS_STATUS; bits will be set corresponding to
the SPCs which have completed running in disable overlap and are parked.

12. To exit disable overlap mode, park all threads in the target SPCs using
TAP_CREG_ or TAP_NCU_. After TAP_CORE_RUN_STATUS indicates all
threads are parked, disable the mode using TAP_DOSS_MODE to set the mode to
‘00’. The DOSS_ENABLE register should also be cleared. Then unpark the desired
threads by asserting the respective bits in the core run register using TAP_CREG_
or TAP_NCU_.

Note – The latency of parking and unparking the threads via UCB should be
considered when setting the cycle counter.

4.9.6 Cycle Step Mode
Cycle step refers to stopping the clocks to a SPC and then stepping a number of
clock cycles to that SPC. Individual SPC cores can be placed in cycle step mode via
JTAG. In this mode, a SPC core is stopped via a hard clock stop, then a predefined
number of clock pulses is allowed through. After this, the SPC flop contents can be
Chapter 4 Test Control Unit (TCU) 4-57

examined. In this mode the clock domains must be controlled since the clocks are
stopped to the target SPCs; this is done by performing a hard stop across only the
target SPCs, not the entire chip as in the default hard clock stop.

1. Use TAP_CORE_SEL to set the corresponding bits of the SPCs targeted for cycle
stepping.

2. Use TAP_CLOCK_SSTOP to stop the clocks to the SPCs - note this will perform a
hard stop on the target SPCs since the TAP_CORE_SEL is active. No SPCs will be
parked.

3. Program the Cycle Counter using TAP_CYCLE_COUNT; this can be done before
steps 1 and 2 also.

4. Verify that the clocks are stopped via TAP_CLOCK_STATUS, the value should be
‘10’ indicating the clock stop operation is finished.

5. Issue a cycle step command via TAP_CS_MODE and loading a ‘1’. This begins the
Cycle Counter operation and allows the number of clocks specified in the Cycle
Counter to be sent to the target cores. When the Cycle Counter reaches zero, the
clocks will again be stopped to the target SPCs.

6. Check status using TAP_CS_STATUS. This returns a 1-bit value that will be set
when the Cycle Counter has finished. It does not indicate if the clocks have yet
been stopped, the TAP_CLOCK_STATUS must be used for this.

7. When the status indicates the cycle step has completed, further actions may be
taken such as dumping the core contents.

8. To turn the clocks to the SPCs back on, use TAP_CLOCK_START to turn clocks on
to the target cores. Note it is impractical to expect the cores to resume operation
as a hard stop was in effect.

4.9.7 JTAG Priority for Debug
In general, any JTAG instructions related to core debug will take priority over other
debug functionality in the TCU. This means that TCU responses to debug events
could be blocked if another JTAG instruction is active. Results for JTAG debug
operations concurrent with SPC debug service requests are unpredictable.

4.10 TCU Debug Interface to SOC Logic
The TCU interfaces with the SOC logic via the DBG unit as shown in Figure 4-12 on
page 59. These debug event requests will be honored when the Cycle Counter and
4-58 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 4-12 TCU to SPC Core Debug Interface

4.10.1 Clock Interface

Hardstop_request

The DBG unit drives a signal dbg_tcu_soc_hard_stop to request a hard stop of the
clocks to the chip. This signal is pulsed in io clock domain and when received, TCU
will count down the cycle_counter and then begin stopping the chip’s clocks. The
manner in which the clocks are stopped - serial or parallel - is determined by the
contents of the clock_domain register. There is no soft-clock-stop for the SOC logic.
The TRIGIN pin is treated as an SOC hard stop request.

4.10.2 Debug Event Interface

Trigger_event

To send a watchpoint to the external trig_out pin, the DBG unit pulses
dbg_tcu_soc_asrt_trigout high (‘1’) for one io clock cycle. TCU will pass this out to
the I/O pins.

DBG

dbg_tcu_soc_hard_stop

dbg_tcu_soc_asrt_trigout
TCU
Chapter 4 Test Control Unit (TCU) 4-59

4.11 TCU Debug Registers
The TCU handles debug events requests from the SPC cores directly, or from the
SOC via the DBG unit, as described in “Clock Stop” on page 35, “TCU Debug
Interface to SPC Cores” on page 52 and “TCU Debug Interface to SOC Logic” on
page 58. The response to these requests is to stop the clocks (hard or soft) or pass the
watchpoint signal to the I/O pins. A set of registers is provided in the TCU to assist
in control of these responses to debug event requests.

4.11.1 Cycle Counter
This is a 64-bit counter that can delay the response to a debug event. For example, if
the TCU receives a hard-stop request the Cycle Counter will begin counting down
with each cmp clock cycle and when it reaches zero then the hard-stop will be
performed. All debug event requests from the SPC cores or a hard-stop request from
SOC logic will be delayed by the Cycle Counter. The Clock Domain register is
ignored in this mode: an SOC hard stop will start with clock domain [8]; a SPC hard
stop will start with the requesting SPC, and a SPC soft stop will start with SPC0 or
all SPCs in parallel if TCU_DCR[3] = 1 (also see Section 4.6.3 on page 36).

These actions are only valid when TCU_DCR[2] = 0. For behavior when
TCU_DCR[2] = 1, see “TCU Debug Control Register” on page 61. The Cycle Counter
is loaded with JTAG instruction TAP_CYCLE_COUNT; default is zero.

4.11.2 Debug Event Counter
This ia a 32-bit counter that must be zero before the Cycle Counter is enabled. If it is
non-zero, then each debug event request received at the TCU will decrement it and
when zero is reached, the Cycle Counter will begin decrementing with the next
debug event request. No differentiation is made regarding debug event requests, so
it is up to the user to insure only one type of debug event is enabled when using the
Debug Event Counter. Debug event requests consist of these requests from SPC:
spc_softstop_request, spc_hardstop_request, spc_trigger_pulse, or these requests
from SOC: dbg_tcu_soc_hard_stop, dbg_tcu_soc_arst_trigout, and the trigin package
pin. The events are counted per cmp clock cycle.

The Debug Event Counter is only recognized when TCU_DCR[2] = 0. When
TCU_DCR[2] = 1, the Debug Event Counter is disabled. The Debug Event Counter is
accessed with JTAG instruction TAP_DE_COUNT; default is zero.
4-60 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

4.11.3 TCU Debug Control Register
The TCU has a 4-bit register to control responses to debug events, the TCU DCR
(Debug Control Register). When bit 2 of TCU DCR is ‘0’ the Cycle Counter and
Debug Event Counters perform as described above.

When bit 2 of the TCU DCR is set to ‘1’ the lower 32 bits of the Cycle Counter are
treated as a Reset Counter. In this mode, the Reset Counter begins decrementing
with each cmp clock cycle after the Power-on Reset (POR) sequence ends (when
tcu_rst_flush_stop_ack goes high at the end of flush reset sequencing in WMR2, see
See “WMR2” on page 90). Once zero is reached either a watchpoint, a hard clock
stop or a clock stretch can be performed, or the upper 32-bits of the Cycle Counter
can then be used. In this mode (bit 2 of TCU DCR = 1) the Debug Event counter will
be ignored.

The behavior of the Debug Event and Cycle Counters is determined by the values in
the TCU DCR as specified in the following table. The TCU DCR is loaded with JTAG
instruction TAP_TCU_DCR; default is zero (‘0000’).

The following actions are valid when bit 2 of the TCU DCR is set to ‘1’:

4.11.3.1 Watchpoint

If the TCU DCR is set to ‘100’, then a single pulse of an external chip pin (TRIGOUT)
will occur when the Reset Counter reaches zero. The pulse will be synchronized to
the io clock domain. The upper 32-bits of the Cycle Counter are ignored.

4.11.3.2 Hard Stop

A hard clock stop will be performed if the TCU DCR is set to ‘101’, as specified in
“Hard Clock Stop” on page 36, and a watchpoint pulse generated, when the Reset
Counter reaches zero. The upper 32-bits of the Cycle Counter are ignored.

TABLE 4-10 TCU Debug Control Register Field Definitions

Soft Stop [3] Enable [2] [1:0] Description

0/1 0 xx Debug Event and Cycle Counter recognize SPC debug events

x 1 00 Watchpoint pulsed

x 1 01 Hard Stop and Watchpoint Pulsed

x 1 10 Clock Stretch and Watchpoint Pulsed

x 1 11 Clock Stretch and Watchpoint, followed by Hard Stop and
second Watchpoint
Chapter 4 Test Control Unit (TCU) 4-61

4.11.3.3 Clock Stretch

If the TCU DCR is set to ‘110’, then a clock-stretch signal will be pulsed out of the
TCU when the Reset Counter reaches zero, and a watchpoint pulse will also be
generated. The upper 32-bits of the Cycle Counter are ignored.

4.11.3.4 Clock Stretch then Hard Stop

If the TCU DCR is set to ‘111’, when the Reset Counter reaches zero a clock stretch
will be triggered and a watchpoint pulse will also be generated, and then the upper
32-bits of the Cycle Counter will be allowed to count down to trigger a clock hard
stop and a second watchpoint will also be generated.

Note – The Soft Stop bit 3 when set will cause TCU to Soft Stop across all enabled SPCs
when any SPC requests a soft stop. It should only be active when Enable bit 2 is ‘0’; if
Soft Stop bit 3 is set when Enable bit 2 is set, the Clock Domain and Core Select registers
will interact with each other - see Section 4.6.3 on page 36 for details.

For JTAG access to the clock stop logic, the TCU DCR should be in a reset condition so
that bits 3 and 2 are both inactive (0). If either of these bits is set, the interaction between
JTAG and the TCU DCR can become unpredictable.

4.11.4 Erratum #34 TRIGOUT (Watchpoint) Events
A watchpoint is also referred to as a Trigout event and pulses the TRIGOUT package
pin. Watchpoints can be generated by the SPC cores, the SOC logic, SW, or as
defined when TCU DCR bit [2] is set (see “TCU Debug Control Register Field
Definitions” on page 61).

TCU will forward a trigout request from SOC or SPC when the cycle counter and
debug events counters are zero, but it will only forward that one request. For clock
stop/scan dump usage where a trigout is used, TCU generates the trigout based
upon the debug event.

For clock stop/scan dump, one trigout may be sufficient. For soc/spc generated
trigout requests, it may be desirable to have the ability for TCU to send out every
one it receives. However, TCU was designed to only forward/create out one trigout.
Two questions came up in regard to this:

1. After the first trigout request is recognized by TCU and forwarded, how do we
reset TCU to forward the next trigout request?

2. How do we get multiple trigout events forwarded by TCU to the output pin?
4-62 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

For (1), this was not intended usage. A work-around is to wait until the first debug
event has initiated a TRIGOUT request, and then to re-program the debug_event
counter (the count does not matter, should be non-zero) and upon the next trigout
request the TCU will forward it, and then block subsequent trigout requests. Re-
programming the debug_event_counter can be done via SW, no JTAG is needed.

Alternatively, after the initial debug event, programming a TAP_CLOCK_START
and then putting jtag in test-logic-reset will allow TCU to recognize the next
TRIGOUT request.

For (2), again this was not the intended usage. A work-around is to wait until the
initial debug event occurs and the first TRIGOUT is forwarded by TCU. Then,
program the TAP_CLOCK_START and keep it active - do not go to test-logic-reset,
instead go to run-test-idle state. Then, all trigout requests received by TCU will be
forwarded to the package TRIGOUT pin as long as the TAP_CLOCK_START is
active.

4.12 Memory BIST Control

4.12.1 Overview
The memory BIST or MBIST engines for OpenSPARC T2 are based on the engine
used in OpenSPARC T1. The general organization between TCU/JTAG, a single
MBIST engine in SPC0, and its associated arrays is shown in the following figure. In
OpenSPARC T2 there are 80 MBIST engines: 3 per core (24 total) and 56 distributed
throughout the SOC logic. Each MBIST engine will therefore test several arrays.
Note that even though there are 80 engines, only 48 are visible from the TCU MBIST
controller as explained in Section 4.12.7 on page 68.
Chapter 4 Test Control Unit (TCU) 4-63

FIGURE 4-13 Overview of MBIST Control via TCU/JTAG

The MBIST operation may be controlled by the TCU during reset sequencing via the
JTAG interface or as invoked via SW. The MBIST engines can either be operated in
a serial mode, a parallel mode or a diagnostic mode for memory bit-fail mapping.
Both the serial and parallel modes run MBIST in a pass/fail mode, where the only
information available is whether MBIST passed all of its arrays, or failed at least one
of them.

4.12.2 Memory BIST Operation
TCU controls operation of MBIST through an MBIST controller which can be
programmed either via JTAG or SW. Operation of the MBIST controller is described
in the following sections.

TCU/JTAG

MBIST_0

Array_0

Array_n

SPC0

tcu_spc0_mbist_scan_in

spc0_tcu_mbist_scan_out

tcu_spc0_mbist_start

spc0_tcu_mbist_done
spc0_tcu_mbist_fail

array_wdata[7:0]

array_addr[m:0]

array_write_en

array_read_en

2

tcu_mbist_bisi_en

2

mb0_scan_out

MBIST_2

tcu_mbist_user_mode
4-64 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

The signal mbist_parallel tells a sequencer in the TCU to begin either serial
activation of the start Signals if low, or parallel activation if high, based on the
contents of the mbist_bypass register. The signal run_default_mbist is activated if
enabled during the reset sequence to perform MBIST over all the arrays. The signal
run_default_bisi activates BISI on all arrays, in which case the sequencer would set
tcu_mbist_bisi_en which goes to all arrays, along with sequencing start signals
either serially or in parallel. To run BISI on a given array, the TAP_MBIST_DIAG
instruction must be used to program a given MBIST engine’s config bits. Selection of
BISI or MBIST is done by setting the corresponding bit in the MBIST config register
of the MBIST engines, or by setting the BISI bit in the mbist_mode register.

FIGURE 4-14 Conceptual Look at TCU/JTAG MBIST Control

When the serial or parallel MBIST is determined to be finished (via
polling/examination of the done/fail register, or a timeout), all that is known is that
either all arrays passed, or at least one of them failed. To get information on which
MBIST engine finished, the TAP_MBIST_GETDONE instruction must be used. This
allows capture of 48 done bits which may then be observed at TDO; the
TAP_MBIST_GETFAIL similarly captures 48 fail bits. If detailed information as to
which array failed within a given MBIST engine is needed, then the
TAP_MBIST_DIAG instruction must be used to retrieve the contents of the specific
MBIST engine that indicated a fail.

tcu_spc0_mbist_start

spc0_tcu_mbist_done

spc7_tcu_mbist_done

spc1_tcu_mbist_done
...

niu_tcu_mbist_done[8]
...

spc0_tcu_mbist_fail[0]

spc7_tcu_mbist_fail[2]

spc0_tcu_mbist_fail[1]
...

niu_tcu_mbist_fail[8]
...

47 0

tcu_spc1_mbist_start

tcu_niu_mbist_start[8]

...
48

JTAG

mbist_bypass

run_default_mbist

2: user mode
1: bisi enable

4

48

48

run_default_bisi

tcu_mbist_bisi_en

47 0
mbist_done

47 0
mbist_fail

mbist_result

mbist_mode

0: parallel

MBIST
Control

TCU

3: loop mode

controller/
sequencer
Chapter 4 Test Control Unit (TCU) 4-65

4.12.3 Serial Mode
JTAG will typically be used to run MBIST in the serial mode. When activated in
serial mode, the MBIST engines will be started sequentially in the following order.

Serial MBIST ordering:

■ SPC0: MBIST 0, 1, 2

■ SPC1: MBIST 0, 1, 2

■ . . .

■ SPC7: MBIST 0, 1, 2

■ SII: MBIST 0

■ . . .

To enable the serial MBIST mode via JTAG the instruction TAP_MBIST_BYPASS
must be used to specify which of the 48 MBIST engines to bypass, if any, via the
mbist_bypass register. Next, the TAP_MBIST_MODE is used to clear the parallel
mode bit in the mbist_mode register. The TAP_MBIST_START instruction is then
programmed into JTAG; when JTAG enters the run-test-idle state, the MBIST
operation will be started; it is not necessary to remain in the rti state. It is up to the
user to wait a predetermined number of cycles for the MBIST operation for all arrays
to finish. Status can be checked using the TAP_MBIST_RESULT instruction and
capturing the mbist_result register (2 bits) in the CaptureDR state and examing
them; this can be done repeatedly for polling (via captureDR, without staying in
run-test-idle). This allows early truncation of the test (via the TAP_MBIST_ABORT
instruction) if the fail bit becomes active before the MBIST operation is done. The
done bit must be set to validate a fail bit of 0 indicating a passing condition. A done
bit set to 1 and a fail bit set to 0 indicates all arrays for the selected mbist engines
passed MBIST.

The default operation is to run BISI instead of MBIST. To run BISI the instruction
TAP_MBIST_DIAG may be used to access the MBIST engine specified via the
mbist_bypass register, and setting the bisi/bist bit to 1 in the config register if
provided in the BIST engine. Another option for running BISI is to set the BISI bit in
the TAP_MBIST_MODE register. Optionally, the memory BIST can be run in the
serial mode without programming JTAG; this is done via the run_default_mbist
signal.

4.12.4 Parallel Mode
JTAG must be used to run MBIST in the parallel mode. When activated in parallel
mode, the MBIST engines will be started in parallel, while the arrays controlled by
each individual MBIST engine will test their arrays sequentially. Operation of MBIST
parallel mode via JTAG is similar to the serial mode, except that the parallel mode
4-66 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

bit of the mbist_mode register must instead be set, using the TAP_MBIST_MODE
instruction. There is no non-JTAG default method of running MBIST in parallel
mode.

4.12.5 Diagnostic Mode
In one method to perform bit-fail mapping, the TAP_MBIST_DIAG instruction is
used to access the MBIST engine as the target JTAG data register. In this diagnostic
mode only one MBIST engine should be selected, by setting the appropriate bits in
the mbist_bypass register via the TAP_MBIST_BYPASS instruction; it is up to the
user to bypass all but one MBIST engine. Only one array controlled by the selected
MBIST engine may be active; this is specified by scanning in (loading) the target
MBIST engine registers. After both the MBIST engine and array are specified, the
TAP_MBIST_START is programmed, and entering run-test-idle will start the MBIST
operation on the selected array. After an appropriate wait time the test should finish.
Polling via TAP_MBIST_RESULT can be used to inspect the done/fail JTAG data
register, or the TAP_MBIST_GETDONE and TAP_MBIST_GETFAIL can be used to
determine the MBIST test results.

To get the detailed information on the target array, the TAP_MBIST_DIAG
instruction must be used. This allows the contents of the targeted MBIST engine to
be scanned as the mbist_diag register via TDO. This architecture is depicted in the
following figure for spc0 where all three MBIST engines in the core are on the same
chain. Similarly, an individual scan chain is provided for each spc and soc cluster as
listed in Table 4-11.

4.12.6 Abort Mode
To abort any MBIST activity the TAP_MBIST_ABORT instruction should be used.
This will cause all MBIST start Signals to be deasserted, and any internal JTAG states
to be reset. A separate instruction is useful since the JTAG MBIST instructions have
memory. Use of TAP_MBIST_ABORT does not clear any of the JTAG data registers
used for or during MBIST, only the control states and Signals, and does not clear the
MBIST engine flops; this allows the TAP_MBIST_DIAG to be used to get data on the
failing arrays. Note: Entering test-logic-reset state does not stop MBIST.
Chapter 4 Test Control Unit (TCU) 4-67

4.12.7 MBIST Engine Ordering
The MBIST engines are ordered as follows for the 48-bit JTAG done, fail and bypass
registers:. There are 80 MBIST engines in OpenSPARC T2 but from a JTAG

perspective only 48 are visible. Three engines in each SPC are visible as one engine
by JTAG, and similarly for the L2 Tags. Since there are 8 SPCs and 8 L2Ts, this is a
reduction of 32 (24 to 8 for SPCs, 24 to 8 for L2Ts) for a total reduction of 80-32=48
engines visible by JTAG.

TABLE 4-11 MBIST Engine Ordering

Cluster # of Engines JTAG Reg. Cluster # of Engines JTAG Reg.

SPC0 3 bits[0] L2B_2 1 bit[20]

SPC1 3 bit[1] L2B_3 1 bit[21]

SPC2 3 bit[2] L2B_4 1 bit[22]

SPC3 3 bit[3] L2B_5 1 bit[23]

SPC4 3 bit[4] L2B_6 1 bit[24]

SPC5 3 bit[5] L2B_7 1 bit[25]

SPC6 3 bit[6] L2T_0 3 bit[26]

SPC7 3 bit[7] L2T_1 3 bit[27]

SII 2 bits[9:8] L2T_2 3 bit[28]

SIO 2 bits[11:10] L2T_3 3 bit[29]

NCU 2 bits[13:12] L2T_4 3 bit[30]

MCU0 1 bit[14] L2T_5 3 bit[31]

MCU1 1 bit[15] L2T_6 3 bit[32]

MCU2 1 bit[16] L2T_7 3 bit[33]

MCU3 1 bit[17] DMU 2 bits[35:34]

L2B_0 1 bit[18]

L2B_1 1 bit[19]
4-68 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

4.12.8 Notes
The TCU sources the MBIST engine register scan controls over the scan controls for
the holding cluster/core. When an MBIST engine is accessed via a JTAG MBIST
instruction the other scan chains in the cluster will also scan, but the data will be lost
in those chains..

To use TAP_MBIST_DIAG, the user must bypass all engines (using
TAP_MBIST_BYPASS) except the one desired, else the result is indeterminate.

All three core MBIST engines and associated array information (if any) selected via
the JTAG instructions are placed in that core’s first scan chain for ATPG test mode.

JTAG instructions to support MBIST:

TAP_MBIST_BYPASS 48-bit mbist_bypass register

TAP_MBIST_MODE4-bit mbist_mode register

TAP_MBIST_STARTno user data register

TAP_MBIST_RESULT2-bit mbist_result register

TAP_MGIST_DIAGx-bit mbist_diag Reg: Engine + array flops

TAP_MBIST_GETDONE48-bit mbist_done register

TAP_MBIST_GETFAIL48-bit mbist_fail register

TAP_MBIST_ABORTno user data register

TAP_MBIST_CLKSTPENno user dr; enables clock stop via cycle counter

4.12.9 JTAG MBIST Data Registers
JTAG accessible registers for MBIST are:

TABLE 4-12 JTAG MBIST Registers

Register JTAG Instr. Fields

Result[1:0] TAP_MBIST_RESULT bit[1] : 1 when all 80 mbist engines are done
bit[0] : 1 if any of 80 mbist engines reports a fail

Bypass[47:0] TAP_MBIST_BYPASS One bit per mbist engine; to bypass an engine during MBIST
testing set its bit to 1

Done[47:0] TAP_MBIST_GETDONE One bit per mbist engine; a 1 indicates the corresponding engine
is done; same order as mbist_bypass register
Chapter 4 Test Control Unit (TCU) 4-69

4.12.10 MBIST Clock Stop and Scan Dump
The Cycle Counter may be used in conjunction with MBIST to stop clocks and
perform a scan dump. The instruction TAP_MBIST_CLKSTPEN must be
programmed to enable the Cycle Counter for MBIST. If enabled, the Cycle Counter
will begin decrementing when the MBIST controller begins operation. When the
Cycle Counter reaches zero, a hard clock stop will be issued to the clock sequencer.

All relevant registers - such as clock domain and clock stop delay - will be
recognized in this mode to allow control of the clock stop sequence. The clock stop
status may be checked with TAP_CLOCK_STATUS, and when stopped the scan
chains can be dumped via TAP_SERSCAN.

Using this feature and repeatedly running MBIST with successively greater cycle
count values allows another method of bit-fail mapping arrays. This is sometimes
referred to as MBIST Plus. Since the start of MBIST and when the Cycle Counter
begins decrementing is coordinated and synchronized to the same cmp clock cycle,
the entire process should be repeatable and cycle accurate.

4.12.11 MBIST DMO - Direct Memory Observe
The basic operation as implemented in TCU is described here. There are three JTAG
instructions, TAP_DMO_ACCESS, TAP_DMO_CLEAR and TAP_DMO_CONFIG, as
described in Table 4-3 on page 5. The TAP_DMO_ACCESS puts the chip in DMO
mode, so that read data from L2 Tags and some SPC or NIU arrays will be
observable at package pins during MBIST operation, in addition to done and fail

Fail[47:0] TAP_MBIST_GETFAIL One bit per mbist engine; a 1 indicates the corresponding engine
failed MBIST for one of its arrays

Diag[k:0] TAP_MBIST_DIAG Includes targeted MBIST engines in a cluster; variable length

Mode[3:0] TAP_MBIST_MODE bit[3] : user loop mode
bit[2] : user mode
bit[1] : bisi mode if 1, bist mode if 0
bit[0] : parallel mode if 1, serial mode if 0

none TAP_MBIST_CLKSTPEN Enables mbist controller to begin Cycle Counter; reset with TLR
or TAP_CLOCK_START

TABLE 4-12 JTAG MBIST Registers

Register JTAG Instr. Fields
4-70 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

information. TAP_DMO_CLEAR clears this mode. To access and program the dmo
control logic inside TCU the TAP_DMO_CONFIG should be used to set the 48-bits
as desired. TAP_MBIST_ABORT does not clear DMO mode.

TABLE 4-13 JTAG DMO Configuration Register accessed via TAP_DMO_CONFIG

Register Field Description

DMO_Config[47:0] [47:16] 32-bit shift register; bit 47 is used to sample dmo data

[15] 1 selects CMP clock domain (SPC/L2T)
0 selects IO clock domain

[14:13] 00 selects dmo path to cores 4, 5, 1 or 0
01 selects dmo path to cores 6, 7, 3 or 2
10 selects dmo path to L2 tags 4, 5, 1 or 0
11 selects dmo path to L2 tags 6, 7, 3 or 2

[12:11] Not defined

[10:8] Not defined

[7] selects SPC data cache upper/lower word

[6] 1 selects SPC instr. cache and L2 Tag output
0 selects SPC data cache and L2 Data output

[14:13] & [5:0] [14:13] [5:3][2:0] ==> Cluster Selected

00 xx0 xxx ==> CORE4
10 xx0 xxx ==> L2T4
00 x01 xxx ==> CORE5
10 x01 xxx ==> L2T5
00 011 xxx ==> CORE1
10 011 xxx ==> L2T1
00 111 xxx ==> CORE0
10 111 xxx ==> L2T0
01 xxx xx0 ==> CORE6
11 xxx xx0 ==> L2T6
01 xxx x01 ==> CORE7
11 xxx x01 ==> L2T7
01 xxx 011 ==> CORE3
11 xxx 011 ==> L2T3
01 xxx 111 ==> CORE2
11 xxx 111 ==> L2T2
Chapter 4 Test Control Unit (TCU) 4-71

Note – As in most single-access jtag instructions in OpenSPARC T2, reading the
dmo config register using TAP_DMO_CONFIG is done via the capture-DR state and
is always followed by writing the register when update-DR is passed through. Thus,
the dmo config register should not be accessed while dmo is actively running as the
shift register contents will be disturbed during update-DR.

In DMO mode, TCU will pass the data, done and fail information for the mbist array
under test to the package pins, along with a synchronization pulse.

4.12.11.1 MBIST Done and Fail Observability at Pins

The capability exists to have any MBIST engine pass its done and fail Signals to the
package pins and is enabled with TAP_DMO_ACCESS. Due to synchronization it is
not guaranteed that all fail pulses will be seen at the package pin. The done and fail
information is intended to be observed only in user mode with one array selected. In
non-user mode the fail pin is indeterminate if failures occur (if no failures occur, the
fail pin will pulse only at MBIST sequencer initiation).

When the MBIST sequencer is initiated, TCU will pulse the mbist done and fail pins
for one io2x clock cycle. While MBIST is running TCU will pass the fail information
received from the MBIST engine which is running to the pins in user mode only
(non-user mode is indeterminate). When the MBIST sequencer finishes, TCU will
assert done to the pins and assert fail to the pins if there was any failure recorded
from MBIST. This means that there will be at least one pulse generated by TCU on
the fail pin even if no fail occurred.

Upon initiation of the MBIST sequencer the pulses on the done and fail pins will be
coincident. The reason for the initial pulses on the done and fail pins is so the user
can determine that the MBIST controller in TCU has started and the pins are capable
of toggling. The done and fail will only be pulsed upon MBIST start when the
MBIST controller begins operation. This means that the done and fail will not pulse
each time a successive MBIST engine is started if more than one engine is left in non-
bypass mode.
4-72 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 4-15 Sample: MBIST DMO data coming from CMP clock domain

The figure above is representative only, and shows 1/4 sampling (32-bit shift register
set to 32’b00010001000100010001000100010001) and sampling at 1/8 (32-bit shift
register set to 32’b00000001000000010000000100000001). Note that the msb (bit 47 of
the dmo config register, bit 31 of the shift register inside the dmo config register) is
used to sample the dmo data.

CMP

IO2X

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
cmp

cmp_io2x_sync_en

dmo data

sampled

data @ 1/4 cmp

sample

21840

sample

@ 1/4

@ 1/8

sampled

data @ 1/8 cmp 80

21840Sent to Pins

840Received at Pins

dmo_sync

80Sent to Pins

80Received at Pins

dmo_sync
Chapter 4 Test Control Unit (TCU) 4-73

4.12.12 Scanning of MBIST Engines via JTAG
When scanning MBIST engines using the TAP_MBIST_DIAG instruction or
TAP_SERSCAN it may be that flops outside the targeted scan chain may be
disturbed. The effects for SPC and SOC engines are different.

When scanning a SPC MBIST engine the controls from TCU will not be seen by any
logic outside the target SPC. However, if TAP_MBIST_DIAG is used to obtain a short
chain between TDI and TDO the flops outside this chain in the target SPC will be
affected by aclk, bclk and scan enable. It may be advantageous to use
TAP_SERSCAN with only the targeted SPC selected so that all values in the SPC
scan chain can be controlled.

When scanning an SOC MBIST engine there is no individual scan control. So all SOC
logic except for RST, TCU and CCU will be affected by the scanning of any SOC
MBIST engine.

Also please see “Protecting TCU During Serial Scan: Test Protect Mode” on page 34
for proper use of TAP_TP_ACCESS during MBIST serial scanning.

4.12.13 Effect of Unavailable or Disabled Cores and Banks
The MBIST sequencer in TCU observes the Available and Disabling Signals as
described in Section 4.6.6 on page 43. When either BIST or BISI is run the MBIST
sequencer in TCU will automatically bypass any MBIST engines in an unavailable or
disabled SPC or L2 array including MCU and the associated L2 Tag. If only one
MBIST engine is selected, with all others bypassed, and that MBIST engine is in an
unavailable or disabled SPC or L2/MCU, the MBIST sequencer will bypass it and
effectively do no MBIST testing. This is an illegal state and MBIST sequencer
operation is not determinstic.

4.12.14 BIST During Reset
During the POR sequence as described in the chapter on reset (See “Reset
Sequencing” on page 87), TCU will run a BISI sequence after POR1 and optionally
either run BISI or BIST between WMR1 and WMR2. The BISI run after POR1 is in
parallel mode by default and has a timeout counter of 32 bits. The signal
tcu_rst_bisx_done will be asserted when all non-bypassed engines return their done
Signals to TCU or the timeout counter expires. BISI will use the bypass register to
select which engines to run and will not expect done Signals from bypassed engines.
The BIST mode register is not applicable except for changing from parallel to serial
mode since the BISI run is "hard-coded" to run after POR1.
4-74 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

An optional BIST or BISI run is available if programmed by Software and will be
recognized by TCU after the next WMR1 and will be serviced between WMR1 and
WMR2. This optional run will recognize the bypass and mode registers.

Both the POR1 BISI and the optional Software-requested BIST/BISI will obey the
SPC and L2 available and disable criteria as specified in section 13.13 Effect of
Unavailable or Disabled Cores and Banks. Note, the BISI enable is written by logic
during the power-on reset sequence,and once written it will remain high until it is
programmed otherwise.

4.13 Logic BIST Control
The Logic BIST test function is only applied to the SPC cores in OpenSPARC T2, and
one engine is instantiated per core. The control of the Logic BIST engines comes from
the TCU either via SW or JTAG.

The control logic allows the Logic BIST engines to be run in parallel or in series, and
gathers the done Signals for JTAG to query. There is no pass/fail indication that
comes from the Logic BIST engines, so the engine must be scanned to determine the
result.
Chapter 4 Test Control Unit (TCU) 4-75

FIGURE 4-16 Conceptual look at TCU/JTAG Logic BIST control

To start a single Logic BIST engine, the TCU will drive the lbist_start signal high and
hold it until the lbist_done signal is received. TCU will also source a test_mode
signal to all Logic BIST engines to control them during manufacturing scan. In
parallel mode, the non-bypassed engines will be sent lbist_start Signals in the same
cycle. In serial mode, the first non-bypassed engine (counting from 0) will be sent an
lbist_start indication, then when its lbist_done is received the next non-bypassed
engine will be sent an lbist_start indication. All lbist_start Signals will be held until
the sequencer has received done indications from all engines.

LBIST
tcu_spc0_lbist_start

spc0_tcu_lbist_done

spc7_tcu_lbist_done

spc1_tcu_lbist_done
...

7 0

tcu_spc1_lbist_start

tcu_spc7_lbist_start

...

sequencer

8

JTAG

lbist_bypass

run_default_lbist

lbist_parallel
lbist_program

2

8

7 0
lbist_done

lbist_result

lbist_mode

test_mode

lbist_pgm

TCU

Controll
4-76 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

4.13.1 JTAG Logic BIST Instructions
The instruction TAP_LBIST_START can be used to begin Logic BIST sequencing, and
TAP_LBIST_ABORT can be used to stop sequencing. The JTAG accessible registers
for Logic BIST are:

4.13.2 Accessing Pass/Fail Signature
To determine if the Logic BIST engine passed or failed, the signature must be
scanned out via JTAG using TAP_LBIST_ACCESS. The signature must be compared
against a known-good value. Alternatively, Software may access the signature. This
mechanism will be implemented in the SPC core.

Also please see “Protecting TCU During Serial Scan: Test Protect Mode” on page 34
for proper use of TAP_TP_ACCESS during LBIST serial scanning with
TAP_LBIST_ACCESS.

TABLE 4-14 JTAG Logic BIST Registers

Register JTAG Instr. Fields

Bypass[7:0] TAP_LBIST_BYPASS One bit per Logic BIST engine; to bypass an engine during test-
ing set its bit to 1

Mode[1:0] TAP_LBIST_MODE bit[1] : program access mode selected
bit[0] : parallel mode if 1, serial mode if 0

Lbist[k:0] TAP_LBIST_ACCESS Includes targeted Logic BIST engines across cores

Done[7:0] TAP_LBIST_GETDONE One bit per mbist engine; a 1 indicates the corresponding engine
is done; same order as Logic BIST bypass register
Chapter 4 Test Control Unit (TCU) 4-77

4.13.3 Logic BIST Interface

FIGURE 4-17 Logic BIST Controller Interface with TCU

4.14 Shadow Scan

4.14.1 Core Shadow Scan
Shadow scan for the cores is controlled via JTAG. The architecture is shown
FIGURE 4-18; the header is a conceptual view of both the cluster and flop headers
combined. Each core shadow scan will be contained in a separate scan chain, with its
own clock headers and controls coming from the TCU. The contents to be captured
in the shadow scan are in the OpenSPARC T2 Programmer’s Reference Manual. If a core
is disabled then its shadow scan contents

scan_out

Logic
BIST
Controller

mbist_so

scan_in

aclk

bclk

lbist_done

scan_en

se_scancollar_in

se_scancollar_out

clk_stop

test_mode

lbist_start

lbist_pgm

mbist_si
4-78 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 4-18 Core Shadow Scan Architecture

will be excluded and the number of TCK clocks should be reduced to reflect the
unavailable core(s).

TCU/JTAG SPC0

tcu_spc0_shscan_scan_out

tcu_spc_shscanid[2:0]

thread7

thread6

thread5

thread4

thread3

thread2

thread1

thread0

xx

xx

xx

xx

xx

xx

xx

xx

xx

spc0_tcu_shscan_scan_in

l2clktcu_spc_shscan_aclk
l1clk

siclk

soclk

tcu_spc_shscan_bclk

tcu_spc0_shscan_clk_stop

tcu_spc_shscan_pce_ov

tcu_spc_shscan_scan_en

hdr

shadow scan
register
Chapter 4 Test Control Unit (TCU) 4-79

4.14.2 SOC Shadow Scan
Shadow scan for the SOC consists solely of L2Tag error registers, and is controlled
via JTAG. The architecture is shown in FIGURE 4-19; the header is a conceptual view
of both the cluster and flop headers combined. Each L2 Tag shadow scan will be
contained in a separate scan chain, with its own clock headers and controls coming
from the TCU. The contents to be captured in the shadow scan are in the OpenSPARC
T2 Programmer’s Reference Manual.

siisyn_data[61] “000001
”

“000001” “000001” “000001” “000001” “000001”

Etag[2:0] “001” “111” “101” “000” “100” “110”
4-80 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 4-19 L2 Tag Shadow Scan Architecture

4.14.3 Shadow Scan Operation
During a shadow-scan operation, the PLL is running and JTAG is used to capture
the desired values into the shadow scan register. The contents are then scanned-out
via TDO. Both the core and L2 tag shadow scan registers can only be read; any
value scanned into them will be overwritten. Because TCK is specified to be at a
much slower frequency than any cpu clock, any cpu clock cycles required for
synchronization from TCK to cpu clock domains will not cause overlapping.

TCU/JTAG L2 Tag 0

tcu_l2t0_shscan_scan_in

Error xx

l2t0_tcu_shscan_scan_out

l2clktcu_l2t_shscan_aclk
l1clk

siclk

soclk

tcu_l2t_shscan_bclk

tcu_l2t0_shscan_clk_stop

tcu_l2t_shscan_pce_ov

tcu_l2t_shscan_scan_en

hdr

shadow scan
register

Reg
Data
Chapter 4 Test Control Unit (TCU) 4-81

FIGURE 4-20 JTAG Shadow Scan Sample Waveform

sc
an

_e
n

T
D

I/T
D

O

S
el

D
R

C
ap

D
R

S
hi

ftD
R

E
xi

t1
D

R
P

au
se

D
R

E
xi

t2
D

R
S

hi
ftD

R
E

xi
t1

D
R

U
pd

D
R

T
C

K

bc
lk

ac
lk

T
D

O
_e

n

T
hr

ee
 s

ca
n

sh
ift

s
ar

e
sh

ow
n

ac
ro

ss
 tw

o
S

hi
ftD

R
 c

yc
le

s.
C

ap
tu

re

l1
cl

k

cl
k_

st
op
4-82 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

NOTES:

1. All 8 core shadow scans are scanned serially as one chain, with core 0 closest to
TDI and core 7 closest to TDO.

2. Assignment of shadow scan contents is in the OpenSPARC T2 Programmer’s
Reference Manual.

3. Any core marked unavailable in the CMP core_available register will not be
included when scanned via TDI to TDO.

4. The shadow scan chain for a given core is placed in that core’s second scan chain
during ATPG test mode; they are accessible via JTAG shadow scan instructions
and during jtag serial scan.

5. All 8 L2 Tag shadow scan contents are captured at the same time, and are
available at TDO with L2T0 first and L2T7 last (closest to TDO).

6. JTAG instructions to support Core Shadow Scan:

■ TAP_SPCTHR0_SHSCAN Thread 0 contents for all available cores

■ TAP_SPCTHR1_SHSCAN Thread 1 contents for all available cores

■ TAP_SPCTHR2_SHSCAN Thread 2 contents for all available cores

■ TAP_SPCTHR3_SHSCAN Thread 3 contents for all available cores

■ TAP_SPCTHR4_SHSCAN Thread 4 contents for all available cores

■ TAP_SPCTHR5_SHSCAN Thread 5 contents for all available cores

■ TAP_SPCTHR6_SHSCAN Thread 6 contents for all available cores

■ TAP_SPCTHR7_SHSCAN Thread 7 contents for all available cores

7. JTAG instructions to support L2 Tag Shadow Scan

■ TAP_L2T_SHSCAN

4.15 Array Guidelines to Support Scan Test
To facilitate scan test the arrays should be configured so that they can be inhibited
during scan load and unload, and surrounded with scan collars. There are several
different scan modes used on OpenSPARC T2 and this section outlines the use and
requirements for the scan mode control Signals. The different scan modes consist of
Manufacturing or pin-based scan, also known as ATPG scan, MacroTest, Logic BIST
(LBIST), Transition Test, JTAG scan and Flush scan.

The TCU sources four Signals for scan control specifically related to arrays:
Chapter 4 Test Control Unit (TCU) 4-83

■ tcu_se_scancollar_in - connect to “se” port of flop headers for memory “input”
flops

■ tcu_se_scancollar_out - connect to “se” port of flop headers for memory “output”
flops

■ tcu_array_wr_inhibit

■ tcu_array_bypass

4.15.1 Flop (Clock) Headers
To control the clocks to arrays during the various scan modes, clock headers are
needed with specific se (scan enable) Signals. The se Signals from TCU to arrays are
tcu_se_scancollar_in and tcu_se_scancollar_out.

For any input flops including write address/data, read address/data, write/read
enable, and inputs related to lookup for CAMS, the flop headers for these flops
should use tcu_se_scancollar_in. For any output flops, such as read data, a second
flop header is required and should use tcu_se_scancollar_out. The various flop
headers in an array should share the tcu_pce_ov and tcu_clk_stop Signals and all flops
can share tcu_aclk and tcu_bclk. If the “se” port of a flop header is tied low, then
during scan operations the l1clk will track the l2clk - this is sometimes referred to as
making the l1clk free-running. If the power-savings function of a flop header is not
needed then the “l1en” (ce) can be tied high. Refer to Bob Molyneaux’s “Test
Clocking” document on the OpenSPARC T2 MAS web page for further details on the
flop header.

4.15.2 Write Inhibit and Bypass
To inhibit writing to the arrays the TCU generates a signal tcu_array_wr_inhibit.
When active, this signal should protect the array from updates and can also be used
to turn off read logic and CAM compare logic if desired. If it is determined by test
coverage analysis that there is logic not tested, such as shadow logic, a bypass mux
may be needed. In general it is expected that most arrays will not need a bypass
mux; this decision will be made for each array individually. The bypass mux will be
controlled via tcu_array_bypass. Plan-of-record for OpenSPARC T2 arrays is to place
the bypass mux outside the custom memory boundary (in RTL logic), except for
CAMS that have already placed bypass muxes in the custom memory.
4-84 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 4-21 Array Flop Header Guidelines

Note – If WR_Clk and RD_Clk are different clock domains then separate stop
Signals should be used as provided by the TCU.

 l2clk

 se

l1clk

Array

Write Input Flops

Output Flops

Read Input Flops

Output Flops

l2clk
 l2clk

 l1en

 pce_ov

 stop
 se

l1clkce

tcu_pce_ov

tcu_clk_stop

SE

Flop Header

Clock and SE Connections:

Flop Header:

 l2clk

 se

l1clk

tcu_se_scancollar_in

RD_Clk

(If RD_Clk = WR_Clk, separate headers not needed for scan control)

tcu_se_scancollar_in

WR_Clk

 l2clk

 se

l1clk

tcu_se_scancollar_out

RDout_Clk

Custom Memory Boundary

 l2clk

 se

l1clk

tcu_se_scancollar_out

l2clk

 wr_clk
rd_clk

rdout_clk

l1clk

 l2clk

 se

l1clk1’b0

l2clk

l1clk_free

All output flops need
tcu_se_scancollar_out

tcu_array_wr_inhibit

(even those outside
custom mem. bdy)

Flop Hdr

Flop Hdr

Flop Hdr

Flop Hdr

Flop Hdr

 optional: scan_enable
Chapter 4 Test Control Unit (TCU) 4-85

4.15.3 Scan Modes
The values for the various test control Signals and the clocks are given in the
following table for the different scan modes (tcu_clk_stop=0 and tcu_pce_ov=1). The
value of l1clk_free tracks l2clk.

4.15.4 Scan Cell Ordering Guidelines
Scan Cell Ordering: There is no specific requirement for ordering of scan cells in the
scan chain, although it is desirable for all flops of the same function to be grouped in
the chain to facilitate macrotest pattern development. Lockup latches are not needed
since the scan clocks are always non-overlapping.

It is required that the ordering of scan cells in the circuit match that in the RTL.

4.15.5 Reset
During portions of the power-on-reset sequence, such as before the PLLs lock or
during flush scan, tcu_array_wr_inhibit will be driven active to protect the arrays.

ASIC arrays do not participate in flush scan, so aclk/bclk would be inhibited during
this time to those arrays.

TABLE 4-15 Array Control Signals During Scan Modes

Scan Mode Phase l2clk se_scancollar
_in

se_scancollar
_out

array_wr_inhibit l1clk

ATPG
Scan Shift Tester drives to 1 1 1 1 1

Capture Tester toggles 0 0 1 l2clk

MacroTest
Scan Shift Tester drives to 1 1 1 1 1

Capture Tester toggles 1 0 0 in: 1
out: l2clk

Logic BIST
Scan Shift PLL Locked 1 1 1 1

Capture PLL Locked 0 1 1 in: l2clk
out: 1

Trans. Test
Scan Shift PLL Locked 1 1 1 1

Capture PLL Locked 0 0 1 l2clk

JTAG Scan Shift PLL Locked 1 1 1 1

Flush Scan Shift PLL Locked 1 1 1 1
4-86 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

4.16 Reset Sequencing
The TCU participates in Power-On Reset by interfacing with the RST unit and
providing flush reset. The waveforms with respect to TCU during power-on reset are
shown FIGURE 4-22.
Chapter 4 Test Control Unit (TCU) 4-87

FIGURE 4-22 Power-On Reset Sequence

P
O

W
E

R
_G

O
O

D

P
W

R
O

N
_R

S
T

_L

rs
t_

w
m

r_
pr

ot
ec

t

cl
k_

st
op

s

tc
u_

rs
t_

ef
u_

do
ne

tc
u_

sc
an

_e
n/

tc
u_

ac
lk

tc
u_

bi
sx

_d
on

e

P
O

R
1

P
O

R
2

W
M

R
1

W
M

R
2

~
40

uS

tc
u_

ef
u_

re
ad

_s
ta

rt

tc
u_

rs
t_

flu
sh

_s
to

p_
ac

k

rs
t_

tc
u_

flu
sh

_s
to

p_
re

q

tc
u_

rs
t_

flu
sh

_i
ni

t_
ac

k

cl
k_

st
op

s
to

rs
t_

tc
u_

flu
sh

_i
ni

t_
re

q

tc
u_

ar
ra

y_
w

r_
in

hi
bi

t

R
S

T
 -

 T
C

U
 H

an
dS

ha
ki

ng

T
C

U
 O

ut
pu

ts

T
C

U
 In

pu
ts

T
C

U
 O

ut
pu

ts

R
S

T
 O

ut
pu

ts

un
av

ai
la

bl
eb

an
ks

/c
or

es

E
F

us
e

X
fe

r
T

im
e

T
C

U
 R

un
s

O
pt

io
na

l
B

IS
I

S
W

 R
un

s

P
LL

 L
oc

k

B
IS

I/B
IS

T

rs
t_

tc
u_

as
ic

flu
sh

_

tc
u_

rs
t_

as
ic

flu
sh

_
st

op
_r

eq

st
op

_a
ck

tc
u_

as
ic

_s
ca

n_
en

tc
u_

as
ic

_a
rr

ay
_w

r_
in

hi
bi

t

as
ic

_c
lk

_s
to

ps
4-88 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

There are four phases to the Power-On Reset sequence: Two Power-On Resets -
POR1 and POR2 - and two Warm Resets - WMR1 and WMR2.

POR1

At time zero, PWR_ON_RST_L is driven to ‘0’; the TCU sees this and then asserts all
clk_stop Signals and resets itself and all chip logic (except for JTAG, RST, CCU, and
DMU which get their own reset Signals) via flush reset.

The TCU is released from reset and becomes active when the PWR_ON_RST_L has
deasserted (goes to ‘1’) and the RST block drives rst_tcu_asicflush_stop_req high.
Once the TCU is active it will wait for rst_tcu_flush_stop_req before ending the flush
state and starting the clocks by turning off clk_stops to the 24 clock domains. Note
that this does not apply to the ASICs as described below (See “ASIC Reset” on
page 91). When it has turned on all clock domains, it will drive
tcu_rst_flush_stop_ack to ‘1’ and then assert tcu_efu_rvclr after a delay of 32 cmp
clock cycles, hold tcu_rvclr for 8 cmp clock cycles, deassert and wait 8 cmp clock
cycles, then pulse tcu_efu_read_start for 8 cmp clock cycles. The hold times and
delays allow the efuse Signals to be synchronized into the io clock domain.

After the EFU is done, the TCU will start the default BISI sequence. This will
complete before POR2 is entered. From a TCU perspective, POR1 ends when POR2
begins.

Notes

Since the PLL is locking during POR1 reset, the flush will be held until the PLL is
stable before exiting flush_POR1. This is controlled by the RST unit.

The clocks to unavailable SPC cores and L2 Banks will be stopped; for details See
“Clock Stopping and Core/L2 Available and Disable Controls” on page 43.

POR2

The POR2 state is recognized by TCU when the rst_tcu_flush_init_req goes to ‘1’ and
the rst_wmr_protect is low. The TCU responds by stopping all clocks, and drives
tcu_rst_flush_init_ack high when it begins to flush the scan chains after clocks have
been stopped.

When the rst_tcu_flush_stop_req is received the TCU will cease flushing the scan
chains, and turn all clock domains back on, followed by driving
tcu_rst_flush_stop_ack high to tell RST the clocks are running. TCU also pulses
tcu_efu_read_start to again signal the EFU to begin operation. The timing of the
efuse handshaking is the same as in POR1.
Chapter 4 Test Control Unit (TCU) 4-89

The DMU is excluded from flush resets and clock stopping (the RST, CCU and TCU
are excluded from POR2). The start of WMR1 indicates the end of POR2 from a TCU
perspective.

WMR1

The WMR1 state is recognized by rst_wmr_protect being active during the receipt of
rst_tcu_flush_init_req to begin this phase. The actions are similar to POR2 between
TCU and RST as shown, except no efuse start is sent by TCU. When TCU drives the
tcu_rst_flush_stop_ack high this indicates the end of WMR1 from a TCU
perspective.

Before leaving WMR1 TCU will start any pending BIST/BISI sequence which may
have been requested via SW; this will be allowed to complete before WMR2 is
entered.

WMR2

The WMR2 state is recognized only after WMR1 has occurred by rst_wmr_protect
being active during the receipt of rst_tcu_flush_init_req; TCU responds as in
WMR1. At the end of WMR2, though, the Reset Counter will be allowed to
decrement as specified in the section on debug; See “TCU Debug Registers” on
page 60. The Reset Counter should be programmed before WMR2 ends.

When TCU drives the tcu_rst_flush_stop_ack high this indicates the end of WMR2
from a TCU perspective.

4.16.1 JTAG Access During POR
JTAG is operational after TRST_L goes inactive during POR1; however, to access
registers that are outside of JTAG the clocks must be running and the targeted areas
should be capable of receiving the JTAG actions. During the POR sequence there are
specific times when such access via JTAG is possible. To insure the user performs
JTAG accesses during a safe period in the POR sequence, three JTAG instructions
have been provided that create a window in the POR sequence so that JTAG
instructions can be safely performed. By executing TAP_JTPOR_ACCESS a signal
inside TCU will be set that will cause TCU to pause after EFUSE 2 transfer completes
by delaying activation of the tcu_rst_efu_done signal. The user should execute
TAP_JTPOR_ACCESS after releasing TRST_L in the POR sequence. The status of
TCU can then be checked with TAP_JTPOR_STATUS; when the status is ‘1’ this
indicates that the TCU is paused and the JTAG programming window is active.
Clocks will be running and JTAG instructions can be executed during this window.
To continue with POR the user should execute TAP_JTPOR_CLEAR, which will
cause TCU to continue with the POR sequence.
4-90 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

Note that when setting the JT POR access via TAP_JTPOR_ACCESS, it is possible to
hold the chip input pin PWRON_RST_L low to allow enough time for the jtag
programming to be completed. The sequence then would be to begin the POR
sequence, release TRST_L but hold PWRON_RST_L low, complete the
TAP_JTPOR_ACCESS programming, and then release PWRON_RST_L to allow the
reset sequence to continue.

To shorten the bisi sequence in POR1 the JTAG TAP_MBIST_ABORT can be used.
The execution of this instruction would need to be controlled by counting sys clock
pulses and choosing the appropriate cycle to abort. If the BISI sequencer in TCU
receives an MBIST-Abort request it will simulate a BISI timeout and the sequence
will continue as if an actual timeout had occurred. This is useful during testing on
ATE to shorten the POR sequence. It is up to the user to determine when to execute
the TAP_MBIST_ABORT, and this does not require using TAP_JTPOR_ACCESS as
the abort needs to occur before the JTPOR pause occurs.

One of the primary uses of JTAG access during POR is to bypass the efuse. One
important point to keep in mind is that anything that has already happened in the
POR sequence before the pause won’t see the bypassed efuse values. In particular,
BISI will have already completed during POR1 using data from the first EFUSE
transfer. Thus, if a bank available row in the EFUSE array is bypassed during JTPOR
to make an unavailable bank available, the bank that was marked as unavailable
during POR1 will not have been initialized by BISI and will contain garbage data. It
is up to software to tolerate this.

4.16.2 ASIC Reset
The ASIC blocks in OpenSPARC T2 DMU are treated differently from other clusters
during the reset sequence and warm or debug resets.

During POR1 the DMU has its clocks stopped until the RST unit tells TCU to release
them with rst_tcu_asicflush_stop_req; this signal comes earlier than
rst_tcu_flush_stop_req. When the asicflush_stop_req is received, TCU releases itself
from its own flush reset and turns off the clock stops to the ASICs and deasserts
tcu_asic_scan_en. The tcu_asic_aclk is not asserted at all during POR1, preventing a
flush state to the ASICs. During subsequent resets (WMR1, WMR2) the ASIC clock
stops are allowed to activate in the normal clock stop sequence but the ASICs are not
flushed. During debug resets (DBR) the signal rst_tcu_dbr_gen is active and TCU
does not activate the clock stops to the ASICs to allow them to continue running.
During JTAG clock stop operations, these blocks behave as other SOC blocks. During
POR2 the ASIC clock stops will be held deasserted.
Chapter 4 Test Control Unit (TCU) 4-91

4.17 EFuse
The interface between the TCU and the E-Fuse Unit (EFU) is similar to that from
OpenSPARC T1. This section only describes the TCU to EFU interface including the
JTAG instructions used. For information about the EFU refer to its micro-architecture
specification.

There are five modes of operation which the TCU recognizes for interfacing with the
TCU. All except the POR mode require JTAG instructions and user intervention. The
POR mode is handled directly by the TCU during the power-on reset sequence.

Note: Bypass data register is in EFU, and has reversed bit ordering from other JTAG
registers (msb is closest to TDO). Bit ordering may also apply to other EFU register
values as interpreted by the EFU. Please see the EFU MAS for details.

4.17.1 POR Mode
During the power-on reset sequence the EFU needs to send data to the chip. It does
this when activated by a signal from TCU called tcu_efu_read_start (ioclk domain).
This signal is pulsed and released to start the EFU, and may be activated multiple
times during the POR sequence.

4.17.2 JTAG Read Access
This allows the user to read each row of the E-fuse Array (EFA) inside the EFU. The
EFA is 64 rows by 32 columns. The JTAG instructions in the suggested order of
application are:

■ TAP_FUSE_READ_MODE Set the mode bits

■ TAP_FUSE_ROW_ADDRSpecify the row address

■ TAP_FUSE_READRead the specified row

4.17.3 Program Mode
This allows the usere to program the EFA one bit at a time in conjunction with
proper application of the package pins required for EFA programming
(fct_efa_prog_en). The JTAG instructions in the suggested order of application are:

■ TAP_FUSE_ROW_ADDRSpecify the row address
4-92 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

■ TAP_FUSE_COL_ADDRSpecify the column address

■ Assert appropriate package pins per TI specifications

These steps may be repeated; the addresses will remain active until changed so once
a row address is set it need not be changed until all columns have been traversed.

4.17.4 Bypass Mode
This allows the user to bypass the EFA, so that the EFU will treat user-supplied data
as if it came from the EFA. This is useful for sending user data to SRAM redundancy
registers to verify repairability. The JTAG instructions in the suggested order of
application are:

■ TAP_FUSE_BYPASS_DATA Send the data to EFU that will be used in place of
EFA

■ TAP_FUSE_BYPASSTell the EFU to use the bypass_data and send it out

4.17.5 Sample Mode
This allows the usere to sample a redundancy value from an array. The JTAG
instructions in the suggested order of application are:

■ TAP_FUSE_BYPASS_DATA Specify register to be sampled

■ TAP_FUSE_DEST_SAMPLERequest EFU to get data and return it to JTAG

4.17.6 Redundancy Value Clear
To provide a means of clearing redundancy values, the TAP_ FUSE_RVCLR
instruction is provided. This allows the user to clear all or specific redundancy
values via the EFUSE unit. The same mechanism is used by TCU to tell EFUSE to
clear all redundancy values before initiating an EFUSE start sequence during POR.

TABLE 4-16 EFUSE Redundancy Value Clear Register

Register JTAG Instr. Fields

efu_rvclr[6:0] TAP_FUSE_RVCLR efu_rvclr[6] = 1 enables a clear
efu_rvclr[5:0] = block_id per efuse spec.; selects Redundancy
Value to clear
efu_rvclr[5:0] = 11_1111 will tell efuse to clear all RV’s
Chapter 4 Test Control Unit (TCU) 4-93

4.18 TCU Local CSR Assignments
The Base Address for TCU is 0x85_0000_0000.

Devices can access the following registers in TCU via the UCB protocol with the
offset addresses listed. Reference the corresponding section in this document for
details on each register. Note (1): In the case of the MBIST Mode and Bypass
registers the default value is over-written by logic during the power on reset
sequence: the BISI enable bit 1 of the MBIST mode register is written by logic during
the power-on reset sequence,and once written it will remain high until it is
programmed otherwise. The value of the MBIST Bypass register will depend on the
core and bank available fuse values after POR1; if there is no partial mode, then the
MBIST Bypass register will be all 1’s in bits 47:0.

4.18.1 Memory BIST Registers
These registers are protected during warm resets unless modified via JTAG.

TABLE 4-17 MBIST Mode Register (0x00)

Bits Name Initial Value R/W Description

[63:4] Reserved X RW Reserved

[3] Loop 0 RW Loop mode if ‘1’

[2] User 0 RW Diagnostic (user) mode if ‘1’

[1] BISI 0 (1 - note 1) RW BISI if ‘1’, BIST if ‘0’

[0] Parallel 0 RW Parallel mode if ‘1’

TABLE 4-18 MBIST Bypass Register (0x08)

Bits Name Initial Value R/W Description

[63:48] Reserved X RW Reserved

[47:0] Bypass 0
(48’hFFFFFFFFFFF
F - note 1)

RW MBIST Bypass
4-94 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

TABLE 4-19 MBIST Start Register (0x10)

Bits Name Initial Value R/W Description

[63:1] Reserved X W Reserved

[0] Start 0 W Starts MBIST Sequence when written
to ‘1’

TABLE 4-20 MBIST Abort Register (0x18)

Bits Name Initial Value R/W Description

[63:1] Reserved X W Reserved

[0] Abort 0 W Aborts MBIST Sequence when written
to ‘1’

TABLE 4-21 MBIST Result Register (0x20)

Bits Name Initial Value R/W Description

[63:2] Reserved X R Reserved

[1] Result 0 R MBIST Done (bit 1)

[0] Result 0 R MBIST Fail (bit 0)

TABLE 4-22 MBIST Done Register (0x28)

Bits Name Initial Value R/W Description

[63:48] Reserved X R Reserved

[47:0] Done 0 R MBIST Done
Chapter 4 Test Control Unit (TCU) 4-95

4.18.2 Logic BIST Registers
These registers are protected during warm resets unless modified via JTAG.

TABLE 4-23 MBIST Fail Register (0x30)

Bits Name Initial Value R/W Description

[63:48] Reserved X R Reserved

[47:0] Fail 0 R MBIST Fail

TABLE 4-24 MBIST Start WMR Register (0x38)

Bits Name Initial Value R/W Description

[63:1] Reserved X W Reserved

[0] Start 0 W Starts MBIST Sequence when written
to ‘1’, but delayed until after the next
warm reset occurs

TABLE 4-25 LBIST Mode Register (0x40)

Bits Name Initial Value R/W Description

[63:2] Reserved X RW Reserved

[1] Program 0 RW Program mode if ‘1’

[0] Parallel 0 RW Parallel mode if ‘1’

TABLE 4-26 LBIST Bypass Register (0x48)

Bits Name Initial Value R/W Description

[63:8] Reserved X R/W Reserved

[7:0] Bypass 0 R/W LBIST Bypass
4-96 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

4.18.3 Debug Control Registers
This register can operate during warm resets if enabled by TCU DCR.

TABLE 4-27 LBIST Start Register (0x50)

Bits Name Initial Value R/W Description

[63:1] Reserved X W Reserved

[0] Start 0 W Starts LBIST Sequence when written to
‘1’

TABLE 4-28 LBIST Done Register (0x60)

Bits Name Initial Value R/W Description

[63:8] Reserved X R Reserved

[7:0] Done 0 R LBIST Done Status

TABLE 4-29 Cycle Counter Register (0x100)

Bits Name Initial Value R/W Description

[63:0] Cycle Counter 0 RW See “Cycle Counter” on page 60
Chapter 4 Test Control Unit (TCU) 4-97

4-98 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

CHAPTER 5

Clock Control Unit (CCU)

This chapter contains the following sections:

■ Section 5.1, “Overview” on page 5-1

■ Section 5.2, “CCU Port List” on page 5-4

■ Section 5.3, “Clock and Reset Inside CCU” on page 5-15

■ Section 5.4, “SYNC Pulses” on page 5-20

■ Section 5.5, “RNG Description” on page 5-27

■ Section 5.6, “CSR Block” on page 5-29

■ Section 5.7, “CCU TESTABILITY” on page 5-32

■ Section 5.8, “Full Chip Testability” on page 5-34

■ Section 5.9, “Appendix A.1 – Sync Pulse Design Procedure” on page 5-42

■ Section 5.10, “Appendix A.2 – Sync Pulse Timing Analysis” on page 5-45

5.1 Overview
This is the microarchitecture specification for the CCU block. It encompasses the
following functionality

■ PLL to drive the core and memory clocks

■ Interfacing with random number generator

■ UCB interface for programming the pll's/rng and reading rng data

■ Provide sync pulses for deterministic clock domain crossing

■ Clock stretch and other test clocking mechanisms such as SerDes testing (via
DTM) for OpenSPARC T2
5-1

5.1.1 System Block Diagram

FIGURE 5-1 System Block Diagram
5-2 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

5.1.2 CCU Block Diagram and Description

FIGURE 5-2 CCU Block Diagram

Currently, the PLL is the only hard-macro in the CCU. The PLL generates clocks and
also performs clock stretching. This is described in Section 5.3, “Clock and Reset
Inside CCU” on page 5-15 and Section 5.4, “SYNC Pulses” on page 5-20. Section 5.4,
“SYNC Pulses” on page 5-20 also includes information on the clock dividers, global
clock tree and staging flops.

Interfacing with the RNG block involves an LFSR that can be accessed as a CSR
register. Details are given in Section 5.5, “RNG Description” on page 5-27.

UCB interface for programming CSR's is reused from the RST cluster. Its protocol is
described in Section 7.4, “ Interface Signals, Protocols, and Timing Diagrams” on
page 7-10.

The actual registers resides in the CSR block. It also includes logic for interfacing to
the other side of UCB, as described in the UCB interface document. Register
addresses and fields are defined in Section 5.6, “CSR Block” on page 5-29.

Sync pulse generation is described in Section 5.4, “SYNC Pulses” on page 5-20, with
the detailed analysis in the appendices.
Chapter 5 Clock Control Unit (CCU) 5-3

5.2 CCU Port List
TABLE 5-1 CCU Port Listing

Name Dir Width Domain Description

CLK Input/Outputs

gclk I 1 N/A Input to CCU cluster headers from global clk tree

dr_pll_clk O 1 N/A Connect to global clock tree input

cmp_pll_clk O 1 N/A Connect to global clock tree input

CCU-NCU Interface

ccu_ncu_stall O 1 io UCB interface between CCU <-> NCU

ncu_ccu_vld I 1 io UCB interface between CCU <-> NCU

ncu_ccu_data I [3:0] io UCB interface between CCU <-> NCU

ncu_ccu_stall I 1 io UCB interface between CCU <-> NCU

ccu_ncu_vld O 1 io UCB interface between CCU <-> NCU

ccu_ncu_data O [3:0] io UCB interface between CCU <-> NCU

PLL-Bump Interface

pll_sys_clk_p I 1 N/A Differential input reference to PLL

pll_sys_clk_n I 1 N/A Differential input reference to PLL

pll_vdd I 1 static PLL VDD – static tie high

mio_ccu_pll_char_in I 1 async Direct bump input to PLL – selects internal PLL signal
during characterization active when mio_pll_testmode==
1. Also CSR programmable

CCU-RNG Interface

rng_arst_l O 1 async Asynchronous reset of rng, also used to precharge
voltage of large caps of the RC filters

rng_data I 1 async Input bit stream of random data (combined from up to 3
noise cells). Loaded into LFSR which is accessible via CSR
address RNG_DAT

rng_bypass O 1 async Relates to generation of entropy in noise cells-- CSR
programmable

rng_vcoctrl_sel O [1:0] async PMOS diode D/A setting bus -- CSR programmable

rng_ch_sel O [1:0] async Channel select for using entropy from 1,2 or 3 noise cells --
CSR programmable
5-4 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

rng_anlg_sel O [1:0] async Selects internal analog signal for characterization -- CSR
programmable

SCAN/Test Related

scan_in I 1 aclk Scan chain input – (currently hooked up to DMU scan_out
output)

tcu_scan_en I 1 async Scan enable from TCU

tcu_aclk I 1 N/A aclk input to clkgen module. Connect to TCU

tcu_bclk I 1 N/A bclk input to clkgen module. Connect to TCU

scan_out O 1 aclk Scan chain output – (currently drives RST scan_in port)

tcu_atpg_mode I 1 async Puts the CCU in test mode for ATPG testing. Unless this
signal is asserted, aclk, bclk and scan inputs into the CCU
are all held low, and the scan chain is shorted.

ccu_dbg1_serdes_dtm O 1 io Sets DBG1 mux controls for DTM

ccu_mio_serdes_dtm O 1 io Sets MIO mux controls for DTM

Global Clock Tree Interface

ccu_cmp_io_sync_en O 1 cmp Sync pulse for cmp -> io clk domain

ccu_io_cmp_sync_en O 1 cmp Sync pulse for io -> cmp clk domain

ccu_dr_sync_en O 1 cmp Sync pulse for cmp -> dr clk domain

ccu_io2x_sync_en O 1 cmp Sync pulse for cmp -> io2x clk domain

ccu_io2x_out O 1 cmp Divider phase signal output – rate of CMP clk. Connect to
ccu_div_ph of clkgen module in other clusters as needed

ccu_io_out O 1 cmp Divider phase signal output – rate of CMP clk. Connect to
ccu_div_ph of clkgen module in other clusters as needed

gl_ccu_io_out I 1 cmp Divider phase input; similar to ccu_io_out inputs for other
clusters.

ccu_vco_aligned O 1 vco Align signal tightly coupled to PLL clock domain

gclk_aligned I 1 cmp Align signal tightly coupled to (cmp) gclk domain

ccu_serdes_dtm O 1 async Places chip in DTM mode where dr_clk == io_clk, and
cmp, dr, io clock phases are deterministic. Currently
unused in cluster headers.

CCU-MIO Interface

mio_pll_testmode I 1 async Dedicated. Input from external IO through MIO – Used to
place PLL in test mode (active high)

TABLE 5-1 CCU Port Listing (Continued)

Name Dir Width Domain Description
Chapter 5 Clock Control Unit (CCU) 5-5

ccu_mio_pll_char_out O [1:0] async Dedicated. Digital characterization output of PLL. Connect
to external IO through MIO. Valid when
mio_pll_testmode==1

mio_ccu_vreg_selbg_l I 1 static Dedicated. Input from external IO through MIO – controls
VREG input of PLL and RNG

mio_ccu_pll_clamp_fltr I 1 static Shared. Input from external IO through MIO – Used to
control clamp filter input of PLL in test mode
(mio_pll_testmode==1)

mio_ccu_pll_div2 I [5:0] async Shared. Input from external IO through MIO – Used to
program D2 of PLL in test mode (mio_pll_testmode==1)

mio_ccu_pll_div4 I [7:0] async Shared. Input from external IO through MIO – Used to
program D4 of PLL in test mode (mio_pll_testmode==1)

mio_ccu_pll_trst_l I 1 async Shared. Input from external IO through MIO – Used to
reset PLL in test mode (mio_pll_testmode==1)

CCU-TCU Interface

gl_ccu_clk_stop I 1 cmp Clock stop for cmp domain (providisional signal. as of
now, no application for it)

gl_ccu_io_clk_stop I 1 cmp Clock stop for io domain (providisional signal. as of now,
no application for it)

tcu_pce_ov I 1 async Overrides clock stop assertion (providisional signal. as of
now, no application for it)

tcu_ccu_mux_sel I [1:0] cmp Controls PLL muxes from TCU – one of 4 signals to gclk
tree inputs: PLL VCO, sysclk, bypass clock, or stretched
clock.

tcu_ccu_ext_cmp_clk I 1 N/A Bypass clock input for CMP clk (muxed with TCK) from
TCU

tcu_ccu_ext_dr_clk I 1 N/A Bypass clock input for DR clk (muxed with TCK) from
TCU

tcu_ccu_clk_stretch I 1 cmp Controls clock stretch in PLL

CCU-RST Interface

rst_ccu_pll_ I 1 sys Active low PLL reset – once de-asserted, PLL will start to
lock

rst_ccu_ I 1 sys Active low reset for CCU logic – staggered with respect to
rst_ccu_pll_

ccu_sys_cmp_sync_en O 1 cmp Special sync pulse for sys -> cmp clk domain – ONLY for
RST cluster

TABLE 5-1 CCU Port Listing (Continued)

Name Dir Width Domain Description
5-6 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

5.2.1 Clock Generation and Distribution

5.2.1.1 Generation

There is one PLL in the CCU for generating both core and memory clocks. The
SPARC cores, CCX and L2 cache operate at the cmp frequency. Parts of the chip are
on the io and io2x domains, both of them derived directly from the cmp clock. The
other clock that goes into the MCU for interfacing with FBDIMM's is the dr clock.

The same system reference clock is pll_sys_clk_p/n. This is a differential input that
is fed from the bumps directly into the core pll. There are 2 independent dividers
that generate cmp and dr clocks, which are rational multiples of each other. Hence,
they are ratioed synchronous. The following diagram gives a simplistic representation
of how the PLL generates these clocks.

ccu_cmp_sys_sync_en O 1 cmp Special sync pulse for cmp -> sys clk domain – ONLY for
RST cluster

ccu_rst_sys_clk O 1 N/A Provides buffered version of sysclk that the PLL is running
off

ccu_rst_sync_stable O 1 cmp When asserted after PLL has finished locking, indicates to
RST block that all clocks and sync pulses are stable

ccu_rst_change O 1 io When asserted, indicates to the RST block that the pll
divider values WILL change.
NOTE. CCU does NOT PERFORM an actual check of old
and new divider values. It relies solely on the value of
CHANGE field in PLL_REG for the RST to determine if
PLL lock required

rst_wmr_protect I 1 async Prepares CCU for a warm reset

cluster_arst_l I 1 async Holds cluster header output clock low

TABLE 5-1 CCU Port Listing (Continued)

Name Dir Width Domain Description
Chapter 5 Clock Control Unit (CCU) 5-7

FIGURE 5-3 PLL Clock Generation during Mission Mode

The other clocks, io_clk and io2x_clk, are derived from the cmp clock, by generating
divided down (by 4 and 2 respectively), phase signals. They are distributed as clocks
from cluster header outputs. The distribution is discussed in more detail in
Section 5.2.4, “Distribution” on page 5-13.

Note that the PLL feedback loop is entirely self-contained within the PLL. Thus
there is arbitrary phase difference between the rising edge of a sys_clk cycle and a
rising edge of a clock into the CLK input of a flop in any cluster.

5.2.2 PLL Programming
The PLL is programmed through a combination of registers (CSR fields), direct chip-
level pin control and combinational logic. The CSR based controls are covered in
Section 5.6, “CSR Block” on page 5-29. External pin-level control is applicable
typically in test mode, and is covered in Section 5.7, “CCU TESTABILITY” on
page 5-32. This sub-section focuses on divider configuration (CSR programmable)
and combinational mux controls from the TCU.
5-8 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

Dividers D1, D2 and D3 perform integer division. D4 has fractional divide capability
in discrete increments of 0.5 by using both phases of the VCO clock. The divider
configurations allow cmp_pll_clk to run at different multiples of pll_sys_clk, but
dr_pll_clk is always twice as fast as pll_sys_clk. The DR clock output may not have
50/50 duty cycle, but should be within +/-10%. This is not an issue within
OpenSPARC T2 since there is no operation on the low phase.

The divider values are summarized in TABLE 5-2 with information on both effective
and actual bits.

Even though all 4 dividers can be programmed via CSR writes, there is a subset of
values that are valid. D3, for example, needs to be set to divide by 2. Putting a
divide by 3 or higher will result in a non 50/50 duty cycle cmp clock. dr_pll_clk may
not be produced correctly since it uses both phases of the VCO clock. Acceptable
values for normal operating or mission mode with corresponding clock frequencies
are given in Table 4.

The clock frequency multiplication equations with respect to the external oscillator
output (sys_clk) are shown.

fvco = (D2 X D3 /D1) fsys
fcmp = (1 /D3) fvco = (D2 /D1) fsys
fdr = (1 /D4) fvco = (D2 X D3)/(D1 X D4) fsys
fio = fcmp = (D2 /4D1) fsys
fio2x = fcmp = (D2 /2D1) fsys

TABLE 5-2 PLL Divider Programmation for Mission Mode

Div Bits (Effective) Valid Range Binary Encoded Values Comments

D1 6 2 00_0001 Binary value = Effective value – 1

D2 6 8 — 21 00_0111 – 01_0100 Binary value = Effective value – 1

D3 6 2 00_0001 Binary value = Effective value – 1

D4 7 4.0 — 10.5 00_0100_0 – 00_1010_1 Binary value [6:1] = Effective value;
bit [0] = 0 for integer effective, and 1

for effective x.5
Chapter 5 Clock Control Unit (CCU) 5-9

The first row in any of the 3 sets in TABLE 5-3 holds the default divider ratio during
power-on-reset. The rows in blue (14, 10 and 7) of the 3 sets refer to the targeted
operating frequencies. Grayed out sections are beyond the scope of expected
operation, even though within the CCU there is no check for these configurations.

TABLE 5-3 Clock Frequency Table in Mission Mode

No. sys_clk
(MHz)

D1 D2 D3 D4 D2*D3 VCO
(MHz)

cmp_clk
(MHz)

io_clk
(MHz)

io2x_clk
(MHz)

r_clk
(MHz)

cmp:dr
(ratio)

1 133.33 2 8 2 4.00 16.00 1066.67 533.33 133.33 266.67 266.67 2.00

2 133.33 2 9 2 4.50 18.00 1200.00 600.00 150.00 300.00 266.67 2.25

3 133.33 2 10 2 5.00 20.00 1333.33 666.67 166.67 333.33 266.67 2.50

4 133.33 2 11 2 5.50 22.00 1466.67 733.33 183.33 366.67 266.67 2.75

6 133.33 2 12 2 6.00 24.00 1600.00 800.00 200.00 400.00 266.67 3.00

6 133.33 2 13 2 6.50 26.00 1733.33 866.67 216.67 433.33 266.67 3.25

7 133.33 2 14 2 7.00 28.00 1866.67 933.33 233.33 466.67 266.67 3.50

8 133.33 2 15 2 7.50 30.00 2000.00 1000.00 250.00 500.00 266.67 3.75

8 133.33 2 16 2 8.00 32.00 2133.33 1066.67 266.67 533.33 266.67 4.00

10 133.33 2 17 2 8.50 34.00 2266.67 1133.33 283.33 566.67 266.67 4.25

11 133.33 2 18 2 9.00 36.00 2400.00 1200.00 300.00 600.00 266.67 4.50

12 133.33 2 19 2 9.50 38.00 2533.33 1266.67 316.67 633.33 266.67 4.75

13 133.33 2 20 2 10.00 40.00 2666.67 1333.33 333.33 666.67 266.67 5.00

14 133.33 2 21 2 10.50 42.00 2800.00 1400.00 350.00 700.00 266.67 5.25

1 166.67 2 8 2 4.00 16.00 1333.33 666.67 166.67 333.33 333.33 2.00

2 166.67 2 9 2 4.50 18.00 1500.00 750.00 187.50 375.00 333.33 2.25

3 166.67 2 10 2 5.00 20.00 1666.67 833.33 208.33 416.67 333.33 2.50

4 166.67 2 11 2 5.50 22.00 1833.33 916.67 229.17 458.33 333.33 2.75

6 166.67 2 12 2 6.00 24.00 2000.00 1000.00 250.00 500.00 333.33 3.00

6 166.67 2 13 2 6.50 26.00 2166.67 1083.33 270.83 541.67 333.33 3.25

7 166.67 2 14 2 7.00 28.00 2333.33 1166.67 291.67 583.33 333.33 3.50

8 166.67 2 15 2 7.50 30.00 2500.00 1250.00 312.50 625.00 333.33 3.75

8 166.67 2 16 2 8.00 32.00 2666.67 1333.33 333.33 666.67 333.33 4.00

10 166.67 2 17 2 8.50 34.00 2833.33 1416.67 354.17 708.33 333.33 4.25

11 166.67 2 18 2 9.00 36.00 3000.00 1500.00 375.00 750.00 333.33 4.50
5-10 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

PLL output clock behavior with respect to its reset signals and sys_clk are shown.
They are produced independently of the PLL specification. The example FIGURE 5-4
assumes D1 and D3 are left in their default states (effective value of 2 for both).

12 166.67 2 19 2 9.50 38.00 3166.67 1583.33 395.83 791.67 333.33 4.75

13 166.67 2 20 2 10.00 40.00 3333.33 1666.67 416.67 833.33 333.33 5.00

14 166.67 2 21 2 10.50 42.00 3500.00 1750.00 437.50 875.00 333.33 5.25

1 200 2 8 2 4.00 16.00 1600.00 800.00 200.00 400.00 400 2.00

2 200 2 9 2 4.50 18.00 1800.00 900.00 225.00 450.00 400 2.25

3 200 2 10 2 5.00 20.00 2000.00 1000.00 250.00 500.00 400 2.50

4 200 2 11 2 5.50 22.00 2200.00 1100.00 275.00 550.00 400 2.75

6 200 2 12 2 6.00 24.00 2400.00 1200.00 300.00 600.00 400 3.00

6 200 2 13 2 6.50 26.00 2600.00 1300.00 325.00 650.00 400 3.25

7 200 2 14 2 7.00 28.00 2800.00 1400.00 350.00 700.00 400 3.50

8 200 2 15 2 7.50 30.00 3000.00 1500.00 375.00 750.00 400 3.75

8 200 2 16 2 8.00 32.00 3200.00 1600.00 400.00 800.00 400 4.00

10 200 2 17 2 8.50 34.00 3400.00 1700.00 425.00 850.00 400 4.25

11 200 2 18 2 9.00 36.00 3600.00 1800.00 450.00 900.00 400 4.50

12 200 2 19 2 9.50 38.00 3800.00 1900.00 475.00 950.00 400 4.75

13 200 2 20 2 10.00 40.00 4000.00 2000.00 500.00 1000.00 400 5.00

TABLE 5-3 Clock Frequency Table in Mission Mode (Continued)

No. sys_clk
(MHz)

D1 D2 D3 D4 D2*D3 VCO
(MHz)

cmp_clk
(MHz)

io_clk
(MHz)

io2x_clk
(MHz)

r_clk
(MHz)

cmp:dr
(ratio)
Chapter 5 Clock Control Unit (CCU) 5-11

FIGURE 5-4 PLL Clocking Waveforms

5.2.3 PLL Mux Control
All functional clock muxing in OpenSPARC T2 is performed in custom blocks – the
PLL, cluster headers and specialized L1 headers. However, the PLL clock mux
control logic is divided between the CCU and the PLL hard macro, with the CCU
5-12 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

often exercising additional constraints. The combination of CCU inputs, and
equivalent mappings to PLL inputs are tabulated inTABLE 5-4. For actual usage
related to various modes of operation, refer to the Testability sections of this MAS.

FIGURE 5-3 and FIGURE 5-19 complement the information in the table. Note that the
PLL input and output signals above will be allowed to change based on any
sequential logic within the CCU or PLL. For example, if DTM 1 or 2 mode is
programmed into the CSRs, during PLL reset, pll_bypass will be held high to avoid
internal PLL clock mux contention, and then set to 0 upon reset release. Under all
other conditions, pll_bypass will simply be assigned to tcu_ccu_mux_sel[1].

5.2.4 Distribution
As shown in FIGURE 5-2, cmp_clk and dr_clk are distributed via a global clock tree to
gclk inputs of various clusters. Each cluster receives the same phase of gclk. The
CCU also sends out a few control signals that are distributed closely with gclk's and
pipelined on various tap points of the global clock tree. A high level diagram is
shown in FIGURE 5-5.

TABLE 5-4 CCU and PLL Mapping

CCU or CSR inputs PLL inputs PLL outputs

Mod
e

dtm
[1,2]

atpg_
mod
e

mu
x_s
el

pll_arst_l pll_b
ypass

pll_sel_a pll_dtm dr_sel_a pll_clk_out dr_clk_out

Func 0 0 00 rst_ccu_pll_ 0 00 0 00 sys_clk x N sys_clk x M

Str 0 0 01 rst_ccu_pll_ 0 01 0 01 sys_clk x N
(str)

sys_clk x M
(str)

ATP
G

0 1 10 0 1 10 1 10 ext_cmp_clk ext_dr_clk

Byp 0 1 11 0 1 11 1 11 sys_clk_p sys_clk_p

DTM 1 0 00 rst_ccu_pll_ 0 00 1 11 sys_clk x N sys_clk_p

MTes
t

0 0 11 0 1 10 1 10 ext_cmp_clk ext_dr_clk
Chapter 5 Clock Control Unit (CCU) 5-13

FIGURE 5-5 Simplified Global Distribution of CMP Clock

There are a set of other global signals from the CCU such as the divider phase
signals, and sync pulses that are staged in the global clock tree, along with reset lines
from the RST and clock stops from the TCU. All these staged signals are sent out on
the CMP domain, or in some cases on the DR domain. Synchronization to the
gridded clock outputs is performed in the cluster header, as described in the Usage
document.

For completeness and references to it in other sections, DR distribution is shown in
FIGURE 5-6.
5-14 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 5-6 Global Distribution of the DR Clock

5.3 Clock and Reset Inside CCU

5.3.1 Clock Domains
There are 3 clock domains within the CCU: L2, IOL2, and CMP_PLL. There is a
distinction between CMP_PLL and L2 domains. The L2 domain is synchronous to all
other clusters. CMP_PLL domain is the result of using the PLL output clock at CMP
rate prior to distributing the clock through the GCLK macro. L2 clock is a phase
shifted version of CMP_PLL clock ; the phase shift due to distribution can vary
from process to process from 0.5 to ~1.5 CMP periods.
Chapter 5 Clock Control Unit (CCU) 5-15

Note. There is temporarily a 4th clock domain (SYSCLK) to work around missing
latch models in the std cell library. Once the latch becomes available, SYSCLK
domain will be removed.

A breakdown of the CCU by clock domain and approximate functionality appears in
FIGURE 5-7. FIGURE 5-8 details the clock align detection logic since it uses non-
conventional clocking and has a few special constraints:

The first pair of flops act as synchronizers should the negative edge of the reference
clock be sampled by the flops (the outome of the align detection is immaterial since
it is zero in this case).

There is a half-cycle, or 2X clockig path where data from negative clocked flops gets
transferred to positive edge-triggered flops.

5.3.2 Reset Scheme
The CCU relies on the RST block for explicit reset signals, and does not operate via
flush reset. Also, it needs to be released from reset before all other blocks on the
chip. One reset is solely for the PLL, and the other for the remaining CCU logic,
loosely speaking. The CCU itself needs to generate one or two staggered resets.
These resets work in a domino like fashion to ultimately provide a signal to the RST
unit that indicates the CCU is done with initialization, and that the RST block may
release the rest of the chip from reset. This signal is ccu_rst_sync_stable. When the
signal goes high, all clocks from the CCU are valid, at the correct frequency, and all
sync pulses are operating in their proper positions.

Depending on whether clocks may be stable or not, the CCU needs to use either
asynchronous or synchronous reset. However, all resets within the CCU are released
synchronously. Emphasis has been placed on determinism and repeatability, so even
where brute-force synchronization is used, additional signals ensure determinism.

There is only 1 CSR register in the CCU that is warm reset protected (see section 9.0).
All clock generating and pll programmation bits are warm reset protected. The rest
are not.

5.3.3 Initialization Sequence
The Power-On-Reset scheme in the CCU is highlighted by the waveforms in
FIGURE 5-9.

For functional operation, the CCU is activated in a very simple manner. There are
two resets to the CCU, ccu_rst_pll_ and ccu_rst_ that need to be applied in a
sequence. Testmode, and divider_bypass pins need to be held low. When the CCU
5-16 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

sends asserts ccu_rst_sync_stable to the RST block, all clocks and sync pulses are
being generated correctly, and the RST may An explanation of the
variousnumbered parameters is given.

TABLE 5-5 Key Parameters in Initialization Sequence

Parm # Description Duration

1 Time taken for first rising edge of refclk to appear from release of rst_ccu_pll_ <1 sys_clk cycle

2 Deassertion of rst_ccu_pll_ to rising edge of stable CMP PLL clock ouput LOCK TIME

3 Clock distribution delay of global clock tree from PLL output to gclk input of
cluster header

~0.5 – ~1.3 CMP
cycle

4 Deassertion of rst_ccu_ to gclk_rst_n (requires use of brute force synchronizer) 1 to 2 CMP cycles

5 Rising edge of refclk to assertion of aligned_shift pulse. 3 CMP cycles

6 Shift of aligned_shift pulse to create VCO aligned 4 to 17 CMP
cycles depending
on pll_div2[5:0]

7 Transfer of aligned signal from CMP PLL domain to CMP_GCLK domain. Tracks parameter
#3

8 From first aligned pulse to aligned_rst_n signal for internal CCU blocks for
coherent reset release.

1 CMP cycle

9 Deassertion of aligned_rst_n to first rising edge of ccu_io2x_out 2 CMP cycles

10 Deassertion of aligned_rst_n to first rising edge of ccu_io_out 4 CMP cycles

11 Time when aligned == 1 to deassertion of divider for generating DR clock
within PLL

2-3 CMP cycles
depending on
pll_div4[6:0]

12 Deassertion of dft_a_rst_l to first rising edge of dr_clk 5-6 CMP cycles
depending on
pll_div4[6:0]
Chapter 5 Clock Control Unit (CCU) 5-17

FIGURE 5-7 CCU Clock Domains and Function
5-18 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 5-8 Align Detection Circuitry

FIGURE 5-9 Initialization Sequence for CCU Clocks
Chapter 5 Clock Control Unit (CCU) 5-19

5.4 SYNC Pulses
The main application of generating synchronization pulses in OpenSPARC T2 is to
allow low latency, deterministic data transfer between ratioed synchronous clock
domains. The key requirements for this scheme to work are:

A single reference clock source.

PLLs that have similar behavior, in particular a known input-output phase
relationship.

The clock frequencies need to be rational multiples of each other, or ratioed
synchronous

Jitter, skew, and other PVT mismatches are taken into account to ensure setup and
hold requirements are met during domain crossing.

Clock domains that are of primary concern are the CMP and DR domains.
Synchronization between cmp and IO, or IO2X domains is a simpler problem, but
handled similarly.

5.4.1 Proposed Scheme
The following circuit shows the proposed scheme for clock domain transfers.
5-20 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 5-10 CMP to DR Synchronization

FIGURE 5-11 DR to CMP Synchronization

It has been borrowed from past designs and modified. All it does is allow data to
cross one domain to another during a safe interval, avoiding setup and hold
problems. The mechanism for operation for fast clock (eg, cmp) to slow clock (eg, dr)
domain is as follows:

Mux enable to launch flip-flop is generated on cmp_clk.

Next cmp rising edge, data is launched.

Data is captured on dr_clk.

For slow clock to fast clock transfers, the procedure is:

Data is launched on rising edge of dr_clk.

Mux enable to capture flip-flop is generated on cmp_clk.

Next cmp rising edge, data is captured.
Chapter 5 Clock Control Unit (CCU) 5-21

In both cases, the rate of communication is limited by the slower clock frequency, so
the enable is generated once every slow clock cycle. The main challenge is to
determine the ideal intervals between pulse generation for robust operation. For a
discussion on determining the positions, refer to the Appendices.

5.4.2 Sync Pulse Distribution

FIGURE 5-12 Logical Representation of Sync Pulse Global Distribution

Sync pulses will be generated in the CCU on the cmp_gclk domain, and be
distributed (along with other control signals) in 5 stages of pipeline in mini-clusters
to each cluster header. In the cluster headers, there will be one more stage of latching
the data on the gclk domain. From there, each cluster will flop the enables on the
l2clk domains before local distribution. In effect, there will be 7 stages of cmp_cycle
before sync pulses are output from cluster headers, and then flopped one last time
within clusters.
5-22 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

5.4.3 CMP to IO/IO2X Waveforms
Domain crossing between CMP and IO/IO2X domains is a special, and simpler case
of CMP to DR communication because cmp_clk is an integer multiple of io_clk and
io2x_clk, and both io_clk and io2x_clk are directly derived from cmp_clk

FIGURE 5-13 shows the actual usage, ie, the final sync_en output (refer to FIGURE 5-9).

FIGURE 5-13 Actual Usage of Sync Pulses at Enable Pin of Transfer Flops (all transfer arrows not shown)

Note – Since cmp_io2x_sync_en and io2x_cmp_sync_en are shown at the point of
usage; however, they would both be driven by a single source – cluster header-
>io2x_sync_en ->flop output.
Chapter 5 Clock Control Unit (CCU) 5-23

For clarity, the outputs of cluster headers are also shown. These are, as expected
from FIGURE 5-9, one l2clk cycle early.

FIGURE 5-14 Sync Enable Positions at the Outputs of Cluster Headers (prior to being latched)

5.4.4 CMP/DR Pulses
CMP to DR pulse positions are determined by the amount of uncertainty that can
exist between cmp_clk and dr_clks. A discussion on the procedure of determining
the positions appears in the Appendix. There are several documents detailing the
sync pulse schemes and timing budgets that have been created to ensure robustness.
An example of the positions of the dr sync pulses is shown in FIGURE 5-15.
5-24 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 5-15 Sync Pulse Example for fCMP:fDR = 11:4

The convention is to describe the sync pulse position in terms of cmp clk phases,
with phase 0 being set to the nominal alignment of cmp and dr clocks. The sync
pulse positions at the point of domain crossing are given in TABLE 5-6.

TABLE 5-6 DR<->CMP Sync Pulse Positions

CMP<->DR Transfer Edge Transfer phase
(normalized for 4 dr=2pi)

K - > clk cycles K - > clk cycles

N M Meff N/M 0 1 2 3 0 1 2 3

8 4 1 2.00 1 1 1 1 1 3 5 7

9 4 4 2.25 1 3 6 8 1 3 6 8

10 4 2 2.50 1 4 1 4 1 4 6 9

11 4 4 2.75 1 4 7 10 1 4 7 10

12 4 1 3.00 1 1 1 1 1 4 7 10

13 4 4 3.25 2 5 8 11 2 5 8 11

14 4 2 3.50 2 5 2 5 2 5 9 12

15 4 4 3.75 2 6 9 13 2 6 9 13

16 4 1 4.00 2 2 2 2 2 6 10 14

17 4 4 4.25 2 6 11 15 2 6 11 15

18 4 2 4.50 2 7 2 7 2 7 11 16

19 4 4 4.75 2 7 12 17 2 7 12 17

20 4 1 5.00 2 2 2 2 2 7 12 17

21 4 4 5.25 3 8 13 18 3 8 13 18
Chapter 5 Clock Control Unit (CCU) 5-25

5.4.5 CMP/SYS Pulses
There are a pair of sync pulses between CMP and SYS_CLK strictly for the RST unit.
These pulses are not staged on the global clock tree, and not taken in through cluster
headers. However, to account for fanout, the signals are flopped twice inside the
RST cluster. The scheme relies on the RST block being placed close to the CCU; there
is tolerance built in for skew between the CMP and SYS_CLK up to a couple of CMP
cycles.

The active position of the sync pulse (“1” on rising edge of cmp_clk) will be on
phase 2 of l2clk. This will provide ample margin, > 1 fast cmp cycle for setup or
hold. Illustrations of data transfers in both directions are shown in FIGURE 5-16. For
quanitfication of the amount of margin available, refer to the appendix.

FIGURE 5-16 Domain Crossing using Sync Pulses in RST
5-26 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

5.5 RNG Description
The random number generator (rng) generates random numbers from 3 noise cells.
There is one rng block (and LFSR) to be shared amongst the 8 processor cores. Only
one of the cells may be active at a time, all three may be active, or none of them may
be active. Any other combination defaults to selecting all three noise cells. The
following encoding applies:

Every clock cycle, the XOR of the outputs of the selected noise cells is fed into a 64-
bit register. Under functional mode, the register generates data by implementing the
CRC-polynomial

P(x) = x64 + x61 + x57 + x56 + x52 + x51 + x50 + x48 + x47 + x46 +
x43 + x42 + x41 + x39 + x38 + x37 + x35 + x32 + x28 + x25 + x22 + x21

+ x17 + x15 + x13 + x12 + x11 + x7 + x5 + x + 1

After each read request, it is important to not maintain any correlation with the past
generated values, so the LFSR will be flushed after every read acknowledge. The
register will be flushed with a non-zero state 0xFFFF_FFFF_FFFF_FFFF. Also,
multiple requests for rng_data are automatically separated by N+2 cycles, where N
can be programmed by writing to the 16-bit field rng_wait_cnt in the CSR register.

TABLE 5-7 Encoding for Noise Cell Selection

CTL3 CTL2 CTL1 Effect

0 0 0 Deselect all noise cells (feeds 0 into LFSR)

0 0 1 Select noise cell 1

0 1 0 Select noise cell 2

1 0 0 Select noise cell3

011, 101, 110, 111 Select all 3 noise cells
Chapter 5 Clock Control Unit (CCU) 5-27

FIGURE 5-17 Read Access Operation of rng_data via Memory Mapped Address

In diagnostic mode (CTL4 = 0), the LFSR acts as a simple shift register capturing the
noise cell output directly, determined independently by CTL1 CTL2 and CTL3 as per
encoding. The additional constraint in this mode is that successive read requests for
the RNG_DATA will be delayed by 64 iol2clk cycles. Also, flushing the LFSR after
every read will be disabled in this mode.

The nominal frequency of the osciallator in each noise cell can be set independently
by programming the rng_vco_ctrl[1:0] field. There are 4 settings that correspond to 4
different frequencies; however, each cell must be programmed one at a time. As an
example, consider the following desired configuration: noise cell1 -> 00 setting, cell2
-> 10 setting, cell 3 --> 01 setting, and observe all 3 cells. One would proceed as
follows:

1. Set CTL3,CTL2,CTL1 = 001 and set RNG_VCO_CTRL = 00

2. Set CTL3,CTL2,CTL1 = 010 and set RNG_VCO_CTRL = 10

3. Set CTL3,CTL2,CTL1 = 100 and set RNG_VCO_CTRL = 01
5-28 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 5-18 Entropy Generator Design

5.6 CSR Block
The CSR block consists of registers that can be used for programming other CCU
blocks, and for accessing information. This includes both functional and test related
data. The other part of the CSR block communicates with the standard UCB
interface.
Chapter 5 Clock Control Unit (CCU) 5-29

Note that values written into the PLL_CTL register will not take effect immidiately
(even though reading them back will show the new values). A warm reset needs to
be applied to affect clocks.
5-30 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

5.6.1 PLL_CTL (0x83_0000_0000)

TABLE 5-8 PLL Control Register

Field Name Bits Default WMR Protected R/W Description

Reserved 63:37 0x0 N/A R Reserved

pll_clamp_fltr 36 0x0 YES R/W PLL clamp filter setting

st_delay_dr 34:35 0x0 YES R/W DR stretch delay setting (40ps intervals) 00 –>
40 , 01 -> 80 , 10 -> 120 , 11 -> 160

pll_char_in 33 0x0 YES R/W PLL characterization test input

change 32 0x1 YES R/W PLL frequency to be changed

align_shift 30:31 0x0 YES R/W Shift align detect point by [-1:1] cmp cycle.
Affects dr_sync pulse generation. All other
sync pulses unchanged. 00 ->
no shift , 01 -> +1 cycle, 10 -> -1 cycle, 11 -> no
shift.

serdes_dtm2 29 0x0 YES R/W Mode 2 – causes ccu_serdes_dtm to be
asserted during reset. io, io2x set to DR rate.
Used by DBG1/MIO for selecting setting mux
controls.

serdes_dtm1 28 0x0 YES R/W Mode 1 – causes ccu_serdes_dtm to be
asserted during reset. io, io2x set to DR rate.
Used by DBG1/MIO for selecting setting mux
controls.

st_delay_cmp 27:26 0x0 YES R/W CMP stretch delay setting (40ps intervals) 00 –
> 40 , 01 -> 80 , 10 -> 120 , 11 -> 160

st_phase_hi 25 0x0 YES R/W High or low phase of clk to be stretched 0
indicates low phase.

pll_div4 24:18 0x8 YES R/W PLL VCO divider (D4) for dr. Refer to PLL
programmation section.

pll_div3 17:12 0x1 YES R/W PLL VCO divider (D3) for cmp. Rrefer to PLL
progrmmation section.

pll_div2 11:6 0x7 YES R/W PLL feedback divider (D2). Refer to PLL
programmation section.

pll_div1 5:0 0x1 YES R/W PLL pre-scalar (D1). Refer to PLL
progrmmation section.
Chapter 5 Clock Control Unit (CCU) 5-31

5.6.2 RNG_CTL (0x83_0000_0020)

5.6.3 RNG_DATA (0x83_0000_0030)

5.7 CCU TESTABILITY
This section deals with the testability of the CCU logic and the PLL.

TABLE 5-9 RNG Control Register

Field Name Bits Default WMR Protected R/W Description

Reserved 63:25 0x0 N/A R Reserved

rng_wait_cnt 24:9 0x003E NO R/W Minimum wait time before successive RNG
data is sent

rng_bypass 8 0x0 NO R/W rng_bypass=0 sets noise cell vco control
voltage = output of feedback amplifier
rng_bypass=1, sets noise cell vco control
voltage = output of bias generator

rng_vcoctrl_sel 7:6 0x0 NO R/W pmos diode D/A setting bus. Controls VCO
rate for each noise cell. Refer to RNG section
for programming.

rng_anlg_sel 5:4 0x0 NO R/W Analog mux select for characterization

rng_ctl4 3 0x1 NO R/W Enables using LFSR or plain shift register. Set
to LFSR mode by default.

rng_ctl3 2 0x1 NO R/W Control for using noise cell 3. Refer to RNG
section for programming.

rng_ctl2 1 0x1 NO R/W Control for using noise cell 2. Refer to RNG
section for programming.

rng_ctl1 0 0x1 NO R/W Control for using noise cell 1. Refer to RNG
section for programming.

TABLE 5-10 RNG Data Register

Field Name Bits Default WMR Protected R/W Description

rng_data 63:0 x N/A R 64 bits of rng data
5-32 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

5.7.1 CCU ATPG
The CCU logic is scannable only during ATPG testing. In mission mode, the scan
chain input to the CCU is short-circuited to scan_out, and the following signals are
set to zero: tcu_aclk, tcu_bclk, tcu_scan_en.

When testmode is set to 1, the TCU gets full control of the CCU, and treats the CCU
just like any other logic on the chip being scanned. The TCU also controls the clock
muxes within the PLL via tcu_ccu_mux_sel (refer to FIGURE 5-15. When
tcu_ccu_mux_sel == 2b'10, the external clocks tcu_ccu_ext_cmp_clk and
tcu_ccu_ext_dr_clk are muxed into the cmp_gclk and dr_gclk buffer trees
respectively. These external clocks in turn are muxed inside the TCU with TCK, such
that TCK can be forced onto both lines, or be controlled by the tester independently.

The only portion of the CCU that is not scannable is logic that does not run on the
regular l2clk or iol2clk. This results in about a dozen flops that are kept out of the
scan chain at all times.

PLL testability is covered in detail within the PLL spec, so it is not duplicated here.

The CCU PLL may be put in testmode, asserting the signal mio_pll_testmode via an
external pin. This signal is independent of the testmode signal used for ATPG.
However, tcu_atpg_mode has higher priority than mio_pll_testmode. For example,
when both are asserted, ccu_pll.pll_arst_l will be set to 0.

With pll_testmode == 1, the CCU provides access to the PLL directly through the
following signals from the MIO:

mio_ccu_vreg_selbg_l
mio_ccu_pll_clamp_fltr
mio_ccu_pll_div2
mio_ccu_pll_div4
mio_ccu_pll_trst_l
mio_ccu_pll_char_in

Likewise, it is possible to observe the internal signals from the PLL through a pair of
muxed (internal to PLL) outputs ccu_mio_pll_char_out.[1:0].

When pll_testmode is active, rst_ccu_pll_ has no effect on resetting the PLL, and the
CSR values for PLL control are overridden. The exception is the pll_char_in signal
which is OR'ed with the PLL_REG bit 33 output.
Chapter 5 Clock Control Unit (CCU) 5-33

5.8 Full Chip Testability
Section 10.0 describes the role of the CCU, and its features for supporting full chip
testability.

5.8.1 Full Chip ATPG
The support provided by the CCU for full chip ATPG is no different from setting the
CCU itself in ATPG mode. The same procedure for setting the CCU for ATPG mode
is followed, while the CCU becomes merely a conduit for forwarding clocks.

The custom global clock tree does not perform any clock gating, so test clocks
injected onto the main line are never blocked. Within the cluster header, in testmode,
the clock stop signal is permanently disabled, ensuring that the test clocks into any
cluster are free running with direct tester control. In addition, parts of the cluster
header are fully scannable, while tcu_clk_stop and ccu_div_ph intputs of the header
are observable.

Note that the sync pulses between all ratio'ed synchronous domains in each cluster
would have to be set to a logic 1 to allow scan capture to take place consistently. This
control is outside the scope of the CCU.

5.8.2 Transition Fault Test
During transition fault testing, the CCU needs to be fully functional, as do the
cluster headers, since it would not be possible to apply at-speed scan capture pulses
through the external clock ports from the tester.

They will be kept out of the scan chain by ensuring the external signal testmode = 0.
The operation of tcu_clock_stop will be critical in ensuring t-fault testing is
programmable to provide 2 or more high-speed pulses. The staging flops in the
global clock tree macro, of course will be free running on gclk, and have no scope of
blocking clock stop. TCU will have full control of the cluster and domain that will be
tested.
5-34 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

5.8.3 Clock Stretch

5.8.3.1 Clock Stretch Requirements

This section describes the clock stretch implementation on OpenSPARC T2 . For
clock stretch designs on OpenSPARC T1 and Panther, refer to the “requirements”
document. OpenSPARC T2 clock stretch operates within the following guidelines
and requirements as defined by SPTE.

■ Clock period stretch is needed only on the “cmp” domain.

■ Frequency modulation due to stretch is restricted to 1 cycle.

■ The amount of shift is in the interval (0, Tvco/2)

■ This actual shift is implemented using an RC delay line with reasonable
granularity.

■ Assertion of clock stretch is controlled by test registers programmed through the
JTAG interface. These registers also control the amount of shift in RC delay line.

■ There is no latency requirement, measured from the time clock stretch is asserted
to the time clock shift occurs.

■ Core clocks can then be stopped and state element values can be shifted out via
scan chains.

5.8.3.2 PLL Support for Pulse Stretching

Clock stretching capability is built into the PLL because of the analog RC delay line.
The mechanism for shifting the positive or negative edge edge is simple. The VCO
output is muxed with a delayed version of itself as shown in the simplified
FIGURE 5-19.
Chapter 5 Clock Control Unit (CCU) 5-35

FIGURE 5-19 Clock Stretching Capability in PLL

Ports on the CCU that are relevant to clock stretch are tcu_ccu_mux_sel[1:0]. It
determines which leg of the mux in the PLL is selected for output. 2'b11will select
the leg for clock stretch.

The amount of pulse shift (st_delay_a), and the phase to be stretched (st_phase_hi),
are programmed in the CSR prior to the actual clock stretch event. The other 2
inputs to the CCU activate the stretch mux.

These signals can be asynchronous to the cmp_clk domain. They are synchronized
appropriately in the PLL, depending on whether the high phase or the low phase is
stretched. Stretching on the low phase (shifting the positive clock edge) requires
synchronizing the mux selects to the negative edge of VCO clock. Conversely,
stretching on the high phase requires changing the mux selects on the positive edge
of VCO clock. This is illustrated in the next section.

5.8.3.3 Timing Diagrams

The following waveforms illustrate the operation of the pulse stretching circuitry for
shift during the low phase (ie, rising edge).
5-36 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 5-20 Clock Stretch Timing Events

Note the synchronization of cl_stretch internally to generate the inputs to sel_a[1:0]
on the falling edge of cmp_clk. This ensures the select lines to the mux change in the
low phase.

The approach is similar for st_phase_hi = 1, the main difference being that sel_a[1:0]
inputs are generated on the rising edge of cmp_clk.

5.8.3.4 Programmability

In PLL_REG, 5 bits can be programmed for the following clock stretch fields.

TABLE 5-11 Clock stretch fields in CSR block

CSR Field Bits Description

st_phase_hi 25 Stretches high phase if true, else stretches low phase

st_delay_cmp 27:26 cmp clock stretch delay settings
[00, 01, 10, 11] => [40, 80, 120, 160] ps under nominal PVT

st_delay_dr 35:34 dr clock stretch delay settings [00,
01, 10, 11] => [40, 80, 120, 160] ps under nominal PVT
Chapter 5 Clock Control Unit (CCU) 5-37

5.8.4 SerDes Deterministic Test Mode (DTM)

5.8.4.1 Basic Requirements

DTM is a strategy for running tests for SerDes in a repeatable, deterministic manner.
It allows testers to sweep the SPARC core clock frequencies without breaking PLL
lock, and perform traditonal functonal testing using the serial link interface.

In a nutshell, the tester goes through an initialization process to calibrate the RX
lanes, and place data such that the outcomes on the blunt side are known and
controllable. However, the TX data cannot be observed deterministically, so a
workaround is to observe this TX data via the debug interface. The basic
requirements are:

■ All reference clocks to PLL inputs should come from the same source

■ This applies to the core PLL, PSR, and FSR. ESR is excluded from DTM testing

■ Convert clock domains from mission mode as follows:

■ IO -> DR

■ PC -> DR

■ CMP and DR domains unchanged

■ Sync pulses between IO <-> CMP now are equivalent to DR <-> CMP

■ Clock rates changed as follows

■ ref1 = ref2 = ~75-100 MHz

■ cmp = ~600-1500 MHz

■ dr = io = pc = ~75-100 MHz

■ cmp:dr ratio = 1:8, 1:11 or 1:15

5.8.4.2 Supported Clock Frequencies

The ideal scenario is to be able to perform a schmoo of OpenSPARC T2 across the
entire operating range of core frequencies, ie, from 600 Mhz – 1.5 Ghz. However,
because of PLL characteristics, no single divider setting will allow this, and a
minimum of 3 gear ratios is needed.

A gear ratio corresponds to the CCU core divider configuration (in this scheme,
affected only by one divider, D2). Link rate for serial links indicates the data transfer
rate which may be equal to or fractional multiples of internal clock speeds.
5-38 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

5.8.4.3 Clocking Scheme

FIGURE 5-21 CCU PLL Configuration for DTM

FIGURE 5-21 shows how the CCU PLL would be configured for DTM. Note that the
muxes are not shown. They will configured such that the mux for the cmp clock
output would be in functional mode whereas the mux for the dr clock would be in
bypass mode.

As shown in FIGURE 5-21 and FIGURE 5-22, clusters that will get IO, IO2X, and PC
clocks will operate at DR rate by dividing down from the cmp clock. This is different
from the actual DR clock from the distribution tree. The former is dubbed virtual dr
clock as opposed to the real dr. The ramificaton of this approach is simplification of
cluster header muxing controls, easier gclk distribution, and more robust timing
since there are no new timing paths for analysis. However, the real dr clock will
have a 50-50 duty cycle, while the virtual dr clock will have a duty cycle of 50/50,
55/45 and 53/47 respectively for D2=8, 11, and 15. This is not expected to be an issue.

Even though PC, IO, IO2X and DR clocks operate at the same frequency albeit with
perhaps different duty cycles during DTM, direct data crossing between these clocks
needs to be handled with care due to high possibility of hold-time violations. In
normal mode, there is no direct communication between the 4 domains, or is
handled via asynchronous fifos, so these paths are false. The min-time issues
encountered in DR<->IO crossings are addressed by using lock-up latches in the
MCU, while for PC<->IO they are pre-emptively addressed by inverting the phase of
PC clock (inside the cluster header) with respect to the IO clock in the PEU.
Chapter 5 Clock Control Unit (CCU) 5-39

Sync pulse positions for domain transfers between CMP<->IO, CMP<->IO2X, and
CMP<->DR are shown in FIGURE 5-23. They depend on the divider value D2. The
sync pulse pairs, sys_cmp and cmp_sys are unchanged. However, all other sync
pulses appear in different positions depending on the value of D2.

FIGURE 5-22 Chip Level DTM Clocking Scheme

5.8.4.4 Programmation and Sequencing

After power on reset, the PLL_REG has to be programmed to set either of the DTM
bits to '1', and set the PLL divider values to match one of the 3 acceptable gear ratios.
The "CHANGE" field in PLL_REG should also be set to indicate frequency will
change. (Depending on whether DTM1 or DTM2 is selected, DBG and MIO mux
controls will be affected. However, from the CCU's perspective, it is only one mode.
The only check CCU will perform that if both DTM1 and 2 will are asserted, mode 1
will be considered active).
5-40 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

The RST block will see the "ccu_rst_change" signal asserted and issue a warm reset.

The PLL will load the divider values upon de-assertion of reset and begin to lock for
DTM to provide new clock frequencies (cmp and dr).

During reset active, the cluster header will see a change on the ccu_serdes_dtm
signal which will be be used to disable PC clock select. All other clockgen modules
will require no connectivity change as a result of DTM; the process of generating a
different clock frquency will be handled transparently by the CCU and cluster
header.

Everything will function normally here on.
Chapter 5 Clock Control Unit (CCU) 5-41

FIGURE 5-23 New Sync Pulse Positions for DTM (All locations are at final destination after being flopped
once in cluster)

5.9 Appendix A.1 – Sync Pulse Design
Procedure
This appendix focuses on the design methodology for sync pulses between CMP and
DR domains which are non-integer multiples of one another. Consider the near ideal
scenario for synchronizing between two such domains. We make the following
assumptions:

■ There is no jitter, skew, or PVT mismatches.

■ At some point in time, both positive clock edges are perfectly aligned.
5-42 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

■ There is zero phase offset between the PLL input reference and output.

■ The setup and hold requirements on flip-flops are small1.

■ Propagation delay is experienced only by data (through wires, and clock-Q).

No matter which direction data is crossing domains, it makes sense to maximize the
amount of time available between data launch and capture. This is illustrated in
FIGURE 5-24 and FIGURE 5-25.

For cmp_clk to dr_clk transfers, the launch edge should be the first positive edge of
cmp_clk after a dr_clk sampling point. The enable control generation would then
occur a cmp cycle before launch.

On the other hand, for dr_clk to cmp_clk synchronization, the capture edge would
be the last cmp_clk rising edge prior to a dr_clk sampling event. This time, the
enable control would assert a cmp cycle before capture.

The cycle repeats when both the launch and capture clocks are perfectly aligned on
the rising edge, or every M cycles of slow clock (equivalently N cycles of fast clock).

1.

TABLE 5-12 Waveform Parameters for Ideal Case

Parameter Description

N Multiplication factor of fast clock

M Multiplication factor of slow clock

T Fast clock period (cmp_clk)

Tref Reference clock period = N.T

Tslow Slow clock period (dr_clk) = M.T

k Cycle count of slow clock starting with 0
Chapter 5 Clock Control Unit (CCU) 5-43

FIGURE 5-24 Synchronization from Fast to Slow Clock

FIGURE 5-25 Synchronization from Slow to Fast Clock
5-44 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

5.10 Appendix A.2 – Sync Pulse Timing
Analysis
Looking at the idealized timing diagrams and parameters in Appendix A.1, we can
analyze the conditions one at a time for min and max conditions.

5.10.1 Fast to Slow Clock Synchronization
As per the proposal, the capture edge for cycle k is at (k+1)(N/M)T. Working our way
backwards, the corresponding launch edge is the first edge on cmp_clk after
k(N/M)T. This works out to be FLOOR(k(N/M)+1)T. The pulse would have to be
generated a cycle before at FLOOR(k(N/M)T.

Amount of time available for setup,

tmax = (k+1)(N/M)T – FLOOR(k(N/M)+1)T

Similarly, the launch edge lags the last capture edge by

tmin = FLOOR(k(N/M)+1)T – k(N/M)T

There is a subtle difference between FLOOR(k(N/M)+1)T and
CEILING(k(N/M)T) which shows up when k= 0.

5.10.2 Slow to Fast Clock Synchronization
The situation is reversed, where we need to launch data on the dr_clk as early as
possible, ie, at k(N/M)T, and capture on cmp_clk as late as possible, at
FLOOR((k+1)(N/M)T). Enable pulse generation thus occurs at FLOOR((k+1)(N/M)-
1)T.

Therefore, setup margin is given by:

tmax = FLOOR((k+1)(N/M)T) – k(N/M)T

And the lag from last capture is

tmin = k(N/M)T – FLOOR(k(N/M))T
Chapter 5 Clock Control Unit (CCU) 5-45

5.10.3 Modifications for Non-Ideal Scenario
This time, we revisit the approach while factoring in real conditions. Some other
parameters that need to be considered are:

The constraints for max and min timing under non-ideal conditions for data launch
and capture to work correctly are:
tmax > tcq + tsu + tdata + tskew + tjitter
tmin > th + tskew + tjitter - tcq

Corresponding timing margins are given by:
tmargin,max = tmax – tdata – tcq – tsu – tskew - tjitter
tmargin,min = tmin – th – tskew – tjitter + tcq

Both sets of equations hold true, regardless of synchronization direction. Only the
parameters tmax and tmin are derived differently as in the past section.

5.10.4 Computation and Selection of Sync Pulses
Now that a scheme has been proposed, and sync pulse generation formalized, here
is the algorithm for the complete solution:

1. Compute which phase of slow clock the pulses should be generated (under ideal
conditions) for fast to slow clock.

2. Find the corresponding timing margins available tmax and tmin (also ideal).

3. Estimate the amount of skew, jitter, tdata, tcq, tsu and th, and calculate tmargin,max
and tmargin,min.

TABLE 5-13 Additional Parameters for Non-ideal Scenario

Parameter Description

tsu Setup time of capture flip-flop.

th Hold time of launch flop.

tcq?*

*

Clock-to-Q time in flip flop.

tdata Data delay from launch flop's Q output to capture flop D-pin

tskew Skew and static phase offsets between slow and fast clocks.

tjitter Jitter (cycle to cycle and long-term) between the clocks.
5-46 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

4. If tmargin,max < 0 OR tmargin,min < 0 for any sync pulse, adjust phase for that
pulse and repeat steps 2 through 4.

5. Repeat steps 1 through 4 for all ratios of N/M.

6. Repeat steps 1 through 5 for slow to fast clock.

7. Repeat steps 1 through 6 for all 3 refclk frequencies.

We are done when tmargin,max > 0 AND tmargin,min > 0 for every ratio, otherwise
for any particular ratio if either tmargin < 0, this scheme will not work.
Chapter 5 Clock Control Unit (CCU) 5-47

5-48 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

CHAPTER 6

System Interface Unit (SIU)

This chapter contains the following sections:

■ Section 6.1, “Overview” on page 6-1

■ Section 6.2, “Terminology” on page 6-2

■ Section 6.3, “ SIU Top Level Logical Block Diagram” on page 6-4

■ Section 6.4, “Logical Subblocks” on page 6-7

■ Section 6.5, “Outbound” on page 6-37

■ Section 6.6, “Packet Formats” on page 6-47

■ Section 6.7, “CSR” on page 6-71

■ Section 6.8, “Unit Level Signals” on page 6-73

6.1 Overview
OpenSPARC T2 has on chip multiple system I/O subsystems. OpenSPARC T2
integrates Fire's high speed IO core and connect directly to a x8 PCI Express channel
(2GB/s/direction). OpenSPARC T2's integrated network I/O unit includes two 10Gb
Ethernet MACs (2.5GB/s/direction). The System Interface Unit (SIU) provides
12GB/s of raw bandwidth per direction and has flexible interfaces for the Network
Interface Unit (NIU) and Data Management Unit (DMU) to access memory via 8
secondary level cache (L2) banks. SIU supports Fire's PCI Express. For the NIU, SIU
was architected with the ability to allow write traffic to bypass other posted write
traffic. SIU does not support coherency.
6-1

FIGURE 6-1 SIU Top Level Block Diagram

The SIU also provides a data return path for reads to the Peripheral I/O subsystems.
The data for these PIO Reads and interrupt messages generated by the PCI Express
subsystem are ordered in the SIU prior to delivery to the NonCacheable Unit (NCU).

6.2 Terminology
Cacheable: Can be stored in the L2 cache.

Cacheline: 64Byte

10Gb x8 PCI Express

High Speed IO
Core

Data Management Unit
(DMU)

Cache<->Processor Crossbar

CPUCPUCPUCPUCPUCPUCPUCP

L
2

ba
nk

L
2

ba
nk

U

Network Interface Unit
(NIU)

System Interface Unit (SIU)

10Gb

M
C

U

L
2

ba
nk

L
2

ba
nk

M
C

U

N
C

U

L
2

ba
nk

L
2

ba
nk

M
C

U

L
2

ba
nk

L
2

ba
nk

M
C

U

6-2 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

CSR: Configuration Status Register. A storage element for holding status or
configuration information. They can exist either on OpenSPARC T2. or off
OpenSPARC T2..

Core clock domain : reference to the speed of the sparc processor core and L2 cache.
Target is 1.4GHz

DMA : Direct Memory Access. A load or store originating from the IO subsystem
that targets the memory subsystem.

Inbound : Logically toward the CPU and memory subsystem and NCU, away from
the IO subsystems (NIU or DMU).

IO clock domain : references to the speed of the internal I/O interfaces units. Either
1/3 or core clock frequency. Also refered to as System clock domain

JBUS : Jalapeno bus. A coherency bus used in Niagara1 and other Sun processors.

Nonposted : A transaction in which the sender does want and require an
acknowledge of delivery. A read is always nonposted.

Outbound : Logically toward the IO subsystems (NIU or DMU) and away from the
CPU, L2 caches and the NCU

Packet : A structure for transfering information between interfaces. A Packet can
consists of just a header or a header followed by a payload.

PIO : Peripherial Input Output. A load or store originating from the cpu that does
not target the caches and memory. The target of a PIO can either be onchip or
offchip.

Posted : A transaction in which the sender does not want nor require an
acknowledgement of delivery

RDD : Read and Discard – All DMA accesses are noncoherent. Thus the data for a
DMA read should be treated as use once and discard. All DMA reads are converted
into RDD's by L2 caches and do not allocate in the L2 cache.

WR8 : Write 8 bytes – A WRM is decomposed into up to 8 WR8 when the WRM is
forwarded to an L2 bank. The L2 does a read modify write operation for each 8 byte
store. The 8 byte enables for a WR8 can be randomly on or off.

WRI: Write Invalidate – all DMA Writes that are aligned to a cacheline address
boundary and writes 64 Byte of data will invalidate any matching address in the L2
cache tag array prior to data being forwarded to memory. (Terminology comes from
the JBUS architecture)

WRM: Write Merge – a DMA Write with 1 or more bytes of the 64 byte payload not
enabled. (Terminology comes from the JBUS architecture). A WRM may not cross
cacheline boundary.
Chapter 6 System Interface Unit (SIU) 6-3

6.3 SIU Top Level Logical Block Diagram
The SIU is partitioned physically and logically into 2 parts based on flow direction –
SIU Inbound (SII) for inbound traffic and SIU Outbound (SIO) for outbound traffic.

FIGURE 6-2 SIU Logical Block Diagram

All inbound traffic continues inbound through SIU until it reaches NCU or an L2
bank. All outbound traffic from NCU or L2 must leave SIU in the outbound
direction. NCU and L2 banks cannot send traffic to each other through the SIU.

SIU

L2
bank0

L2
bank7

...NCU

NIU

L2
bank0

DMU

L2
bank7

...

DMA request/Interrupt/
PIO Completion

DMA CompletionPIO Read
Completion/
Interrupt

WRI/WR8/RDD PIO Read Completion/
Interrupt

DMA Completion

DMA
Write/Read

Responses for
WRI/RDD

SIOSII

Inbound L2
Control+Datapath

Outbound Packet
Control+Datapath

Inbound Packet
Control+Datapath

Outbound L2
Control+Datapath

Inbound NCU
Control+Datapath
6-4 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

DMU and NIU cannot send traffic toward each other through the SIU. Because the
L2 banks have their own paths through the memory controllers to memory, the SIU
sees each L2 bank as a slave device. SIU assumes L2 never initiates requests to SIU.
Likewise, Network blocks are always seen as master devices pulling from and
pushing data to L2 only.

SIU does not support coherency.

All traffic uses a packet transfer interface. Each packet is 1 or 2 consecutive
address/header cycles immediately followed by 0 or more consecutive
data/payload cycles. SIU follows L2's addressing convention : big endian where the
databytes for the lowest address are transferred first. Where applicable, byte enables
are positional where byte_enable[0] always refer to databits[7:0] for all interfaces.

The interfaces between SIU and L2 are in the core clock domain - 1.5GHz. The
interfaces between SIU and DMU, NIU, NCU are in the IO clock domain – 350 MHz
or 1/4 core clock frequency.

TABLE 6-1 shows the packet types from DMU and NIU that are supported by SIU:

TABLE 6-1 Supported Packet Types from NIU and DMU

Source Packet type Posted Queue in which packet may enter

NIU RDD Nonposted Ordered

Bypass

WRI Posted Ordered

Bypass

WRI Nonposted Ordered

Bypass
Chapter 6 System Interface Unit (SIU) 6-5

TABLE 6-2 shows how the mapping between inbound DMA addresses from DMU and
NIU to the L2 bank number. This is to support partial L2 banks when entire set(s) of
L2 banks are disabled.

5 bits (PM, BA01, BA23, BA45, BA67) are used to indicate partial mode active, and
which of the 4 pairs of banks are available. X is a don't care. When PM is on, it is
illegal for only 3 of the BAs to be asserted and illegal if all 4 BAs are deasserted.

DMU RDD Nonposted DMA/INT (Ordered)

WRI Posted DMA/INT (Ordered)

WRM Posted DMA/INT (Ordered)

INT (Mondo) Nonposted DMA/INT (Ordered)

PIO Rd Completions Posted

PIO (Bypass)

TABLE 6-2 Partial L2 Bank Mapping

PM BA67 BA45 BA23 BA01 L2Bank[2] L2Bank[1] L2Bank[0]

0 X X X X PA[8] PA[7] PA[6]

1 0 0 0 0 Illegal 0 0 PA[6]

1 0 0 0 1 0 0 PA[6]

1 0 0 1 0 0 1 PA[6]

1 0 0 1 1 0 PA[7] PA[6]

1 0 1 0 0 1 0 PA[6]

1 0 1 0 1 PA[7] 0 PA[6]

1 0 1 1 0 PA[7] ~PA[7] PA[6]

1 0 1 1 1 Illegal 0 PA[7] PA[6]

1 1 0 0 0 1 1 PA[6]

1 1 0 0 1 PA[7] PA[7] PA[6]

1 1 0 1 0 PA[7] 1 PA[6]

TABLE 6-1 Supported Packet Types from NIU and DMU (Continued)
6-6 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

SIU along with the gasket block inside each of the sparc cores implement the same
index hashing algorithm for the L2 cache. The purpose is to improve performance
for certain software application – to reduce the thrashing of certain L2 indexes.
Software can enable this feature by writing to a CSR in NCU.

If hashing is enabled and PA[39]==0, SIU converts the PA[39:0] to a different PA for
L2 :

L2_PA[39:18] = PA[39:18];

L2_PA[17:13] = PA[32:28] ^ PA[17:13];

L2_PA[12:11] = PA[19:18] ^ PA[12:11];

L2_PA[10:0] = PA[10:0];

6.4 Logical Subblocks
The SIU is partitioned physically and logically into 2 parts based on flow direction –
SIU Inbound (SII) for inbound traffic and SIU Outbound (SIO) for outbound traffic.
SIU is also partioned into 2 clock domains.

A SIU subunit's name consists of 3 - 5 characters. All subunits are listed below:

SII subunits:

ILC0, ILC1, ILC2, ILC3, ILC4, ILC5, ILC6, ILC7,

ILD0, ILD1, ILD2, ILD3, ILD4, ILD5, ILD6, ILD7,

IPCC, IPCS0, IPCS1, IPD, INC, IND,

SIO subunits:

OLC0, OLC1, OLC2, OLC3, OLC4, OLC5, OLC6, OLC7,

OLD0, OLD1, OLD2, OLD3, OLD4, OLD5, OLD6, OLD7,

1 1 0 1 1 Illegal 0 PA[7] PA[6]

1 1 1 0 0 1 PA[7] PA[6]

1 1 1 0 1 Illegal 1 PA[7] PA[6]

1 1 1 1 0 Illegal 1 PA[7] PA[6]

1 1 1 1 1 PA[8] PA[7] PA[6]

TABLE 6-2 Partial L2 Bank Mapping (Continued)
Chapter 6 System Interface Unit (SIU) 6-7

OPCC, OPCS0, OPCS1, OPDS, OPDC

The first letter of a logical subunit's name indicates direction: Inbound or Outbound

The second letter of a logical subunit's name indicates either the destination for
inbound data or the source object for outbound data:

L = L2 cache

N = NCU

P = Packets (DMU & NIU)

The third letter of a logical subunit's name indicates Control path or Datapath

The optional last 1 or 2 character represents either an instance number (i.e. L2 bank
number) or the subunit's clock domain (Core or System).

6.4.1 Clocks
Target operating frequencies, CPU:IO = 1500MHz:350MHz

Supported operating frequencies:

4:1 CPU:IO synchronous clock ratio

L2 and NCU @ 1500MHz,1400MHz,1300MHz, 1200MHz

NIU and DMU @ 350MHz, 325MHz, 300MHz
6-8 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

6.4.2 Interface Datapath Access Mechanism

6.4.3 Inbound
The parity protected interfaces between SIU and the DMU and NIU are 128 bit
wides with side band signals for packet control. Having a 128 bit for header allows
SIU to provide a rich set of transaction types and allows SIU to provide a uniform

TABLE 6-3 Interface Datapath Access Mechanism

Datapath Mechanism Comment

SII to L2 Credits SIU initially given :
2 request credits,
4 64B-write-invalidate-data credits

From L2 to SIO None SII must not send request to L2 if SIO will not have
space to receive response from L2

SII to NCU Request/Grant
Arbitration

Receiver of packets schedules resources and asserts
Grant for 1 cycle to winning Requestor. Requestor
must send packet the cycle after its Grant is asserted.
Winning requestor may reassert Request for
subsequent packet while delivering current packet.
Requestor's Request must stay asserted until its Grant
is received.

SII can buffer 16 PIO Read data returns
SII can buffer 4 interrupt mondo data or 4 x 16B

From DMU to SII,
From NIU to SII

Credits SII provides each IO subsystem 2 dedicated inbound
packet queues. Each inbound queue can hold a
maximum of 16 requests + 64 Byte data payload per
request.
SII notifies each IO subsystem when an request has
been dequeued from either of the 2 dedicated
inbound packet queue.

From SIO to DMU,
From SIO to NIU

None DMU or NIU must not send request to SII if it will not
have space to receive response.

Internal SIU Datapaths
Request/Grant
Arbitration

Receiver of packets schedules resources and asserts
Grant for 1 cycle to winning Requestor. Requestor
must send packet the cycle after its Grant is asserted.
Winning requestor may reassert Request for
subsequent packet while delivering current packet.
Requestor's Request must stay asserted until its Grant
is received.
Chapter 6 System Interface Unit (SIU) 6-9

and generic but flexible enough for most IO architectures.

The inbound packet interface protocol works as follows : (replace 'ext' with 'niu' or
'dmu')

Cycle 1: Header Cycle

■ ext_sii_hdr_vld asserts for 1 cycle to indicate ext is sending the packet header.

■ ext_sii_reqbypass indicates that ext is sending this packet to the SIU's 'bypass'
inbound queue.

■ ext_sii_datareq indicates this packet has a payload following the header cycle.

■ ext_sii_datareq16 indicates this packet has only 1 cycle (16 Byte maximum)of
payload. If datareq is asserted and datareq16 is deasserted, this packet has 4
cycles of payload for a maximum transfer size of 64Bytes.

■ ext_sii_data[127:0] contains a valid header.

Cycle 2-5: Payload Cycle(s)

■ ext_sii_hdr_vld is deasserted.

■ ext_sii_data[127:0] contains the payload data

■ ext_sii_parity[3:0] contains the parity for each 32 bit of data. Parity[N]=
xor(data[32N+31 : 32N])

■ ext_sii_be[15:0] contains the byteenables for each byte of data if applicable.
BE[N]==1 implies write data[8N + 7 : 8N]

Each IO subsystem must keep track of number of available entries in the SIU
Inbound queues and not overflow the SIU. Each time SIU Inbound forwards a
request from its packet queue to its inbound L2 or NCU queue, SIU Inbound returns
a credit back to the appropriate IO subsystem via sideband signals.

Each of the SIU Inbound queue allows for a maximum of 16 packets.

SIU supports back-to-back packet transfers with no dead cycle in between packets.

SIU architecturally supports PIO Read returns, DMA read requests, Interrupt Writes,
DMA Write full cacheline (posted and nonposted), DMA write merge 64 bytes
(posted only). The same logic is instantiated twice. One for each IO subsystem
interface.

Another type of DMA access come from TCU/JTAG interface. The Read/Write
access from the JTAG interface is 8 bytes. The address need to be 8-bytes alinged
(addr[2:0] = 3'b000). There is only 1 outstanding request allowed from the JTAG
interface. The signals sending from JTAG interface should be running on cmp clock
domain. When SII sending TCU read request, the adddr[2] need to be zero, so that
L2 will return most critical 8-bytes first.
6-10 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

6.4.4 Interface Timing Diagrams and Protocols

FIGURE 6-3 Inbound Packet Interface Timing Diagram

iol2c

ext_sii_data[127:0] hdr 0 data0 hdr 1

ext_sii_hdr_vld
ext_sii_reqbypass

BA

A: A 64-byte DMA write request with 4 cycles of data payload.
If from Fire-DMU, this must be destined for the Ordered Queue in SIU.
If from NIU, ext may choose which queue in SIU is appropriate for the behavior wanted.
This example shows the DMA write request is for the Ordered Queue.

B: A read request, no payload.
If from Fire-DMU, this must be destined for the Ordered Queue in SIU.
If from NIU, ext may choose which queue in SIU is appropriate for the behavior wanted.
If this was the 16th outstanding credit, ext must stop issuing transactions to this Queue.

C: A 16-byte PIO read data return; 1 cycle of data payload following the header.
If from NIU, this must be destined for the Ordered Queue in SIU.
If from Fire-DMU, this must be destined for the Bypass Queue in SIU.
If this was the 16th outstanding credit, ext must stop issuing transactions to this Queue.

D: SIU returns a credit after forwarding a DMA write data from the Ordered Queue to the Inbound L2$ Queue.
If write request was from Fire-DMU, sii_dmu_wrack_vld asserts with tag information and
the Fire-DMU can add this credit back to the credit list,
If write request was from NIU and the write request was in the Ordered Queue, sii_ext_oqdq asserts.
Ext may now resume sending transaction to the SIU – this example has a DMA read request following credit.

E: (Only applicable for Fire-DMU) INT header plus 1 data beat of data payload,
the SIU checks the header to distinquish PIO read completion from INT payload;

sii_ext_wrack_tag[3:0]

ext_sii_be[15:0] xxx be0 xxx

hdr 2 data0data1 data2 data3

be1 be2 be3 xxx

ext_sii_datareq16

sii_ext_oqdq

hdr 3 hdr 4

be0

data0

be0

xxx

ext_sii_parity[7:0] xxx xxxxxx validvalidvalid

tag

Dsii_ext_wrack_vld

ext_sii_datareq C E

lk
Chapter 6 System Interface Unit (SIU) 6-11

6.4.4.1 From NIU to SIU

Single and back-to-back DMA read request from NIU to SIU

For each DMA read request, NIU must always guarantee it has buffer space to
receive the DMA read response that will return from SIU outbound..

A DMA read does not allocate in the cache.

This describes the protocol for a single DMA read request from NIU to SIU.

1. NIU first checks that it has a credit available for the packet transfer.

If NIU does not have credit for SIU's Ordered Queue and wishes to send a DMA
read request to SIU's Ordered Queue, NIU must wait for sii_niu_oqdq to assert.

If NIU does not have credit for SIU's Bypass Queue and wishes to send a
DMA read request to SIU's Bypass Queue, NIU must wait for sii_niu_bqdq to
assert.

Once NIU has guaranteed that it will not overflow SIU, NIU can send the
DMA read request packet on the interface.

2. Send packet. This transfer takes one IO clock cycle.

a. NIU asserts header valid signal (niu_sii_hdr_vld) high,

b. NIU drives all the header bits appropriately on niu_sii_data[127:0]

Note that SIU does not require the byte address field in the header to be
aligned to a cacheline boundary. Memory will always return the critical 32 bit
word first and wrapped back to the beginning cacheline address boundary.
Because the current software ethernet driver model has the ethernet
transmit/control information structures in memory aligned to 64B address
boundary, NIU sets DMA Read address[5:0] set to 0.

c. NIU drives data request signals (niu_sii_datareq and niu_sii_datareq16) low.

d. NIU drives the destination queue signal (niu_sii_reqbypass) to high for the
bypass queue or low for the ordered queue.

e. The parity lines (niu_sii_parity) are a don't care for the header cycle.

f. SIU does not support byte enables for reads. If byteenable wires exist at at the
top level interface (niu_sii_be), then they are a don't care for the header cycle..

3. NIU must reduce the appropriate credit counter.

SIU supports back-to-back transfers from NIU. A 2nd packet may be sent
immediately the cycle after the 1st DMA Read packet if there is credit available for
the 2nd transfer.
6-12 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

Single and back-to-back DMA write request from NIU to SIU

For each DMA write request that NIU requires an acknowledgement of completion,
NIU must always guarantee it has buffer space to receive the DMA write completion
response that will return from SIU outbound. For Neptune's NIU, this is always true.
A DMA write packet that needs an completion ack returned must be marked
nonposted in the packet header.

A DMA Write does not allocate in the cache.

This describes the protocol for a single DMA write request from NIU to SIU.

1. NIU first checks that it has a credit available for the packet transfer.

If NIU does not have credit for SIU's Ordered Queue and wishes to send a DMA
write request to SIU's Ordered Queue, NIU must wait for sii_niu_oqdq to assert.

If NIU does not have credit for SIU's Bypass Queue and wishes to send a DMA
write request to SIU's Bypass Queue, NIU must wait for sii_niu_bqdq to assert.

Once NIU has guaranteed that it will not overflow SIU, NIU can send the DMA
write request packet on the interface.

2. Send packet. This transfer takes 5 IO clock cycle.

a. On the first cycle,

i. NIU asserts header valid signal (niu_sii_hdr_vld) high.

ii. NIU drives all the header bits appropriately on niu_sii_data[127:0].

Note that SIU does not require the byte address field in the header to be
aligned to a cacheline boundary and allows for byte mask field in the header
to be set for a WRM, because the current software ethernet driver model has
the ethernet receive/control information structures in memory aligned to
64B address boundary, NIU sets DMA Write address[5:0] to 0, and
command field to be write full 64 bytes, byte mask active to 0.

iii. NIU drives data request signals (niu_sii_datareq high and niu_sii_datareq16
low).

iv. NIU drives the destination queue signal (niu_sii_reqbypass) to high for the
bypass queue or low for the ordered queue.

Writes to the ordered queue will always be be issued by the SIU to L2 after
the youngest write in the bypass queue and after all prior writes to L2 has
been sent from L2 to MCU. The writes in the bypass queues are not ordered
with respect to other writes.

v. The parity lines (niu_sii_parity) are don't cares for the header cycle.

vi. If byte enables wires exist at the top level interface, the byteenable lines
(niu_sii_be) are don't cares for the header cycle.
Chapter 6 System Interface Unit (SIU) 6-13

b. On the 2nd, 3rd, 4th, and 5th cycle,

i. NIU drives header valid signal (niu_sii_hdr_vld) low.

ii. NIU drives data payload on niu_sii_data[127:0] in big endian format.

iii. The data request signals (niu_sii_datareq and niu_sii_datareq16) are don't
cares for nonheader cycles.

iv. The destination queue signal (niu_sii_reqbypass) is a don't care for
nonheader cycle.

v. The parity lines (niu_sii_parity[3:0]) are driven.

vi. If byte enables wires exist at the top level interface, the byteenable lines
(niu_sii_be[15:0]) should be all 1's to be safe but are treated as don't cares if
during the header cycle, the byte mask active field was 0.

3. NIU must reduce the appropriate credit counter.

SIU supports back-to-back transfers from NIU. A 2nd packet may be sent
immediately the cycle after the 1st DMA Write packet if there is credit available for
the 2nd transfer.
6-14 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 6-4 Timing Diagram for SIU Inbound Packet from DMU

6.4.4.2 From a Fire-PCI Express-DMU to SIU

For SIU to support Fire's version of a DMU that connects to PCI Express, SIU
Inbound must adapt to a stricter form of credit management where not only is a
credit returned when SII dequeues a packet, but the corresponding id for the packet
that was dequeued.

iol2clk

dmu_sii_data[127:0] hdr 0 data0 hdr 1

dmu_sii_hdr_vld
dmu_sii_reqbypass

BA

A: A 64-byte DMA write request with 4 cycles of data payload.
If from Fire-DMU, this must be destined for the Ordered Queue in SIU.
If from HT-DMU, dmu may choose which queue in SIU is appropriate for the behavior wanted.
This example shows the DMA write request is for the Ordered Queue.

B: A read request, no payload.
If from Fire-DMU, this must be destined for the Ordered Queue in SIU.
If from HT-DMU, dmu may choose which queue in SIU is appropriate for the behavior wanted.
If this was the 16th outstanding credit, dmu must stop issuing transactions to this Queue.

C: A 16-byte PIO read data return; 1 cycle of data payload following the header.
If from HT-DMU, this must be destined for the Ordered Queue in SIU.
If from Fire-DMU, this must be destined for the Bypass Queue in SIU.
If this was the 16th outstanding credit, dmu must stop issuing transactions to this Queue.

D: SIU returns a credit after forwarding a DMA write data from the Ordered Queue to the Inbound L2$ Queue.
If write request was from Fire-DMU, sii_dmu_wrack_vld asserts with tag information and
the Fire-DMU can add this credit back to the credit list,
If write request was from HT-DMU and the write request was in the Ordered Queue, sii_ext_oqdq asserts.
DMU may now resume sending transaction to the SIU – this example has a DMA read request following credit.

E: INT header plus 1 data beat of data payload, the SIU checks the header to distinquish PIO read
completion from INT payload;

sii_dmu_wrack_tag[3:0]

dmu_sii_be[15:0] xxx be0 xxx

hdr 2 data0data1 data2 data3

be1 be2 be3 xxx

dmu_sii_datareq16

sii_dmu_oqdq

hdr 3 hdr 4

be0

data0

be0

xxx

dmu_sii_parity[7:0] xxx xxxxxx validvalidvalid

tag

Dsii_dmu_wrack_vld

dmu_sii_datareq C E
Chapter 6 System Interface Unit (SIU) 6-15

With respect to packet types, Fire does not support nonposted DMA writes and does
not allow DMA Writes to pass other writes so all DMA's would effectively go into
the SIU's Ordered Queue. The packet format differences between a prior DMU<-
>SIU and Fire-DMU<->JBC is handled in a thin layer within the new DMU called
the DSN.

Fire's PCI-Express DMU requires SIU to be able to accept without flow control all
completions for all PIO reads that had originated from NCU.

SIU's Inbound architecture has a 16 deep FIFO for its Ordered Queue and a 16 deep
FIFO for its Bypass Queue. Fire's PCI-Express DMU supports 16 'credits' of
DMAs+Interrupts and 16 credits of PIOs.

A DMA write credit id may be reused once the write has been posted (dequeued)
from SIU's Inbound Packet Ordered Queue. A DMA read credit id may only be
reused after the DMA read data response has returned from SIU's Outbound to
DMU. Interrupt (Mondo type only) credit id may only be reused after NCU has
acked or nacked the Interrupt. NCU must adapt to Fire's PCI-Express DMU and
manage 16 PIO credits.

Without a design change, SIU's ordered Queue can support 16 outstanding
DMA+Interrupt. But expanding that to an 32 deep ordered queue and gutting the
design of the bypass queue to accommodate the 16 PIO completions would
significantly impact schedule and not allow for code reuse. The estimated net area
savings from gutting the design and extending the queue depth was determined to
be small (at most couple hundred square microns in Epic9).

The solution proposed and implemented is conditioned on the fact that SIU already
has dependency pointers for each of the 16 entries in the Inbound Packet Bypass
Queue and dependency pointers for each of the 16 entries in the Inbound Packet
Ordered Queue. An internal mode wire is added to indicates the interface is
connected to PCI-Express DMU instead of NIU. Effectively, the 'Bypass Queue'
becomes an ordered PIO completion queue. When in PCIExpress mode, rather than
using the results of address cams to set up dependencies for a new packet entering
the Bypass Queue, SIU forces that new packet to wait for the youngest packet
existing in the Ordered Queue. Note that new packets entering the Ordered Queue
by default (even for NIU) depends on the youngest packet existing in the Bypass
Queue. Forcing this dependency when in PCIExpress mode converts the Bypass
Queue into another ordered queue IF ALL the packets in the Bypass Queues drains
to the same place. If there are multiple DMA Writes in the bypass queue, the existing
ordering mechanism used for NIU would not guarantee a younger DMA Write from
the bypass queue entry would complete later than an older DMA Write from the
bypass queue that targets a different L2 bank.

Therefore, ALL DMA Writes (and interrupts) from Fire's PCI-Express DMU must be
steered into the Ordered Queue. Likewise, because there is only 1 drain from SIU for
all PIO completions (one FIFO path from SIU to NCU), when ALL PIO Completions
from Fire's PCI-Express DMU are steered in the Bypass Queue, the ordering
6-16 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

requirement that PIO completions must pull all prior DMAs writes and all prior PIO
completions is satisfied and SIU now achieved a 16 entry PIO completion queue at
the cost of a few muxes added the original design. If physical areas become more
critical, the cam logic remaining may be optimized out during physical
implementation.

FIGURE 6-5 Timing Diagram for SIU Inbound Packet from DMU

Single and Back-to-Back DMA Read Request from Fire-DMU to SIU

For each DMA read request, DMU must always guarantee it has buffer space to
receive the DMA read response that will return from SIU outbound. For Fire-DMU,
this is always true.

iol2clk

dmu_sii_data[127:0] hdr 0 data0 hdr 1

dmu_sii_hdr_vld
dmu_sii_reqbypa

BA

A: A 64-byte DMA write request with 4 cycles of data payload.
If from Fire-DMU, this must be destined for the Ordered Queue in SIU.
If from HT-DMU, dmu may choose which queue in SIU is appropriate for the behavior wanted.
This example shows the DMA write request is for the Ordered Queue.

B: A read request, no payload.
If from Fire-DMU, this must be destined for the Ordered Queue in SIU.
If from HT-DMU, dmu may choose which queue in SIU is appropriate for the behavior wanted.
If this was the 16th outstanding credit, dmu must stop issuing transactions to this Queue.

C: A 16-byte PIO read data return; 1 cycle of data payload following the header.
If from HT-DMU, this must be destined for the Ordered Queue in SIU.
If from Fire-DMU, this must be destined for the Bypass Queue in SIU.
If this was the 16th outstanding credit, dmu must stop issuing transactions to this Queue.

D: SIU returns a credit after forwarding a DMA write data from the Ordered Queue to the Inbound L2$ Queue.
If write request was from Fire-DMU, sii_dmu_wrack_vld asserts with tag information and
the Fire-DMU can add this credit back to the credit list,
If write request was from HT-DMU and the write request was in the Ordered Queue, sii_ext_oqdq asserts.
DMU may now resume sending transaction to the SIU – this example has a DMA read request following credit.

E: INT header plus 1 data beat of data payload, the SIU checks the header to distinquish PIO read
completion from INT payload;

sii_dmu_wrack_tag[3:0]

dmu_sii_be[15:0] xxx be0 xxx

hdr 2 data0data1 data2 data3

be1 be2 be3 xxx

dmu_sii_datareq16

sii_dmu_oqdq

hdr 3 hdr 4

be0

data0

be0

xxx

dmu_sii_parity[3:0] xxx xxxxxx validvalidvalid

tag

Dsii_dmu_wrack_vld

dmu_sii_datareq C E

ss
Chapter 6 System Interface Unit (SIU) 6-17

A DMA read does not allocate in the cache.

This describes the protocol for a single DMA read request from Fire-DMU to SIU.

1. Fire-DMU first checks that it has a credit available for the packet transfer.

a. If Fire-DMU does not have credit for SIU's Ordered Queue and wishes to send
a DMA read request to SIU, Fire-DMU must wait for sii_dmu_wrack_vld to
assert, a prior DMA Read to complete from SIU Outbound or an interrupt
credit to return from NCU.

b. Once Fire-DMU has guaranteed that it has a DMA credit, Fire-DMU can send
the DMA read request packet on the interface.

2. Send packet. This transfer takes one IO clock cycle.

a. Fire-DMU asserts header valid signal (dmu_sii_hdr_vld) high.

b. Fire-DMU drives all the header bits appropriately on dmu_sii_data[127:0]

i. Fire-DMU always generate a 64 Byte aligned address and never cross a
cacheline boundary. Fire-DMU sets DMA Read address[5:0] set to 0.

c. Fire-DMU drives data request signals (dmu_sii_datareq and
dmu_sii_datareq16) low.

d. Fire-DMU drives the destination queue signal (dmu_sii_reqbypass) to low for
the ordered queue.

e. The parity lines (dmu_sii_parity) are a don't care for the header cycle.

f. The byteenable lines (dmu_sii_be) are a don't care for the header cycle.

3. Fire-DMU must reduce the DMA credit counter.

SIU supports back-to-back transfers from Fire-DMU. A 2nd packet may be sent
immediately the cycle after the 1st DMA Read packet if there is credit available for
the 2nd transfer.

Single and Back-to-Back DMA Write Request from Fire-DMU to SIU

For Fire-DMU, all DMA Writes are posted and address aligned to cacheline
boundary although byte(s) may be deasserted at the beginning or the end. this is
always true.

A DMA Write does not allocate in the cache.

This describes the protocol for a single DMA write request from Fire-DMU to SIU.

1. Fire-DMU first checks that it has a credit available for the packet transfer.
6-18 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

a. If Fire-DMU does not have credit for SIU's Ordered Queue and wishes to send
a DMA write request to SIU, Fire-DMU must wait for sii_dmu_wrack_vld to
assert, a prior DMA Read to complete from SIU Outbound or an interrupt
credit to return from NCU.

b. Once Fire-DMU has guaranteed that it has a write credit, Fire-DMU can send
the DMA write request packet on the interface.

2. Send packet. This transfer takes 5 IO clock cycle.

a. On the first cycle,

i. Fire-DMU asserts header valid signal (dmu_sii_hdr_vld) high.

ii. Fire-DMU drives all the header bits appropriately on dmu_sii_data[127:0].

For Fire-DMU, DMA Writes with or without bytemask active has address
aligned to 64-Byte boundary. Fire-DMU set DMA Write address[5:0] to 0.
Fire-DMU does not support nonposted writes.

iii. Fire-DMU drives data request signals (dmu_sii_datareq high and
dmu_sii_datareq16 low).

iv. Fire-DMU drives the destination queue signal (dmu_sii_reqbypass) to low
for the ordered queue.

Writes to the ordered queue will always be be issued by the SIU to L2 after
the youngest PIO completion in the bypass queue and after all prior writes
to L2 has been sent from L2 to MCU.

v. The parity lines (dmu_sii_parity) are don't cares for the header cycle.

vi. The byteenable lines (dmu_sii_be) are don't cares for the header cycle.

b. On the 2nd, 3rd, 4th, and 5th cycle,

i. Fire-DMU drives header valid signal (dmu_sii_hdr_vld) low.

ii. Fire-DMU drives data payload on dmu_sii_data[127:0] in big endian format.

iii. The data request signals (dmu_sii_datareq and dmu_sii_datareq16) are don't
cares for nonheader cycles.

iv. The destination queue signal (dmu_sii_reqbypass) is a don't care for
nonheader cycle.

v. The parity lines (dmu_sii_parity[3:0]) are driven.

vi. The byteenable lines (dmu_sii_be[15:0]) should be driven. They are treated
as don't cares if during the header cycle, the byte mask active field was 0.

3. Fire-DMU must reduce the DMA credit counter.
Chapter 6 System Interface Unit (SIU) 6-19

SIU supports back-to-back transfers from Fire-DMU. A 2nd packet may be sent
immediately the cycle after the 1st DMA Write packet if there is credit available for
the 2nd transfer.

Single and Back-to-Back Interrupt Request from Fire-DMU to SIU

PCI-Express requires that an interrupt it send to the CPU via whatever path is
delivered after the youngest corresponding DMA write has been sent to memory
(interrupt from Fire-DMU must guarantee that prior writes sent to SIU has left L2).
Fire-DMU take advantage of the ordering maintained by SIU by simply send an
interrupt to NCU via SIU's ordered queue.

Because these interrupt types are mondo, Fire-DMU must be capable of retrying
NAcked mondo and Fire-DMU must have an interrupt response path from NCU.

This describes the protocol for a single interrupt from Fire-DMU to SIU.

1. Fire-DMU first checks that it has a credit available for the packet transfer.

a. If Fire-DMU does not have credit for SIU's Ordered Queue and wishes to send
a DMA write request to SIU, Fire-DMU must wait for sii_dmu_wrack_vld to
assert, a prior DMA Read to complete from SIU Outbound or an interrupt
credit to return from NCU.

b. Once Fire-DMU has guaranteed that it has a DMA-INT credit, Fire-DMU can
send the interrupt request packet on the interface.

2. Send packet. This transfer takes 2 IO clock cycle.

a. On the first cycle,

i. Fire-DMU asserts header valid signal (dmu_sii_hdr_vld) high.

ii. Fire-DMU drives all the header bits appropriately on dmu_sii_data[127:0].

iii. Fire-DMU drives data request signals (dmu_sii_datareq high and
dmu_sii_datareq16 high).

iv. Fire-DMU drives the destination queue signal (dmu_sii_reqbypass) to low
for the ordered queue.

Interrupt in the ordered queue will always be be issued by the SIU to NCU
after the youngest PIO completion in the bypass queue and after all prior
writes to L2 has been sent from L2 to MCU.

v. The parity lines (dmu_sii_parity) are don't cares for the header cycle.

vi. The byteenable lines (dmu_sii_be) are don't cares for the header cycle.
6-20 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

b. On the 2nd cycle,

i. Fire-DMU drives header valid signal (dmu_sii_hdr_vld) low.

ii. Fire-DMU drives mondo data payload on dmu_sii_data[127:0].

This is the 1st 16Bytes of the mondo data.

iii. The data request signals (dmu_sii_datareq and dmu_sii_datareq16) are don't
cares for nonheader cycles.

iv. The destination queue signal (dmu_sii_reqbypass) is a don't care for
nonheader cycle.

v. The parity lines (dmu_sii_parity[3:0]) are driven.

vi. The byteenable lines (dmu_sii_be[15:0]) should be all 1's to be safe.

3. Fire-DMU must reduce the DMA-INT credit counter.

SIU supports back-to-back transfers from Fire-DMU. A 2nd packet may be sent
immediately the cycle after the 1st Interrupt packet if there is credit available for the
2nd transfer.

Single and Back-to-Back PIO Read Data Return from Fire-DMU to SIU

PCI-Express requires that an interrupt it send to the CPU via whatever path is
delivered after the youngest corresponding DMA write has been sent to memory
(interrupt from Fire-DMU must guarantee that prior writes sent to SIU has left L2).
Fire-DMU take advantage of the ordering maintained by SIU by when in PCI-
Express mode by simply sending the PIO Completion to NCU via SIU's Bypass
Queue.

This describes the protocol for a single PIO Read data return from Fire-DMU to SIU.

1. Send packet. This transfer takes 2 IO clock cycle. Because NCU guarantees that
NCU will stop sending PIO request if all 16 PIO credits are used, Fire-DMU does
not need to check for credit available prior to PIO read completion transfers.

a. On the first cycle,

i. Fire-DMU asserts header valid signal (dmu_sii_hdr_vld) high.

ii. Fire-DMU drives all the header bits appropriately on dmu_sii_data[127:0].

iii. Fire-DMU drives data request signals (dmu_sii_datareq high and
dmu_sii_datareq16 high).

iv. Fire-DMU drives the destination queue signal (dmu_sii_reqbypass) to high
for the bypass queue.
Chapter 6 System Interface Unit (SIU) 6-21

A PIO completion in the bypass queue will always be be issued by the SIU
to NCU after the youngest PIO completion in the bypass queue and after all
prior DMA writes to L2 has been sent from L2 to MCU and all prior
interrupts are on its way to NCU.

v. The parity lines (dmu_sii_parity) are don't cares for the header cycle.

vi. The byteenable lines (dmu_sii_be) are don't cares for the header cycle.

2. On the 2nd cycle,

a. Fire-DMU drives header valid signal (dmu_sii_hdr_vld) low.

b. Fire-DMU drives data payload on dmu_sii_data[127:0] in big endian format.

i. The CPU knows how many bytes it wanted.

ii. Note that if this PIO read is for a CSR, Fire-DMU must replicate the CSR's 64
bit value on the 128 bit payload. The CPU expects the lower 64 data bits to
be the same as the upper 64 bits.

iii. The data request signals (dmu_sii_datareq and dmu_sii_datareq16) are don't
cares for nonheader cycles.

iv. The destination queue signal (dmu_sii_reqbypass) is a don't care for
nonheader cycle.

v. The parity lines (dmu_sii_parity[3:0]) are driven.

vi. The byteenable lines (dmu_sii_be[15:0]) should be all 1's.

SIU supports back-to-back transfers from Fire-DMU. A 2nd packet may be sent
immediately the cycle after the 1st PIO read completion packet if there is credit
available for the 2nd transfer.

6.4.4.3 From SIU to L2

Back to Back Read Requests to L2

A read request packet (on sii_l2t_req[31:0]) consists of 2 header cycles followed by 3
dummy cycles. The first 2 dummy cycles are required by L2 for pipeline alignment -
so the initial pipeline stages of a read request looks like the stages of a write 8 byte
request. The last dummy cycle is for turnaround required by L2. The signal
sii_l2t_req_vld asserts for 1 cycle to indicate the 1st cycle of the packet transfer. SIU
only has 2 request tokens so SIU can burst only up to 2 back to back read requests to
the L2 Tag. After 2 outstanding requests without an indication of a dequeue from L2
6-22 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

(l2t_sii_iq_dequeue asserting high for 1 cycle), SIU must wait for an entry in the
input queue in L2Tag to drain. FIGURE 6-6 shows the best case of back to back read
requests. SIU bursts 2 reads, then sees l2t_sii_iq_dequeue asserting during the 2nd

transfer and proceeds to send out a 3rd read request. After which point, resource
constraints prevent further back to back requests. According to the L2 pipeline, the
earliest l2t_sii_iq_dequeue asserts is 2 cycles after L2Tag receives the 2nd dummy
data cycle from the 1st read request. The next possible assertion of
l2t_sii_iq_dequeue must be a minimum of 16 clock cycles after the 1st assertion. This
minimum pulse period of once every 17 cycles avoids the bus contention on the data
return path from L2 Bank to SIU (1 header cycle + 16 payload cycles).

A read request inbound to L2 will generate a response packet from L2 on the
outbound path. An inbound read request from SIU should not overflow SIU's
receive header and data buffers in the outbound direction. SIU's outbound L2
subunit sends dequeue signals to the inbound L2 subunit to communicate buffer
resource availability and SIU's inbound L2 subunit increments and decrements its
credit counters.

For a read request, there is no data payload to protect, so the ECC lines (sii_l2b_ecc)
are a don't care.

FIGURE 6-6 SIU to L2 : Back to Back Reads

Because the L2 Tags are physically way across the chip from SIU or a one way
distance of 9 to 10mm, 2 cycles of delay staging flops per direction will most likely
be required to accomodate the paths between SIU and L2. The timing diagrams
shown in this specification do not push out the signals to account for the delay
stages.

Back to Back WR8 Request follow by WRI Request

A Write 8 byte is a partial store in L2 cache and the packet transfer consists of 2
cycles of header followed by 2 cycles of payload and 1 dummy turnaround cycle.
The bytemask is encoded in the header. In the current L2 implementation, a WR8
Chapter 6 System Interface Unit (SIU) 6-23

request does not consume any data I/O write buffer entry. Instead, L2 pumps the 64
bit data into pipeline stages of 64 flops. Like the read request to L2, SIU must have a
request token available before it can send a write request. L2 asserts
l2t_sii_iq_dequeue for 1 cycle when it sends the WR8 down its pipeline during the
first pass. Note that for a WR8, SIU does not need a data token and should not
decrement its data credit for a WR8 transfer. For performance purpose, SIU does not
issue any WR8 with all bytes off.

A Write Invalidate (WRI) invalidates L2 if there's a tag match and moves all 64 bytes
to memory. A WRI packet transfer consists of 2 cycles of header followed by 16
cycles of payload and 1 dummy turnaround cycle. L2 does not move the write data
to the data cache array (for either WR8 or WRI) until L2 has accumulated the entire
data payload. Like the read request to L2, SIU must have a request token available
before it can send a write invalidate request. SIU will also need a data token
(initially set to 4 to match the 4 I/O write buffer entries in L2 Tag). SIU decrement
its data credit for a WRI transfer. Although not shown in FIGURE 6-7, L2 assserts
l2t_sii_iq_dequeue for 1 cycle when it sends the WRI request down its pipeline and
L2 also asserts l2t_sii_wib_dequeue for 1 cycle when L2 moves the 64 byte write data
out of the I/O write buffer.

ECC (sii_l2b_ecc[6:0]) is generated to protect the content of each data cycle. The ECC
algorithm used by SIU is the same as used by L2 for its data array and produces 7
check bits for a set of 32 data bit. Note that because ECC algorithm used by L2 is
different from memory, L2 will check the ECC from SIU and will regenerate new
ECC for memory for a WRI request.

Any nonposted write request inbound to L2 will generate an ack packet from L2 on
the outbound path. An inbound write request from SIU should not overflow SIU's
receive header buffers in the outbound direction. SIU's outbound L2 subunit sends
dequeue signals to the inbound L2 subunit to communicate buffer resource
availability and SIU's inbound L2 subunit increments and decrements its credit
counters.
6-24 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 6-7 SIU to L2 : Back to Back Writes (WR8 followed by WRI)

6.4.4.4 From SIU to NCU

FIGURE 6-8 shows fastest possible back to back transfer from the SIU to NCU. This
could be for Interrupt or PIO completion. SIU signals NCU it wants to transfer a
packet. The request signal is held high until SIU sees ncu_sii_gnt asserts (it only
asserts for 1 clock cycle). The cycle after grant, SIU drives for 5 cycles always,
beginning with the header and 4 cycles of payload/parity. While SIU is driving the
data lines, SIU may reassert the request line if it has more work to do. NCU is
expected to ignore the request line until 2 cycles before the current packet to check if
another transfer is requested. If NCU has space, it will reassert grant for 1 cycle
again for the next transfer. The earliest the 2nd grant can assert is on the 4th payload
cycle of the 1st transfer. This would allow for back to back transfer with no bubbles
on the sii_ncu_data bus.
Chapter 6 System Interface Unit (SIU) 6-25

FIGURE 6-8 Timing Diagram for Packet from SIU to NCU (Back to Back Transfer)

6.4.4.5 From TCU to SIU

There will be 2 bits interface (tcu_sii_vld, tcu_sii_data) from TCU to SII for DMA
read/write access.

tcu_sii_data is a 128/64 bit data stream with 64-bit header, 64-bits of data in case of
write. tcu_sii_vld asserted at the 1st, 64nd cycle on valid tcu_sii_data. There will
be 128 bits (header+data) for DMA write and 64-bits for DMA read.

Header format :

bit[63:56] = 0x81 for read , 0x82 for write

bit[55:40] = 0x00 reserved

bit[39:0] = 8 byte aligned physical address (bit[5:0])

: SIU signals NCU for transaction request;
: NCU sends grant signal to indicate ready to accept packet in next cycle;
: SIU starts new packet;

: 2 cycles before finishing the current packet, NCU checks if there is another request;
: NCU sends grant signal to indicate ready to accept new packet in next cycle;
: SIU starts new packet..

sii_ncu_parity[1:0] par A0 parA3 par B2

sii_ncu_req

ncu_sii_gnt

iol2clk

par A1xxxxxxxxxxxx xxxx par B1 xxxxpar A2 par B1

A

B

C

D

E

F

don't care don't care

A

B

C

D

E

F

sii_ncu_data[31:0] pld pA0 pldA3 pld B2pld A1hdrAhdr Axxxx hdr B pld B1 xxxxpld A2 pld B0
6-26 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

6.4.5 SIU's Inbound Pipeline

6.4.5.1 Major Pipeline Stages

There are 4 major pipeline stages in the inbound transfer. The best case total latency
is 8 cmp clock cycles + 4 IO clock cycles. The worst case total latency to NCU is 15
cmp clock cycles + 15 IO clock cycles. The worst case total latency to L2 Tag is 15
cmp clock cycles +32 cmp clock cycles. The following subsections will discuss the
the latencies of each stages in details. Please refer to FIGURE 6-9.

Stage1 : Interface (3-7 IO clock cycles)

The interface latency between DMU/NIU to SIU is between from 3 to 7 cycles.
Request and grant arbitration costs 2 cycles. Although that latency can be hidden
when there are back to back requests and the first request transfers at least 1 payload
cycle, it must be taken into account. The best case is 1 cycle of read request to either
L2 or NCU. The worst case is 1 cache line write request from DMU/NIU to L2. It is
1 cycle of header plus 4 cycles of payload. The transaction on the bus will be
registered and written to the fifo(register file) in this stage.

Stage2 : Write to Fifo (1 to 4 cmp clock + 1 IO clock cycles)

This stage includes the header decoding and address lookup to set dependency for
DMU packets followed by write to the fifo (register file). Once the last cycle of
packet has been written into the FIFO and to disallow flow through FIFO, read
pointer synchronization across the clock domain takes a minimum of 1 to 4 cmp
clock cycles. 1 IO cycle (3 or 4 cmp clock cycles) for header decoding and register
file write, and 1 to 4 cmp clocks for the read ptr synchronization.

Stage3: Read from Fifo and arbitration (3-11 cmp clock cycles)

There is 2 cycles for arbitration between different fifo queues (DMU ordered, DMU
bypass, NIU). In this stage, the arbitor check for the resources availabity and priorty
of each queue to grant the transfer. Depending on the type of transaction, the
transfer going to the queues in the inbound L2 subunits may take 1 or 9 cmp cycles.
The transfer going to the queues in the inbound NCU subunit takes 1, 2 or 3 cmp
cycles. Inbound toward L2 contributes to both the best case and worse case latency.

Stage4: L2 interface (4-32 cycles), NCU interface (4 to 7 IO clock cycles)

This stage includes latency of either the ILDs or IND. In the IND, SIU crosses back
from the cmp clock domain into the IO domain. That pointer synchronization plus
writing and reading from the width conversion FIFO take 2 IO clock cycles. The
subsequent transfer to NCU takes 2 to 5 IO clock cycles. In the ILDs, there are 2
Chapter 6 System Interface Unit (SIU) 6-27

cycles of header (Addr Tag) and (0 to 16 cycles) for regular RDD, WRI, WR8
transaction. However, when there is a WRM request, since L2 only merges 8 bytes,
a WRM will be broken down to a maximum of 8 WR8 transfers. With each WR8
being 4 cmp cycles (2cycles of header and 2 cycles of payload), and assuming L2 can
stream the merge pipeline, the worse case is 32 cmp cycles for 8 transfers. The best
case is RDD (2 cycles of header + 3 dummy data cycles) and the worse case is WRM
(32 cycles).
6-28 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 6-9 Inbound Pipeline Diagram

IL
D

7

IL
D

1

IL
D

2

IL
D

3

IL
D

4

IL
D

5

IL
D

6

IL
D

0

IN
D

_
D

cmp_clk domain
Ioclk domain

64

8

64

64 64

64

H
ea

de
r+

P
ay

lo
ad

(1
to

5)
cy

cl
e

S
T

A
G

E
1

S
T

A
T

E
2

S
T

A
G

E
3

S
T

A
G

E
4

64 64

_

N
IU

_O
R

D
E

R
E

D
_H

D
R

N
IU

_O
R

D
E

R
E

D
_P

A
R

IT
Y

N
IU

_B
Y

P
A

S
S

_H
D

R

N
IU

_B
Y

P
A

S
S

_P
A

R
IT

Y

D
M

U
_O

R
D

E
R

E
D

_P
A

R
IT

Y

D
M

U
_B

Y
P

A
S

S
_P

A
R

IT
Y

D
M

U
_O

R
D

E
R

E
D

_B
E

D
M

U
_B

Y
P

A
S

S
_B

E

N
IU

_O
R

D
E

R
E

D
_P

A
Y

L
O

A
D

N
IU

_B
Y

P
A

S
S

_P
A

Y
L

O
A

D

D
M

IU
_B

Y
P

A
S

S
_P

A
Y

L
O

A
D

D
M

U
_O

R
D

E
R

E
D

_P
A

Y
L

O
A

D

D
M

U
_O

R
D

E
R

E
D

_H
D

R

D
M

U
_B

Y
P

A
S

S
_H

D
R

Chapter 6 System Interface Unit (SIU) 6-29

6.4.6 Block Diagrams of SIU Inbound

6.4.6.1 Top

FIGURE 6-10 SIU Inbound Top Level

N
IU

_O
R

D
E

R
E

D
_H

D
R

N
IU

_B
Y

P
A

S
S

_H
D

R

ECCGen

niu_sii_data[127:0]

dmu_sii_be[15:0]

ipd_ild_data[63:0]
ipd_ild_ecc[13:

ipd_ild_be[7:0]

64

8

64

14

16 16

16

128

niu_sii_data[127:0]

128

Header
Decoder

cmp clock domain

io clock domain

62 62 62

D
M

U
_O

R
D

E
R

E
D

_B
E

D
M

U
_B

Y
P

A
S

S
_B

E

N
IU

_O
R

D
E

R
E

D
_P

A
Y

L
O

A
D

N
IU

_B
Y

P
A

S
S

_P
A

Y
L

O
A

D

D
M

U
_O

R
D

E
R

E
D

_P
A

Y
L

O
A

D

D
M

U
_B

Y
P

A
S

S
_P

A
Y

L
O

A
D

64 64

64

cmp clock domain

io clock domain

128128

128

Header
Decoder

128128

Addresses
Dependency

Queue
+

Comparitors62

IL
D

0

IL
D

1

IL
D

2

IL
D

3

IL
D

4

IL
D

5

IL
D

6

IL
D

7

IN
D

0]

ipd_ind_data[63:0]

Addresses
Dependency

Queue
+

Comparitors

64 64

D
M

U
_O

R
D

E
R

E
D

_H
D

R

D
M

U
_B

Y
P

A
S

S
_H

D
R

6-30 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

6.4.6.2 Sub-Blocks - ILD

FIGURE 6-11 SIU Inbound L2 Datapath (ILD) Subunit

6.4.6.3 Sub-Block - IND

FIGURE 6-12 SIU Inbound NCU Datapath (IND) Subunit

8 8 888 88 8

32

ipd_ild_data[63:0]

7

sii_l2b_ecc[6:0]

Header logic

Cmd[2:0]
addr[39:0]
tag[18:0]

SIU's ILD subunit
(cmp clock domain)

4 cachelines of write data
+ ECC
physically organized as
78w x 32deep
(8B+14ECCbits) x 32

ipd_ild_ecc[13:0]

8 8 888 88 8

ipd_ild_be[7:0]

Byte-enables

Write-data
ECC

64

14

8

Chapter 6 System Interface Unit (SIU) 6-31

6.4.6.4 Sub-Block Descriptions

Top

The logical top level of the SIU inbound logic consist of control sub-blocks and data

32

ipd_ind_data[63:0]

sii_ncu_data[31:0]

Header logic

Cmd[0],
inum[9:0]
tag[15:0]

SIU's IND subunit
(both clock domain)

PIO Read Data :
16-16Byte physically
organized as a regfile
64bit wide x 32 deep

Interrupt Mondo Data :
4-16Byte physically
organized as RF entries
64bit wide x 8 deep

PIO Tag Headers :
16 16 bit headers

physically
organized as RF entries
64bit wide x 16 deep

Interrupt Mondo Header:
4 rows of flops

Data Payload Queue
16 PIO Read-data +
4 Interrupt Mondo Data

64

io_clk

cmp_clk
6-32 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

path sub-blocks. The datapath include the following sub-blocks:

ILDs : There are 8 identitcal copies of ILD instantiated in the inbound logic. Each
ILD can hold 4 requests and 4 cachelines of write data and associated byte-enables,
ecc and header information. ILDs handle transaction going to L2 cache, it has 1
unified data queue 78bits wide x 32 deep to hold the 4 cachelines - writing in 64 bit
data + 14 bit ecc per cycle. It acts as buffer for assembling of SIU_L2 packets.

IND : IND handles transfer going to NCU. It acts as a buffer for assembling
SIU_NCU packets. It can buffer 16 PIO Read 16Byte responses and 4 interrupt
16Byte mondo write requests (2 32-bit x 40 data queues, 4x26-bit register for
Interrupt header storage, 16 16-bit register for PIO Read Return header storage). IND
runs in both clock domains. It downconverts the cmp clock frequency of IPD into the
IO clock frequency because NCU's interface to SIU runs in the IO clock domain.

DMU_ORDERED header queue : it is a 62-bit wide x 16 depth register file with
input and output registered. The write operation is running at Io_clock domain, and
the read operation is running at L2_clock domain.

DMU_BYPASS header queue : it is a 62-bit wide x 16 depth register file with input
and output registered. The write operation is running at Io_clock domian, and the
read operation is running at L2_clock domain.

NIU_ORDERED header queue : it is a 62-bit wide x 16 depth register file with input
and output registered. The write operation is running at Io_clock domain, and the
read operation is running at L2_clock domain.

NIU_BYPASS header queue : it is a 62-bit wide x 16 depth register file with input
and output registered. The write operation is running at Io_clock domian, and the
read operation is running at L2_clock domain.

DMU_ORDERED parity queue : it is a 1-bit x 16 register. It hold the parity bit of
the whole packet including header and payload.

DMU_BYPASS parity queue : it is a 1-bit x 16 register. It hold the parity bit of the
whole packet including header and payload.

NIU_ORDERED parity queue : it is a 1-bit x 16 register. It hold the parity bit of the
whole packet including header and payload.

NIU_BYPASS parity queue : it is a 1-bit x 16 register. It hold the parity bit of the
whole packet including header and payload.

DMU_ORDERED_BE queue : it is a 16-bit x 16 register file with input and output
registered. The write operation running at Io_clock doman, and the read operation
is running at L2 clock domain.

DMU_BYPASS_BE queue : it is a 16-bit x 16 register file with input and output
registered. The write operation running at Io_clock doman, and the read operation
is running at L2 clock domain.
Chapter 6 System Interface Unit (SIU) 6-33

DMU_ORDERED payload queue : it is a 128-bit x 64 depth queue logically. It is
implemented with 1 128-bit x 32 depth register file with input and and output
registered. The write operation runs at Io_clock domain and the read operation runs
at L2_clock domain.

DMU_BYPASS payload queue : it is a 128-bit x 64 depth queue logically. It is
implemented with 1 128-bit x 64 depth register file with input and and output
registered. The write operation runs at Io_clock domain and the read operation runs
at L2_clock domain.

NIU_ORDERED payload queue : it is a 128-bit x 64 depth queue logically. It is
implemented with 1 128-bit x 32 depth register file with input and and output
registered. The write operation runs at Io_clock domain and the read operation runs
at L2_clock domain.

NIU_BYPASS payload queue : it is a 128-bit x 64 depth queue logically. It is
implemented with 1 128-bit x 64 depth register file with input and and output
registered. The write operation runs at Io_clock domain and the read operation runs
at L2_clock domain.

The control path include the following sub-blocks: IPC, ILC, please refer to the next
subsections for the details of IPC and ILC sub-blocks.

ILC Sub-block

There are 8 identical copies of ILCs instantiated in SIU. ILCs are running at core
clock domain. There are 2 major functions of ILC sub-block:

1. It checks the L2 bank's availability. There are 2 counters in each ILC to keep track
of outstanding L2 transactions. One is the transaction counter, which keep track
of outstanding L2 requests which are issued to L2 and no acknowledgments come
back yet. The second counter keeps track of the WRI requests. The requirements
from L2 stated that L2 allow 2 outstanding requests (WR8, RDD, WRM) and 4
outstanding WRI requests. As long as the counters' value satisfy the L2
requirements, the particular L2 bank is considered as available. The availability
information will be passed to IPC for arbitration purposes.

2. ILC will drive the SIU-L2 interface bus according to the protocol defined in the
previous sections. Also it will assemble the packets with header and payload
formats according to the SIU-L2 packet format defined in the previous sections.
6-34 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

Note – For the WR8 transfer with no bit set in the byte-mask, SIU will just discard
the transaction.

For WRM of 64 byte merge, ILC will break it down to 8 WR8 requests and assemble
8 packets for it.

Should a WRM of 64 bytes have no bytes on, SIU will not send out any WR8 packets
to L2 but will wait for all outstanding acks from L2 to return and then inject a single
fake write response into the outbound L2 subblock for return to DMU if needed.

INC Sub-block

The INC sub-block is running at core clock domain, however part of the logic is
running at IO clock domain for the purpose of driving the SIU-NCU interface
signals. There is no flow control between SIU and NCU for read returns, NCU is
considered as always available with respect to read returns. However INC need to
keep track of outstanding interrupts, there are 4 outstanding interrupts allowed in
SIU. Once it reached that number, it will signal the IPC to block further interrupt
requests to NCU. Another function of INC is to assemble the packet following the
SIU-NCU packet format and drive the SIU_NCU interface accordingly.

IPC Sub-block

There are 2 identical copies of IPCs instantiated in SIU, one for DMU and one for
NIU. IPCs are mainly running at IO clock domain. However, part of the logic is
running at core core clock domain to handle the cross clock domain situation. The
logic will be partitioned into 2 parts (IPCC and IPCS) according their clock domain.

IPCS sub-block implement 2 major functions:

1. IPCS will drive the DMU/NIU – SIU interface bus according to the protocol
defined in previous section. It check for the availability of different queues to
maintain flow control for the interface.

2. IPCS maintains the ordering rules for the input side from the DMU and NIU. It
uses the sideband signals and header information to dispatch requests from DMU
to DMU_ORDERED queue and DMU_BYPASS queue and from NIU to
NIU_ORDERED queue and NIU_BYPASS queue.

IPCS has access to 2 FIFOs containing addresses and write/read bit duplicating the
addresses and command type in the ordered and bypass FIFOs. Assuming the
register-file FIFOs are not cam-able, the 2 FIFOs must be made of flops for address
comparison. IPCS maintains 5 pointers – the location of the youngest write entry in
the bypass queue, the youngest entry in the bypass queue, the youngest entry in the
Chapter 6 System Interface Unit (SIU) 6-35

ordered queue, the oldest entry in the ordered queue, the oldest entry in the bypass
queue. IPCS and IPCC communicates with each other to maintain these pointers. All
packets from an interface updates the duplicate address FIFOs for that interface.

For the newest write entering the ordered queue, IPCS tags it as dependent on the
younger of the 2 entries: youngest write in the bypass queue or the youngest
matching cacheline address in the bypass queue. This is done by storing a pointer to
the bypass queue and setting a dependency pointer valid bit.

For the newest read entering the ordered queue, IPCS tags it as dependent on the
youngest entry with the same address in the bypass queue. This is done by storing a
pointer to the bypass queue and setting a dependency pointer valid bit.

For the newest write or read entering the bypass queue, IPCS tags it as dependent
on the youngest entry with the same address in the ordered queue. This is done by
storing a pointer to the ordered queue and setting a dependency pointer valid bit.

In PCIExpress mode, IPCS tags each newest entry as dependent on the youngest
entry in the opposite queue.

IPCC sub-block implements 2 major functions:

1. IPCC will drive the output buses of the inbound packet fifos according to the
protocol defined in previous section. It check for the availability of different
queues in IND and ILDs to maintain flow control.

2. IPCC maintain the ordering rules for the output side for DMU packet and does a
2 level arbitration between NIU and DMU. The top level arbitration is between
NIU and DMU packets on a deficit round robin basis. NIU packets have no
ordering requirement with respect to other packets from DMU. DMU packets
have no ordering requirement with respect to packets from NIU. The 2nd level
arbitration is between the the 2 DMU FIFOs.

IPCC maintains 2 counters – a bypass write counter and an ordered write counter.
The bypass write counter counts the number of writes sent from the bypass queue
but have not received their acknowledgements. The ordered write counter counts
the number of writes or interrupts that were sent from the ordered queue but have
not received their acknowledgements. An ordered target ID tracks which of the 9
targets (8 L2, 1 NCU) was the last issued write/interrupt from the ordered queue.

When a write/interrupt/PIO read return reaches the top of the ordered queue and
has its dependency pointer valid bit set, IPCC first checks if that entry in the bypass
queue has been dequeued. If it has and the bypass write counter reaches zero, then a
2nd check is made. After the bypass write counter has reached zero, if it's a read
return then it may continue, else the following is decided. A comparison between
the ordered target ID against the destination of the write/interrupt is made. If they
are the same, then it may continue. If they are not the same, then the write/interrupt
6-36 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

must wait until the ordered write counter has reached zero before it can continue.
When the write/interrupt packet dequeues, the ordered write counter is
incremented and the ordered target ID is updated.

When a read reaches the top of the ordered queue and has its dependency pointer
valid bit set, IPCC first checks if that entry in the bypass queue has been dequeued.
If it has and the bypass write counter reaches zero, then a 2nd check is made. A
comparison between the ordered target ID against the destination of read is made. If
they are the same, then it may continue. If they are not the same, then the read must
wait until the ordered write counter has reached zero before it can continue. No
counter is incremented when the read dequeues.

When a write or read reaches the top of the bypass queue and has its dependency
pointer valid bit set, then IPCC first checks if that entry in the ordered queue has
been dequeued. If it has, then the write may continue. Once dequeued and if its a
write, then the bypass write counter is incremented. No counter is incremented
when a read dequeues.

When a flush reaches the top of the ordered queue and has its dependency pointer
valid bit set, IPCC checks if that entry in the bypass queue has been dequeued. If it
has and the bypass write counter reaches zero, then a 2nd check is made. After the
bypass write counter has reached zero, must wait until the ordered write counter has
reached zero before it is dequeued. When a flush dequeues and it's nonposted, a
response packet is injected into the outbound path to return to DMU.

6.4.6.5 RAS

Syndrome format of sii_ncu_syn_data[63:0]

sii_ncu_syn_vld will cover the 16 io cycles of syndrome.

Cycle0 : send sii_ncu_syn_data[3:0]

Cycle1 : send sii_ncu_syn_data[7:4]

.

.

Cycle15 : send sii_ncu_syn_data[63:60]

==================================
>> bit[63:62] = 2'b00 (in case of future changes !)
>> bit [61] = niud_pe
>> bit [60] = niua_pe
>> bit [59] = niuctag_ue
>> bit [58] = dmud_pe
>> bit [57] = dmua_pe
>> bit [56] = dmuctag_ue
Chapter 6 System Interface Unit (SIU) 6-37

>> bit [55:40] = ctag[15:0]
>> bit [39:0] = Physical Address[39:0]
>> ==================================

6.5 Outbound

6.5.1 Interface Timing Diagrams

6.5.1.1 From L2 to SIU

Single Read Response from L2

FIGURE 6-13 shows the quickest a read request inbound to an L2 bank will return
outbound to SIU. The greyed bars in the diagram mean some clock cycles are not
shown.

After L2Tag has accumulated the read request packet with the dummy cycles for
pipeline alignment (shown as sii_l2t_req[31:0]), the read request can be dispatched
down L2's pipeline. The l2t_sii_iq_dequeue signal asserts high for 1 cycle when L2
dispatches the read. That signal is used by SIU's Inbound L2 Control subunit for
credit based flow control. In the current L2 pipeline, the earliest L2 can assert
l2t_sii_iq_dequeue is 2 cycles after the last dummy data cycle of the request packet.

L2 Bank asserts the l2b_sio_ctag_vld signal high for 1 cycle to indicate the
completion of the read. On the cycle that l2b_sio_ctag_vld asserts, l2b_sio_data has a
read response header. The subsequent 16 cycles of l2b_sio_data[31:0] contain the 64B
read data. Parity is generated on l2b_sio_parity[1:0] and corresponds to the parity of
each data word of l2b_sio_data. The l2b_sio_ue_err signal is also active during the
data cycles to indicate that L2 had detected an uncorrectable error for that data
word.
6-38 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 6-13 L2 Read Data Return Timing Diagram (Fastest case is shown)

The bottom part of the timing diagram represents the read response continuing
outbound internally through SIU. Read requests can be pipelined to L2 and the
responses pipelined back to SIU. However because there is no direct flow control to
stop a response from L2 from overflowing SIU's outbound response buffers, SIU's
Outbound L2 Control subunit asserts internal signal sio_sii_olc_ilc_dequeue high for
a cycle when a credit is returned to SIU's Inbound L2 Control subunit. The diagram
shows SIU forwarding the read response packet to the outbound packet data subunit
on the next data bus (old_opd_data[63:0]) as early as possible. The earliest this can
happen is after SIU has received 3/4 the response payload from L2. The assumption
made here is that SIU can forward the accumulated result of all the parity checks
and uncorrectable errors later. Otherwise, SIU pays the latency of accumulating the
full 64B response payload. Working backward from the databus old_opd_data are
SIU's outbound internal arbitration request-grant signals olc_opc_req and
opc_olc_gnt. The dequeue signal sio_sii_olc_ilc_dequeue for the inbound path can
simply be a buffered version of the grant signal opc_olc_gnt as shown, if the timing
can be made. Otherwise it will assert a cycle later.

Due to stall conditions such as a cache miss, the latency between the assertion of
l2t_sii_iq_dequeue and l2b_sio_ctag_vld can exceed the 9 cycles shown in the above
diagram. Likewise, due to back stall conditions further downstream in the outbound
paths, the latency between the assertion of sii_l2t_req_vld and
sio_sii_olc_ilc_dequeue can exceed the 26 cycles shown in the above diagram.

sii_l2t_req_vld

Read Access

sii_l2t_req[31:0] 0 1 2

Addr, tag dummy dead
data cycle

l2b_sio_ctag_vld

l2b_sio_ue_err,
l2b_sio_parity[1:0
]

old_opd_data[63:0]

D15Tag

l2t_sii_iq_dequeue

opcc_olc_gnt

sio_sii_olc_ilc_dequeue

olc_opcc_req

l2b_sio_data[31:0] D12D0 D13

Hdr D0-3

D14D10 D11

DC-F

Cyc0 Cyc1 Cyc2 Cyc3 Cyc14 Cyc15 Cyc26 Cyc27 Cyc28Cyc4 Cyc5 Cyc6 ----- Cyc29 Cyc31Cycle Number

D4-7 D8-B`

Cyc30Cyc25

SIU INTERNAL SIGNALS

3

Chapter 6 System Interface Unit (SIU) 6-39

Write 8 Responses from L2 to SIU

FIGURE 6-14 shows 2 WR8 requests inbound to an L2 bank followed by 3 signals to
related to the WR8 responses returning outbound to SIU from L2. The greyed bars in
the diagram mean some clock cycles are not shown.

FIGURE 6-14 L2 Write 8 Acknowledgement Timing Diagram

After L2Tag has accumulated the WR8 request packet (shown as sii_l2t_req[31:0]),
the request can be dispatched down L2's pipeline. The l2t_sii_iq_dequeue signal
asserts high for 1 cycle when L2 dispatches the write. That signal is used by SIU's
Inbound L2 Control subunit for credit based flow control. In the current L2 pipeline,
the earliest L2 can assert l2t_sii_iq_dequeue is 2 cycles after the last data cycle of the
request packet. The l2t_sii_iq_dequeue signal guarantees write ordering has
occurred in L2. However, it does not mean the write has completed.

For the WR8 acknowledgement, the latency between l2t_sii_iq_dequeue and
l2b_sio_ctag_vld depends on whether the store missed the L2 or not. L2 handles the
merge like an atomic read-modified-write operation. A subsequent request from SIU
would not overtake the WR8 should the WR8 miss L2 on the first pass and must
wait to be reissued after a fill. Note that there is no new assertion of
l2t_sii_iq_dequeue on 2nd pass of a WR8.

The timing diagram shows that when l2b_sio_ctag_vld asserts, L2 Bank responds
with a tag on signal l2b_sio_data[31:0]. This tag does not contain enough
information for SIU to know if the WR8 response is the last of a sequence of up to 8
WR8 packets that were decomposed from a single write transaction. The assumption
made in the SIU is that DMU will never need a ack response for writes with
bytemasks (all memory writes with bytemask from DMU are posted) and hence SIU
Inbound and Outbound paths do not need to coordinate to scoreboard the tag.

sii_l2t_req_vld

Last Write8 Access
sii_l2t_req[31:0] 1 2

Addr1, tag, Wr8 data

Tag

l2t_sii_iq_dequeue

l2b_sio_data[31:0]

l2b_sio_ctag_vld

WR8

Write8
Access

1 2 --WR8

Tag

WR8 RESPONSE PACKETS FROM L2 ARE NOT QUEUED INTO SIU'S OUTBOUND DATAPATHS.
IT IS ASSUMED THAT ALL BYTEMASKED WRITES ARE POSTED SO NO ONE IS EXPECTING A
WRITE- ACK

3

6-40 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

Similiarly, the assumption is that NIU will never generate bytemask writes requests
to SIU and thus SIU will never generate WR8 for NIU and again SIU would not need
to scoreboard the tag after SIU issue to L2.

Because the outbound path never needs to respond to a WR8 response from L2,
those responses never enters any queue in the SIU outbound L2 data or control
paths.

Write Invalidate Response from L2 to SIU

FIGURE 6-15 shows a Write Invalidate request inbound to an L2 bank and the
outbound return of the write response. The greyed bars in the diagram mean some
clock cycles are not shown.

FIGURE 6-15 L2 Write Invalidate Acknowledgement Timing Diagram

After L2Tag has accumulated the 18-cycle WRI request packet (shown as
sii_l2t_req[31:0]), the request can be dispatched down L2's pipeline. The
l2t_sii_iq_dequeue signal asserts high for 1 cycle when L2 dispatches the write. That
signal is used by SIU's Inbound L2 Control subunit for credit based flow control. In
the current L2 pipeline, the earliest L2 can assert l2t_sii_iq_dequeue is 2 cycles after
the last data cycle of the request packet. The l2t_sii_iq_dequeue signal guarantees
write ordering has occurred in L2. However, it does not mean the write has
completed. When L2 Tag drains the 64 bytes of write data from its I/O Write Buffer
and the data are enroute to the memory controller, the l2t_sii_wib_dequeue signal
asserts for 1 cycle. This signal is used only for a Write Invalidate request as a Write 8
request does no consume any data buffer in L2. The SIU Inbound L2 subunit

sii_l2t_req_vld

sii_l2t_req[31:0] ----

Write Invalidate
Access

old_opd_data[63:0]

l2t_sii_wib_dequeue

opc_olc_gnt

sio_sii_olc_ilc_dequeue

SIU INTERNAL SIGNALS

l2b_sio_data[31:0]

Hdr-----

l2b_sio_ctag_vld

Header + 8 Dummy Data Cycles

Addr D0WRI

D7

l2t_sii_iq_dequeue

Tag D0 D2D1

Addr1, tag, WRI data dead

olc_opc_req

D15
Chapter 6 System Interface Unit (SIU) 6-41

monitors the signal l2t_sii_wib_dequeue for credit based flow control of L2's 4 I/O
Write Buffers. Many cycles later, the l2b_sio_ctag_vld signal asserts for 1 cycle to
indicate the completion of the write. When l2b_sio_ctag_vld asserts, l2b_sio_data
contains the header of the write response packet. 8 cycles of dummy data follows to
align L2's store pipeline. The bottom part of the timing diagram represents the write
response continuing outbound through SIU. For flow control, the outbound L2
control subunit signals to the inbound L2 control subunit that an entry has been
dequeued.

6.5.1.2 From SIU to NIU

The assumption is that the NIU has buffers to receive all DMA responses from SIU.
There is no flow control from NIU to throttle SIU Outbound and thus SIU is allowed
to send responses back to back without any bubble to NIU.

Writes from NIU can be either posted or nonposted. For nonposted writes, SIU must
return an acknowledgement response back to NIU when the L2 has acknowledged
completion of the write. There is no requirement of the SIU to return the ack
response packet in the same order that NIU delivered the write request nor in the
order that the write completed in memory.

The parity protected interfaces between SIU and the NIU are 128 bit wides with side
band signals for packet control. Having a 128 bit for header allows SIU to provide a
rich set of transaction types and allows SIU to provide a uniform and generic but
flexible enough for most IO architectures. See Chapter 7.4 and 7.6 for the exact
header format from SIU to DMU and from SIU to NIU. See Chapter 9 for the exact
signal names.

The outbound packet interface protocol works as follows :

Cycle 1: Header Cycle

■ sio_niu_hdr_vld asserts for 1 cycle to indicate SIU is sending the packet header
to niu.

■ sio_niu_datareq is set to 1 to indicate this packet has a 4 cycle payload
following the header cycle to transfer 64 Bytes of data. It is set to 0 to indicate
this packet is an write acknowledge and has no data payload.

■ sio_niu_data[127:0] contains a valid header.

Cycle 2-5: Payload Cycles if sio_niu_datareq was asserted during Header Cycle.

■ sio_niu_hdr_vld is deasserted.

■ sio_niu_data[127:0] contains the payload data. Data is returned big endian and
critical 4 Byte first and wraps back to the beginning of the cacheline when it
reaches the cacheline boundary.

■ sio_niu_parity[3:0] contains the parity for each 32 bit of data. Parity[N]=
xor(data[32N+31 : 32N])
6-42 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

6.5.1.3 From SIU to DMU

The assumption is that the DMU has buffers to receive all DMA responses from SIU.
There is no flow control from DMU to throttle SIU Outbound and thus SIU is
allowed to send responses back to back without bubble to DMU.

Fire-DMU never issues nonposted DMA writes so all responses from SIU to Fire-
DMU has a 4 cycle payload.

The parity protected interfaces between SIU and the DMU are 128 bit wides with
side band signals for packet control. Having a 128 bit for header allows SIU to
provide a rich set of transaction types and allows SIU to provide a uniform and
generic but flexible enough for most IO architectures. See Chapter 7.4 and 7.6 for the
exact header format from SIU to DMU and from SIU to DMU. See Chapter 9 for the
exact signal names.

The outbound packet interface protocol works as follows :

Cycle 1: Header Cycle

■ sio_dmu_hdr_vld asserts for 1 cycle to indicate SIU is sending the packet
header to dmu.

■ sio_dmu_datareq is set to 1 to indicate this packet has a 4 cycle payload
following the header cycle to transfer 64 Bytes of data.

■ sio_dmu_data[127:0] contains a valid header.

Cycle 2-5: Payload Cycles if sio_dmu_datareq was asserted during Header Cycle.

■ sio_dmu_hdr_vld is deasserted.

■ sio_dmu_data[127:0] contains the payload data. Data is returned big endian
and critical 4 Byte first and wraps back to the beginning of the cacheline when
it reaches the cacheline boundary.

■ sio_dmu_parity[3:0] contains the parity for each 32 bit of data. Parity[N]=
xor(data[32N+31 : 32N])

6.5.1.4 From SIO to TCU

There will be 2 bits interface (sio_tcu_vld, sio_tcu_data) from SIO to TCU for DMA
read/write response.

sio_tcu_data is a 64-bit data stream for read request , and 1bit of data=0 for write
request.

Header format :

bit[63:0] = 8-bytes of read return data for read request

bit[0] = 0x0
Chapter 6 System Interface Unit (SIU) 6-43

6.5.2 Outbound Pipeline

6.5.2.1 From L2

L2 Bus Cycle Packets (Write Acknowledge)

1. L2B-OLD Header Enqueue (1 L2 cycle : 32 bit bus)

2. OLD-OPD Request (1+ L2 cycle)

3. OLD-OPD Grant (1 L2 cycle)

4. OLD-OPD Transmit/Muxing Wire Delay (1 to 2 L2 cycles)

5. OLD-OPD Header Enqueue (1 L2 cycle : 64 bit bus)

6. OPD-OPD Domain Crossing (1-3 L2 cycles)

7. OPD-DMU/NIU Header Enqueue (1 IO cycle : 128 bit bus)

L2 Bus Cycle Packets (Read Response)

1. L2B-OLD Header Enqueue (1 L2 cycle : 32 bit bus)

2. L2B-OLD Data Payload Enqueue (16 L2 cycles : 32 bit bus)

3. OLD-OPD Request (1+ L2 cycles)

4. OLD-OPD Grant (1 L2 cycle)

5. OLD-OPD Transmit/Muxing Wire Delay (1 to 2 L2 cycles)

6. OLD-OPD Header Enqueue (1 L2 cycle : 64 bit bus)

7. OLD-OPD Data Payload Enqueue (8 L2 cycles : 64 bit bus)

8. OPD-OPD Domain Crossing (1-3 L2 cycles)

9. OPD-DMU/NIU Header Enqueue (1 IO cycle : 128 bit bus)

10. OPD-DMU/NIU Data Payload Enqueue (4 IO cycles : 128 bit bus)
6-44 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

6.5.3 SIU Outbound Block Diagram

6.5.3.1 OPD : Outbound Packet Datapath

FIGURE 6-16 SIU Outbound Packet Datapath (OPD) Subunit

E
N

T
_P

A
R

IT
Y

D
M

U
_P

A
R

IT
Y

E
N

T
_R

E
S

P
O

N
S

E
_H

D
R

D
M

U
_R

E
S

P
O

N
S

E
_H

D
R

O
L

D
7

O
L

D
1

O
L

D
2

O
L

D
3

O
L

D
4

O
L

D
5

O
L

D
6

O
L

D
0

128

64

128 128

sio_niu_data[127:0]

Outbound
Header
Decoder

IO clock

17

64

CMP clock domain

8

sio_dmu_data[127:0]

17
8

4

Outbound
Header
Decoder

sio_niu_parity[3:

Parity
Gen

Parity
Gen

sio_dmu_parity[3:0]

Parity
Gen

Parity
Gen

4

Parity
Check

Parity
Check

domain

E
N

T
_R

E
S

P
P

O
N

S
E

_P
A

Y
L

O
A

D

D
M

U
_R

E
S

P
P

O
N

S
E

_P
A

Y
L

O
A

D

0]
Chapter 6 System Interface Unit (SIU) 6-45

6.5.3.2 OLD : Outbound L2 Datapath

FIGURE 6-17 SIU Outbound L2 Datapath (OLD) Subunit

6.5.4 SIU
Out
bou
nd
Sub
unit
Des
crip
tion
s

6.5.4.1 Datapath

OLD0 to OLD7 receive and store response packets from L2 buffer. Each interface has
a 64Byte 4 deep payload buffers physically organized as 2 regfiles. Each regfile is
32bit wide x 32 deep – written in at cmp clock @ 32bit / cycle, read out at cmp clock
@ 64bit / cycle. There is also a header queue in each interface to hold the tag
information. That queue is 18 bits wide x 4 deep.

The physical placement and organization of these OLDx queues are critical to the
critical path in the outbound direction. The distance between the farthest 2 regfile's
IO flops determines how far the mux-select lines would need to travel on the 1st

level of 8:1 muxing of these 64 bit wire bundles.

OPD : The outbound packet datapath subunit holds packets from the OLDx
subunits and stream them out to DMU and NIU. NIU and DMU each has a separate
outbound packet queue 16 entry deep for responses from L2. The packet queues are
physically separated into header queues, payload queues, and parity. The packets
crosses clock domain from core clock to IO clock in OPD.

32

old_opd_data[63:0]

l2b_sio_data[31:0]

Header logic

Cmd,
Dest,
tag[15:0]

SIU's OLD subunit
(L2 clock domain)

4 cachelines
Read data queue
Physically organized as
1 regfiles each
64 bit wide x 16 deep,
written once every 2
cycles

Read
data

64

Header
queue
4 deep,
physically
organized as
4 rows of
18 bit wide
flops

l2b_sio_ue_err

UE accum logic

Parity
Check

64
118

l2b_sio_parity[1:0]

2

6-46 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

6.5.4.2 Control Path

OLC0 to OLC7 are indentical instantiations of the control logic to enqueue and
dequeue from the OLD FIFOs. Each makes a request to OPCC and waits for a grant
before it ships the DMA response over to the Ooutbound packet datapath and
FIFOs.

OPCC : The outbound packet control logic in the core clock domain monitors all the
8 request lines from OLC0 to OLC7, checks that the destination FIFO is available and
then drives grant and controls the mux selects for the 8:1 muxes. It also transfer
FIFO write pointers to the IO clock domain so the the corresponding outbound
packet control logic in the IO clock domain can handle pushing the data out to DMU
or NIU. OPCC also monitors the L2 response headers to signal to the inbound side
how many and type of responses received so IPCC can do bookkeeping.

OPCS: The outbound packet control logic in the IO clock domain monitors the
pessimistic FIFO write pointers from OPCC and communicates with DMU or NIU.

6.6 Packet Formats

6.6.1 Inbound To L2

6.6.1.1 WRI Packet

Write Invalidate (WRI) request must be 64 byte aligned and a full 64 bytes is written
to memory. The bottom 6 bits of address for a WRI request are set to zero.
Chapter 6 System Interface Unit (SIU) 6-47

FIGURE 6-18 Write Invalidate Request

J :Jtag access : 1= Jtag access from tcu, 0= regular dma packet from IO

O:Ordered bit : 1=From SIU Inbound Ordered Queue. Needed by SIU.

P:Posted bit : 1=Posted => Completion Ack by SIU to the source NOT needed,

0=Nonposted => Completion Ack by SIU to the source NEEDED

E: Error bit : (parity or uncorrectable error in header)

V ECC[6:0] Packet Data [31:0]

1 CtagECC[5:0] J O P E S 1 0 0 Tag[15:0] Address[39:32]

0

Invalid Address[31:6], 6'b000000

Valid ECC

Valid ECC

Valid ECC

Valid ECC

Valid ECC

Valid ECC

Valid ECC

Valid ECC

Valid ECC

Valid ECC

Valid ECC

Valid ECC

Valid ECC

Valid ECC

Valid ECC

Valid ECC

DataByte0

DataByte4

DataByte8

DataByte12

DataByte16

DataByte20

DataByte24

DataByte28

DataByte32

DataByte36

DataByte40

DataByte44

DataByte48

DataByte52

DataByte56

DataByte60

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

DataByte3

DataByte7

DataByte11

DataByte15

DataByte19

DataByte23

DataByte27

DataByte31

DataByte35

DataByte39

DataByte43

DataByte47

DataByte51

DataByte55

DataByte59

DataByte63

6 5 4 3 2 1 0 31 30 29 28 27 26 25 24 21 22 2120 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
6-48 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

S:Source : 1=DMU, 0=NIU

T:Tag[15:0] generated by the source to track the transaction.

If the P bit is zero, the response packet will contain this 16-bit tag.

For this implementation, DMU and NIU will both guarantee packets with address
errors (like unmapped address or illegal access) will not be sent to SIU. This was
different than in OpenSPARC T1 where OpenSPARC T1's JBI set the error bit and
changed the Physical Address to all zeros.

Parity error will be logged in the header if SIU or a prior unit had detected an
uncorrectable error in the data payload.

Legal WRI Packet Encodings:

L2 does not look at the O,P,S and T fields from SIU but simply pipe them along back
to SIU Outbound when L2 generates the response packet.

For this implementation, NIU never sends bytemasked writes which means all DMA
writes from NIU will become WRI's not WR8. In NIU's case, DMA writes can be
issued to the SIU's ordered queue or the SIU's bypass queue. However, a high
percentage of NIU's DMAs will go into the the bypass queue. NIU's writes can be
posted or nonposted. Fire-DMU never issue nonposted memory writes. In the Fire-
DMU implementation, all their DMA writes are restricted to the ordered queue.

So if the NIU and DMU interfaces are behaving correctly,

the following header restrictions apply for WRI:

P must be 1 if from Fire-DMU.

O must be 1 if Fire-DMU.

PA[5:0] must be all 0s.

Header cycle bits 26:24 == 3'b100

6.6.1.2 WR8 Packet

For the Write 8 bytes (WR8) request, random byte writes are supported provided at
least one byte gets written . A byte mask field [7:0] is supported for the random byte
writes with at least one byte mask = 1. Bytemask field is positional. The address for
a WR8 request must be 8-byte aligned (the lower 3 bits of the address must be 0).
Chapter 6 System Interface Unit (SIU) 6-49

FIGURE 6-19 Write 8 Bytes Request

J :Jtag access : 1= Jtag access from tcu, 0= regular dma packet from IO

O:Ordered bit : 1=From SIU Inbound Ordered Queue. Needed by SIU.

P:Posted bit : 1=posted. Needed by SIU

E: Error bit : (parity or uncorrectable error)

S:Source : 1=DMU, 0=NIU;

Legal WR8 Packet Encodings:

L2 does not look at the O,P,S fields from SIU but simply pipe them along back to SIU
Outbound when L2 generates the response packet.

For this implementation, NIU never sends bytemasked writes which means all DMA
writes from NIU will become WRI's not WR8. Fire-DMU can send DMA writes that
will decompose into WR8. Fire-DMU never issue nonposted memory writes. In the
Fire-DMU implementation, all their DMA writes are restricted to the ordered queue.

So if the NIU and DMU interfaces are behaving correctly,

the following header restrictions apply for WR8:

■ S must be 1.

■ P must be 1.

■ O must be 1 if Fire-DMU.

■ PA[2:0] must be 0s.

■ Header cycle bits 26:24 == 3'b010

V ECC[6:0] Packet Data [31:0]

1 CtagEcc[5:0] J O P E S 0 1 0 ByteMask[7:0] Address[39:32]

0

0

0

Invalid Address[31:3], 3'b000

Valid ECC

Valid ECC

DataByte0

DataByte4

...

...

...

...

DataByte3

DataByte7

6 5 4 3 2 1 0 31 30 29 28 27 26 25 24 21 22 2120 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
6-50 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

6.6.1.3 RDD Packet

FIGURE 6-20 RDD Requests

J :Jtag access : 1= Jtag access from tcu, 0= regular dma packet from IO

O:Ordered bit : 1=From SIU Inbound Ordered Queue. Needed by SIU.

P:Posted bit : reads are nonposted so this bit should always be 0

E: Error bit : (parity or uncorrectable error)

S:Source : 1=DMU, 0=NIU

T:Tag[15:0] generated by the source to track the transaction.

The response packet will contain this 16-bit tag.

Legal RDD Packet Encodings:

RDD requests will always read a full 64 byte cache line, although L2 does not require
the address to be any alignment. NIU and Fire-DMU will always align to a 64 Byte
address boundary. Note there must be 2 dummy data cycles in the read request
from SIU to L2 to match the pipeline format for WR8.

L2 does not look at the O,P,S and T fields from SIU but simply pipe them along back
to SIU Outbound when L2 generates the response packet.

For this implementation, NIU can issue reads to either the SIU's ordered or bypass
queue. However, a high percentage of NIU's DMAs will go into the the bypass
queue. For Fire-DMU implementation, all their DMA reads are restricted to the
ordered queue.

V ECC[6:0] Packet Data [31:0]

1 CtagEcc[5:0] J O P E S 0 0 1 Tag[15:8] Tag[7:0] Address[39:32]

0

0

0

Invalid Address[31:0]

Invalid

Invalid

Dummy Cycle0

Dummy Cycle1

6 5 4 3 2 1 0 31 30 29 28 27 26 25 24 21 22 2120 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
Chapter 6 System Interface Unit (SIU) 6-51

So if the NIU and DMU interfaces are behaving correctly,

the following header restrictions apply for RDD:

■ P must be 0

■ O must be 1 if Fire-DMU

■ PA[5:0] must be all 0s if from Fire-DMU or NIU

■ Header cycle bits 26:24 == 3'b001

6.6.2 Outbound from L2

6.6.2.1 RDD Response Packet

L2 drives back a packet with a 64 Byte cacheline payload, critical 32-bits first. Should
the address sent on the SIU-L2 interface be not aligned to a 64Byte boundary, L2 will
align the responses to a 4-word (32 bit) boundary. The initial 32-bit doubleword
within the 64Byte line is indicated by Address[5:2]. Data responses will start at the
specified address, continuing sequentially to the end of the cache line and then
wrap.The Read bit (bit 16) is set to 1. The same tag is returned to SIU. For this
example, the requested address had addr[5:0]=101101 (or decimal 45). Note that byte
44 is returned first by L2.

Note that L2 returns the CBA (Critical Byte Address – address[2:0]) from the original
RDD request. NIU and Fire-DMU always read on a 64Byte boundary so this is not an
issue and data is therefore always returned at the cacheline boundary and CBA[2:0]
should always be 0 when the SIU->L2 read request is legal.

L2 also pipes back to SIU Outbound the fields O,P,S, Tag as sent by SIU Inbound.
The field E indicates there was an error. SIU Outbound will pass the error condition
downstream to DMU or NIU.

Example FIGURE 6-21 shows PA[5:0]=101101 (decimal 45).

FIGURE 6-21 RDD Response Packet when PA[5:0] is not all zeros.

Legal RDD Response Packet Encodings:

Refer to the Legal RDD request section.

Given those restrictions, if the NIU and DMU interfaces and SIU Inbound are
behaving correctly,

the following header are expected for RDD responses:
6-52 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

J Jtag access : 1= Jtag access from tcu, 0= regular dma packet from IO

UE : Uncorrectable error generated by L2, internal L2 error

CtagEcc : check bit for Tag[15:0]

P must be 1

O must be 1 if Fire-DMU

CBA[2:0] must be all 0s if from Fire-DMU or NIU

S must be 1 if from Fire-DMU. Must be 0 if from NIU

Header cycle bit 16 must be 1

Tag[15:0] matches Tag sent by NIU/Fire-DMU

6.6.2.2 Write Invalidate Response Packet

FIGURE 6-22 WRI Response Packet

A write invalidate response packet looks like a read response packet filled with 8
cycles of dummy data. Because of the L2 pipeline, after a write response, the next
response (either read or write) cannot come until after 8 pad cycles. SIU Outbound
will drop all write invalidate responses with the 'P'osted bit set.

V UE, Paritys Packet Data [31:0]

0 Invalid Dummy Cycle0

0 Invalid Dummy Cycle1

0 Invalid Dummy Cycle2

0 Invalid Dummy Cycle3

0 Invalid Dummy Cycle4

0 Invalid Dummy Cycle5

0 Invalid Dummy Cycle6

0 Invalid Dummy Cycle7

1 Invalid J C tagEcc[5:0] O P E S 0 0 0 0 T ag[15: 0]

UE

U

1 0 31 30 29 28 27 26 25 24 21 22 2120 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

E

Chapter 6 System Interface Unit (SIU) 6-53

L2 pipes back to SIU Outbound the fields O,P,S, Tag as sent by SIU Inbound. The
field E indicates there was an error. SIU Outbound will pass the error condition
downstream to DMU or NIU if P bit was a 0.

Legal WRI Response Packet Encodings:

Refer to the Legal WRI request section.

Given those restrictions, if the NIU and DMU interfaces and SIU Inbound are
behaving correctly,

the following header bits are expected for WRI responses:

UE : Uncorrectable error generated by L2, internal L2 error

CtagEcc : check bit for Tag[15:0]

P must be 1 if from Fire-DMU.

O must be 1 if Fire-DMU

S must be 1 if from Fire-DMU. Must be 0 if from NIU

Header cycle bit 19:16 must be 0s

Tag[15:0] matches Tag sent by NIU/Fire-DMU

6.6.2.3 Write 8 Response Packet

FIGURE 6-23 WR8 Response Packet

A write 8 response packet looks like a read response packet filled with 8 cycles of
dummy data. Because of the L2 pipeline, after a write response, the next response
(either read or write) cannot come until after 8 pad cycles. SIU Outbound will drop
all write 8 responses with the 'P'osted bit set. Because the SIU to L2 WR8 request
packet header does not provide enough bits for a full 16 bit Tag field and because it
is guaranteed that all writes with bytemasks from Fire-DMU are posted and because
NIU does not do any writes with bytemasks, SIU outbound's implementation drops
all WR8 responses. However, SIU Outbound does decode the header fields so SIU
Inbound can do buffer management and therefore expects L2 to pipe back to SIU
Outbound fields O,P,S as sent by SIU Inbound. The field E indicates there was an
error. Currently, there is no mechanism to log an WR8 response packet with an error.
6-54 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

Legal WR8 Response Packet Encodings:

Refer to the Legal WR8 request section.

Given those restrictions, if the NIU and DMU interfaces and SIU Inbound are
behaving correctly,

the following header bits are expected for WR8 responses:

J Jtag access : 1= Jtag access from tcu, 0= regular dma packet from IO

UE : Uncorrectable error generated by L2, internal L2 error

CtagEcc : check bit for Tag[15:0]

P must be 1.

O must be 1 if Fire-DMU

S must be 1.

Header cycle bit 19:16 must be 0s

6.6.2.4 DMA Read Request Packet from NIU to SIU

All read requests by NIU will return 64 Bytes aligned to 64B boundary. The 1 cycle
packet on niu_sii_data[127:0] contains only the header. The header format is shown
below with the SUPPORTED settings needed for Read Requests by NIU. The 16 bit
ID is the captured into the tag field sent up to L2 by SIU and later returned back to
NIU. There are no payload cycles for the request packet. During the packet transfer,
NIU indicates whether the DMA Read packet will go into an ordered queue or a
bypass queue. The reads do not fill in L2. A high percentage of DMA Reads go to the
bypass queue. And reads are by default nonposted.

TABLE 6-4 NIU to SIU : DMA Read Request Header Format

NIU's Header Cycle
niu_sii_data[msb:lsb] for a Read

Name Usage

127:122 Command
127=Response bit
126=Posted request bit
125=Read bit
124=Write ByteMask Active
123=L2 bit
122=NCU bit

Must be 0
Must be 0
Must be 1
Must be 0
Must be 1
Must be 0

121:85 Reserved Must Be Zero
Chapter 6 System Interface Unit (SIU) 6-55

6.6.2.5 DMA Write Request Packet from NIU to SIU

NIU always sends a full cacheline of data for writes. The header format is shown
below with the SUPPORTED settings needed for Write Requests by NIU. The 16 bit
ID is the captured into the tag field sent up to L2 by SIU. The address is always 64
Byte aligned. All DMA Write Request from NIU can be either nonposted (requires a
write response from SIU to indicate completion) or posted (no response from SIU).
Prior to the packet transfer, NIU indicates whether the packet will go into an
ordered queue or a 'bypass' queue. The writes do not allocate in L2. Writes to the
ordered queue will always be be issued by the SIU to L2 after the youngest write in
the bypass queue. The writes in the bypass queues are not ordered with respect to
other writes in the bypass queue. NIU will never use byte-masks so if
niu_sii_be[15:0] exists at the interface, NIU always drives them to all 1's.

84:83 Address parity Bit 84 for odd addres bit
Bit 83 for even address it

82:82 TimeOutError 1=This packet had Timed Out

81:81 UnmappedAddressError 1=This packet's address mapped to an
nonexistent, reserved, or erroroneous
address

80:80 UncorrectableError Must be 0 because read request does not
carry data payload

79:64 ID[15:0] NIU supplies an ID that it can use to
track the responses later

63 Reserved Must be Zero

62 Command Parity Parity bit for bit127-122

61:56 CtagEcc 6bit sec-dec check bit for ID

55-40 Reserve Must be Zero

39:0 PA[39:0] Must be 64B aligned -
PA[5:0] must be zeros

TABLE 6-5 NIU to SIU Write Request Packet Format

Packet Cycle Number Packet Content of niu_sii_data[127:0]

1 NIU's Write Header

2 Byte0, Byte1, ..., Byte15

TABLE 6-4 NIU to SIU : DMA Read Request Header Format
6-56 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

The header encoding for a DMA Write from NIU is shown in TABLE 6-6.

3 Byte16, Byte17, ..., Byte31

4 Byte32, Byte33, ..., Byte47

5 Byte48, Byte49, ..., Byte63

TABLE 6-6 NIU to SIU : DMA Write Request Header Format

NIU's Header Cycle
niu_sii_data[msb:lsb] for a Write

Name Usage

127:122 Command
127=Response bit
126=Posted request bit
125=Read bit
124=Write ByteMask Active
123=L2 bit
122=NCU bit

Must be 0
0=NIU needs an ack
Must be 0
Must be 0 (all bytes on)
Must be 1
Must be 0

121:85 Reserved Must Be Zero

84:83 Address parity Odd, even address parity

82:82 TimeOutError 1=This packet had Timed Out

81:81 UnmappedAddressError 1=This packet's address mapped to an
nonexistent, reserved, or erroroneous
address

80:80 UncorrectableError 1=data payload has uncorrectable
error

79:64 ID[15:0] NIU supplies an ID that it can use to
track the responses later

62 Command parity Command parity[127:122]

61:56 CtagEcc[5:0] 6-bit ECC check bit for ID

55:40 Reserved Must be Zero

39:0 PA[39:0] Must be 64B aligned -
PA[5:0] must be zeros

TABLE 6-5 NIU to SIU Write Request Packet Format
Chapter 6 System Interface Unit (SIU) 6-57

6.6.3 Outbound to NIU

6.6.3.1 DMA Write Response Packet from SIU to NIU

If NIU had requested a response (write-ack), SIU will return a packet to indicate the
completion of the write. The write responses can return out of order.

The write response is a one cycle packet containing only a header. Immediately
following a write response can be another write or read response.

TABLE 6-7 SIU to NIU : DMA Write Response Header Format

SIO's Header Cycle
sio_niu_data[msb:lsb] for Write

Response

Name Usage

127:122 Command
127=Response bit
126=Posted request bit
125=Read bit
124=Write ByteMask Active
123=L2 bit
122=NCU bit

Must be 1
Must be Ignored (driven to 0)
Must be 0
Must be Ignored (driven to 0)
Must be Ignored (driven to 1)
Must be Ignored (driven to 0)

121:84 Reserved Must Be Zero

83:83 Reserved Must Be Zero

82:82 Reserved Must Be Zero

81:81 UncorrectableError for prior
address, ctagEcc

1=This packet's address mapped to an
nonexistent, reserved, or erroroneous
address

80:80 Data Error 1=data payload has a detected
uncorrectable error. This could be:
1. timeout errors
2. unmapped errors
3. data ue error from L2$ or dram

79:64 ID[15:0] ID supplied originally by NIU

63:40 Reserved Must be Zero

39:0 PA[39:0] Must be Ignored
6-58 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

6.6.3.2 DMA Read Response packet from SIU to NIU

The read response packet from SIU to NIU is 1 cycle of header followed by 4 cycles
of data payload. The above data order assumes that NIU had set the lower 6 bits of
the PA to zero. Otherwise L2 and SIU will return data critical 32-bit doubleword first
and wrap around the 64 Byte boundary. The read response header encoding is
defined in TABLE 6-9:

TABLE 6-8 SIU to NIU : DMA Read Response Packet Format

Packet Cycle Number Packet Content of sio_niu_data[127:0]

1 SIU to NIU DMA Read Response Header

2 Byte0, Byte1, ..., Byte15

3 Byte16, Byte17, ..., Byte31

4 Byte32, Byte33, ..., Byte47

5 Byte48, Byte49, ..., Byte63

TABLE 6-9 SIU to NIU Read Response Header Format

SIO's Header Cycle
sio_niu_data[msb:lsb] for Read

Response

Name Usage

127:122 Command
127=Response bit
126=Posted request bit
125=Read bit
124=Write ByteMask Active
123=L2 bit
122=NCU bit

Must be 1
Must be Ignored (driven to 0)
Must be 1
Must be Ignored (driven to 0)
Must be Ignored (driven to 1)
Must be Ignored (driven to 0)

121:84 Reserved Must Be Zero

83:83 Reserved Must Be Zero

82:82 Reserved 1=This packet had Timed Out

81:81 UncorrectableError for prior
address, ctagEcc

1=This packet's address and ctagEcc
err

80:80 DE data error 1=data payload has a detected
uncorrectable error. This could be:
1. timeout errors
2. unmapped errors
3. data ue error from L2$ or dram
Chapter 6 System Interface Unit (SIU) 6-59

6.6.4 Inbound from DMU
See Chapter 12 (Verification Cases) to see what packet types are
supported/nonsupported/illegal. They are based on assumed usage models from
NIU and Fire-DMU.

6.6.4.1 Packet from =Fire-DMU to SIU

There are 4 expected/supported types of packet transfers from Fire-DMU to SIU

DMA Read Request : A packet with only a header cycle and no payload cycles.
Addresses must be 64-Byte aligned. Must be steered into SIU's Inbound Ordered
Queue.

Interrupt Write Request: A packet with a header cycle and fixed size of 1 payload
cycle with all 16 bytes in the payload valid. Must be steered into SIU's Inbound
Ordered Queue.

DMA Write Request : A packet with a header cycle and fixed size of 4 payload
cycles. Addresses must be 64-Byte aligned and always posted. Must be steered into
SIU's Inbound Ordered Queue.

PIO Read Data Return : A packet with a header cycle and fixed size of 1 payload
cycle. SIU and NCU will transport the full 16 bytes. Only the cpu cares which
byte(s) within the 16 bytes are enabled. Must be steered into SIU's Inbound Bypass
Queue.

TABLE 6-10 for dmc_tag[15:0] is referred to by all packets from Fire-DMU. S ee the
DMC MAS spec pg. 7.611 for more details.

79:64 ID[15:0] ID supplied originally by NIU

63:40 Reserved Must be Zero

39:0 PA[39:0] Must be Ignored

TABLE 6-10 Fire-DMC Tag

Field Bits Description

DMA transactions

dmc_tag[
15]

type 0b-indicates DMA/Int
transactions

TABLE 6-9 SIU to NIU Read Response Header Format (Continued)
6-60 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

dmc_tag[
14:11]

cl_tag
[3:0]

Dmc transaction number for
tracking credits

dmc_tag[
10:6]

d_ptr[
4:0]

Used for DMA Rds only-dou
dma rd buffer address

dmc_tag[
5:1]

pkt_ta
g[4:0]

Used for DMA Rds only-PSB
index for building packet
records

dmc_tag[
0]

cl_sts Used for DMA Rds only-
indicates 1st cacheline in
packet sequence

Int Transactions

dmc_tag[
15]

type 0b-indicates DMA/Int
transactions

dmc_tag[
14:11]

cl_tag
[3:0]

Dmc transaction number for
tracking credits

dmc_tag[
10:3]

Rsv[7:
0]

reserved

dmc_tag[
2:1]

mdo_t
ag[1:0
]

mondo_tag for mondo-reply
to IMU

dmc_tag[
0]

rsv Must be 0

MMU Tablewalk Transactions

dmc_tag[
15]

type 1b-indicates MMU Tablewalk
transactions

dmc_tag[
14:11]

cl_tag
[3:0]

Dmc transaction number for
tracking credits

dmc_tag[
10:6]

Rsv[4:
0]

reserved

dmc_tag[
5:0]

Mtag[
5:0]

Used for MMU tablewalks
only-MMU tag for tracking
tablewalks

PIO Cpl Transactions

TABLE 6-10 Fire-DMC Tag (Continued)
Chapter 6 System Interface Unit (SIU) 6-61

Note – The NCU will distinquish interrupts from PIO cpl's by using dmc_tag[15].

DMA Read Request packet from Fire-DMU to SIU

All read requests by Fire-DMU will return 64 Bytes aligned to 64B boundary. The 1
cycle packet on dmu_sii_data[127:0] contains only the header. The header format is
shown below with the SUPPORTED settings needed for Read Requests by Fire-
DMU. The 16 bit ID is the captured into the tag field sent up to L2 by SIU and later
returned back to Fire-DMU. There are no payload cycles for the request packet.
During the packet transfer, Fire-DMU must always steer DMA Reads into the
ordered queue. The reads do not fill in L2. And reads are by default nonposted.

dmc_tag[
15:13]

Rsv[2:
0]

Must be 3'b100

dmc_tag[
12:9]

jbc_tr
ans_#[
3:0]

Pio transaction credit id

dmc_tag[
8:0]

thread
_id[8:
0]

Thread id of PIO read request

TABLE 6-11 Fire-DMU to SIU : DMA Read Request Header Format

Fire-DMU's Header Cycle
dmu_sii_data[msb:lsb] for a

Read

Name Usage

127:122 Command
127=Response bit
126=Posted request bit
125=Read bit
124=Write ByteMask Active
123=L2 bit
122=NCU bit

Must be 0
Must be 0
Must be 1
Must be 0
Must be 1
Must be 0

121:85 Reserved Must Be Zero

84:83 Address parity Bit 84 for odd addres bit
Bit 83 for even address it

82:82 TimeOutError 1=This packet had Timed Out, used
only by Fire-DMU for PIO Rd
Completions

TABLE 6-10 Fire-DMC Tag (Continued)
6-62 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

DMA Write Request Packet from Fire-DMU to SIU

Fire-DMU does not always send a full cacheline of data for writes. The header
format is shown below with the SUPPORTED settings needed for Write Requests by
Fire-DMU. The 16 bit ID is the captured into the tag field sent up to L2 by SIU. The
address is always 64 Byte aligned. All DMA Write Request from Fire-DMU are
posted (no response from SIU). Fire-DMU must always steer DMA Writes into the
SIU's ordered queue. The writes do not allocate in L2. Fire-DMU can send DMA
writes with all bytes enabled and with 1 or more bytes at the beginning and/or the
end of the 64Bytes disabled.

81:81 UnmappedAddressError 1=This packet's address mapped to an
nonexistent, reserved, or erroroneous
address
used only by Fire-DMU for PIO Rd
Completions

80:80 UncorrectableError used only by Fire-DMU for PIO Rd
Completions

79:64 ID[15:0] (dmc_tag[15:0]) DMU supplies an ID that it can use to
track the responses later.
See dmc_tag TABLE 6-10

63 Reserved Must be Zero

62 Command Parity Parity bit for bit127-122

61:56 CtagEcc 6bit sec-dec check bit for ID

55-40 Reserve Must be Zero

39:0 PA[39:0] Must be 64B aligned -
PA[5:0] must be zeros

TABLE 6-12 Fire-DMU to SIU Write Request Packet Format

Packet Cycle Number Packet Content of dmu_sii_data[127:0]

1 Fire-DMU's Write Header

2 Byte0, Byte1, ..., Byte15

3 Byte16, Byte17, ..., Byte31

4 Byte32, Byte33, ..., Byte47

5 Byte48, Byte49, ..., Byte63

TABLE 6-11 Fire-DMU to SIU : DMA Read Request Header Format (Continued)
Chapter 6 System Interface Unit (SIU) 6-63

The header encoding for a DMA Write from Fire-DMU is shown in TABLE 6-13.

TABLE 6-13 Fire-DMU to SIU : DMA Write Request Header Format

Fire-DMU's Header Cycle
dmu_sii_data[msb:lsb] for a

Write

Name Usage

127:122 Command
127=Response bit
126=Posted request bit
125=Read bit
124=Write ByteMask Active

123=L2 bit
122=NCU bit

Must be 0
Must be 1
Must be 0
0=Write full cacheline. 1=WRM
Must be 1
Must be 0

121:84 Reserved Must Be Zero

83:83 Reserved Must Be Zero

82:82 TimeOutError 1=This packet had Timed Out, used
only by Fire-DMU for PIO Rd
Completions

81:81 UnmappedAddressError 1=This packet's address mapped to an
nonexistent, reserved, or erroroneous
address
used only by Fire-DMU for PIO Rd
Completions

80:80 UncorrectableError 1=data payload has uncorrectable error
used only by Fire-DMU for PIO Rd
Completions

79:64 ID[15:0] (dmc_tag[15:0]) Fire-DMU supplies an ID that it can use
to track the responses later. See
dmc_tag TABLE 6-10.

63 Reserved Must be Zero

62 Command Parity Parity bit for bit127-122

61:56 CtagEcc 6bit sec-dec check bit for ID

55-40 Reserve Must be Zero

39:0 PA[39:0] Must be 64B aligned -
PA[5:0] must be zeros
6-64 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

Interrupt Write Request packet from Fire-DMU to SIU

Fire-DMU can send an interrupt to NCU via SIU. The interrupt is always a mondo
type with 16 bytes of payload. NCU decodes the ID field to determine how to
process the mondo and to differentiate it from a PIO Completion. SIU transports the
full 16 bit ID to NCU. Interrupts must be steered toward the ordered queue.

The header encoding for an Interrupt Write from Fire-DMU is shown in TABLE 6-15.

TABLE 6-14 Fire-DMU to SIU : Interrupt Write Request Packet Format

Packet Cycle Number Packet Content of dmu_sii_data[127:0]

1 Fire-DMU's Interrupt Write Header

2 Mondo Byte0, Byte1, ..., Byte15

TABLE 6-15 Fire-DMU to SIU : Interrupt Write Request Header Format

Fire-DMU's Header Cycle
dmu_sii_data[msb:lsb] for an

Interrupt

Name Usage

127:122 Command
127=Response bit
126=Posted request bit
125=Read bit
124=Write ByteMask Active
123=L2 bit
122=NCU bit

Must be 0
Must be 0
Must be 0
Must be 0
Must be 0
Must be 1

121:84 Reserved Must Be Zero

83:83 Reserved Must Be Zero

82:82 TimeOutError 1=This packet had Timed Out
used only by Fire-DMU for PIO Rd
Completions

81:81 UnmappedAddressError Must be 0
used only by Fire-DMU for PIO Rd
Completions

80:80 UncorrectableError Must be 0
used only by Fire-DMU for PIO Rd
Completions
Chapter 6 System Interface Unit (SIU) 6-65

PIO Read Completion Packet from Fire-DMU to SIU

Fire-DMU can send a PIO Read completion packet to NCU via SIU. The PIO Read
completion has a 1 cycle payload. SIU transports the full 16 bit ID and 16 byte
payload to NCU. PIO Read completions from Fire-DMU must be steered toward the
bypass queue. Only cpu cares which byte(s) within the 16 bytes are enabled.

The header encoding for a PIO Read Completion from Fire-DMU is shown in
TABLE 6-17.

79:64 ID[15:0] See NCU spec or see dmc_tag
TABLE 6-10 for Interrupt ID encoding

63:40 Reserved Must be Zero

39:0 PA[39:0] Must be Ignored

TABLE 6-16 Fire-DMU to SIU : PIO Read Completion Response Packet Format

Packet Cycle Number Packet Content of dmu_sii_data[127:0]

1 Fire-DMU's PIO Read Completion Header

2 Byte0, Byte1, Byte2, Byte3, Byte4, Byte5, Byte6, Byte7,
Byte8, Byte9, Byte10, Byte11, Byte12, Byte13, Byte14, Byte15

TABLE 6-17 Fire-DMU to SIU : PIO Read Completion Packet Header Format

Fire-DMU's Header Cycle
dmu_siu_data[msb:lsb] for PIO

completions

Name Usage

127:122 127=Response bit Must be 1

126=Posted request bit Must be 0 (Ignored by SIU if Response
bit is set)

125=Read bit Must be 1

124=Write ByteMask Active Must be 0 (Ignored by SIU if Response
bit is set or if Read bit is set)

123=L2 bit Must be 0

122=NCU bit Must be 1

121:84 Reserved Must Be Zero

83:83 Reserved Must Be Zero

TABLE 6-15 Fire-DMU to SIU : Interrupt Write Request Header Format (Continued)
6-66 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

6.6.5 Outbound to DMU

6.6.5.1 Packet from SIU to Fire-DMU

There are 1 types of packet transfers from SIU to Fire-DMU

DMA Read Response : A packet with a header cycle followed by a fixed size of 4
payload cycles with all bytes valid. Because Fire-DMU's DMA Read Request are
always cacheline aligned, the data returned always starts at the cacheline boundary.
Data format is big endian.

82:82 TimeOutError 1=This packet had Timed Out

81:81 UnmappedAddressError 1=This packet's address mapped to an
nonexistent, reserved, or erroroneous
address

80:80 UncorrectableError 1=data payload has a detected
uncorrectable error

79:64 ID[15:0] for PIO read completions this is PIOID
[15:13]=3'b100
[12:9] will be the credit id returned on
PIO rd completions,
[8:0] will be the {3'b000, cpu-thread
ID[5:0]}.
See NCU or DSN specification.

62 Command parity Command parity for [127:122]

63:40 Reserved Must be Zero

39:0 PA[39:0] Must be Ignored.

TABLE 6-18 SIU to Fire-DMU : DMA Read Response Packet Format

Packet Cycle Number Packet Content of sio_dmu_data[127:0]

1 SIU to Fire-DMU's DMA Read Response Header

2 Byte0, Byte1, ..., Byte15

3 Byte16, Byte17, ..., Byte31

4 Byte32, Byte33, ..., Byte47

5 Byte48, Byte49, ..., Byte63

TABLE 6-17 Fire-DMU to SIU : PIO Read Completion Packet Header Format (Continued)
Chapter 6 System Interface Unit (SIU) 6-67

The header format is shown in TABLE 6-19.

TABLE 6-19 SIU to Fire-DMU : Outbound Packet Header Format

SIO to Fire-DMU's Header
Cycle
sio_dmu_data[msb:lsb]

Name Usage

127:122 Command
Legal combinations

- DMA Read Response 1010_10

127=Response bit Must be 1

126=Posted request bit Must be Ignored (driven to 0)

125=Read bit Must be 1

124=Write ByteMask Active Must be Ignored (driven to 0)

123=L2 bit Must be 1

122=NCU bit Must be 0

121:84 Reserved Must Be Zero

83:83 Reserved Must Be Zero

82:82 TimeOutError 1=This packet had Timed Out

81:81 UnmappedAddressError 1=This packet's address mapped to an
nonexistent, reserved, or erroroneous
address

80:80 UncorrectableError 1=response has a detected uncorrectable
error. This could be:
1. timeout errors
2. unmapped errors
3. data ue error from L2$ or dram

79:64 ID[15:0] (dmc_tag[15:0]) For Response, this is DMU's ID

63:62 Reserved Must be Zero

61:56 CtagEcc[5:0] 6-bit ECC check bit for ID

55:40 Reserved Must be Zero

39:0 Bus Address[39:0] For Responses, SIU does not return the
Address.
6-68 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

6.6.6 Inbound to NCU

6.6.6.1 Packet from SIU to NCU

There is 1 cycle of header followed by 4 cycles of payload data. The format of the
header is shown in TABLE 6-20.

DMU sending to SIU as the following [127:0]
Byte0 Byte1... Byte15
Byte16 Byte17... Byte31
Byte 32 Byte33... Byte47
Byte 48 Byte49... Byte63

SIU send to L2 is [31:0]
Byte0 Byte1 Byte2 Byte3 cycle1
Byte 4 Byte5 Byte6 Byte7 cycle2
:
:
Byte 60 Byte61 Byte62 Byte63 cycle16

TABLE 6-20 SIU to NCU : Inbound Packet Header Format

Header Cycle
sii_ncu_data[msb:lsb]

Name Usage

31:31 TimeOutError 1=This packet had Timed Out

30:30 UnmappedAddressError 1=This packet's address mapped to an
nonexistent, reserved, or erroroneous
address

29:29 UncorrectableError 1=packet has an uncorrectable error

28 SIU Ctag Uncorrectable Error 1= ctag uncorrectable error

27-22 Reserve Must be Zero

21:16 ctag Ecc check bit for ID [15:0]

15:0 ID[15:0] as originally sent by
DMU.
dmc_tag[15:0]

If Interrupt is from DMU,
NCU returns the entire tag back to DMU
with mondo_ack or mondo_nack signal
asserted.

If PIO Completion is from DMU,
dmc_tag[12:9] = NCU credit id will be

returned to the credit pool
dmc_tag[8:0] = {3'b000, cpu-thread id[5:0]}
Chapter 6 System Interface Unit (SIU) 6-69

SIU send to NCU will be [31:0]
Byte0 Byte1 Byte2 Byte3 cycle1
Byte4 byte5 Byte6 Byte7 cycle2
:
Byte12 Byte13 Byte14 Byte15 cycle4

6.7 CSR
SIU has no CSRs. Data parity errors and uncorrectable errors detected are signaled
in the packet header to the receiving unit. It is assumed that the end unit will log the
error.

The following is a summary of what the Eagle Team's CSR tool look like and may be
a candidate for connecting/generating CSRs within Niagara2. If debug control status
registers are defined in the future, then SIU will participate with whatever
methodology is defined for accessing CSRs.

Control Status Register (CSR)

All the control and status registers inside the Niagara2 are generated by the CSR
Tool, so that we can reduce some of the coding effort and standardize the register
access among different modules within Niagara2. All the modules with CSR
registers will be connected with CSR specific interface in a ring fashion.

CSR interface signals:
Inputs:
clk - clock signal for the design
rst - reset signal for the flops
csrbus_data_in - data to writeto CSR
csrbus_addr - address to send to select one CSR
csrbus_src_bus - source bus identification
csrbus_valid - specifies that address and data lines are
valid

Outputs:
csrbus_mapped - asserted when CSR within module is selected
6-70 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

csrbus_acc_vio - improper access is attempted
csrbus_done - transaction is completed
csrbus_data_out - data read from the CSR

CSR Read/Write access:

For read from CSR, csrbus_valid is asserted along with address and source bus
information, data come back on csrbus_data_out when csrbus_done is asserted.

For write operation, csrbus_valid is asserted along with address and data info, then
the carbus_done is asserted shortly after within the same cycle.
Chapter 6 System Interface Unit (SIU) 6-71

6.8 Unit Level Signals

6.8.1 SIU-L2 Interface List

TABLE 6-21 SIU-L2 Interface List

Signal Name I/O Size From/To Timing Description

SII to L2Tag signals

sii_l2t0_req_vld O 1 SIU->L2T Packet request valid (first cycle) to
L2Tag for bank0

sii_l2t1_req_vld O 1 SIU->L2T Packet request valid (first cycle) to
L2Tag for bank1

sii_l2t2_req_vld O 1 SIU->L2T Packet request valid (first cycle) to
L2Tag for bank2

sii_l2t3_req_vld O 1 SIU->L2T Packet request valid (first cycle) to
L2Tag for bank3

sii_l2t4_req_vld O 1 SIU->L2T Packet request valid (first cycle) to
L2Tag for bank4

sii_l2t5_req_vld O 1 SIU->L2T Packet request valid (first cycle) to
L2Tag for bank5

sii_l2t6_req_vld O 1 SIU->L2T Packet request valid (first cycle) to
L2Tag for bank6

sii_l2t7_req_vld O 1 SIU->L2T Packet request valid (first cycle) to
L2Tag for bank7

sii_l2t0_req O 32 SIU->L2T Packet header/data for bank0

sii_l2t1_req O 32 SIU->L2T Packet header/data for bank1

sii_l2t2_req O 32 SIU->L2T Packet header/data for bank2

sii_l2t3_req O 32 SIU->L2T Packet header/data for bank3

sii_l2t4_req O 32 SIU->L2T Packet header/data for bank4

sii_l2t5_req O 32 SIU->L2T Packet header/data for bank5

sii_l2t6_req O 32 SIU->L2T Packet header/data for bank6

sii_l2t7_req O 32 SIU->L2T Packet header/data for bank7

SII to L2Buffer signals

sii_l2b0_ecc O 7 SIU->L2T Packet ecc for bank0
6-72 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

sii_l2b1_ecc O 7 SIU->L2B Packet ecc for bank1

sii_l2b2_ecc O 7 SIU->L2B Packet ecc for bank2

sii_l2b3_ecc O 7 SIU->L2B Packet ecc for bank3

sii_l2b4_ecc O 7 SIU->L2B Packet ecc for bank4

sii_l2b5_ecc O 7 SIU->L2B Packet ecc for bank5

sii_l2b6_ecc O 7 SIU->L2B Packet ecc for bank6

sii_l2b7_ecc O 7 SIU->L2B Packet ecc for bank7

L2Tag to SII signals

l2t0_sii_iq_dequeue I 1 L2T->SIU L2Tag is unloading a bank0 request

l2t1_sii_iq_dequeue I 1 L2T->SIU L2Tag is unloading a bank1 request

l2t2_sii_iq_dequeue I 1 L2T->SIU L2Tag is unloading a bank2 request

l2t3_sii_iq_dequeue I 1 L2T->SIU L2Tag is unloading a bank3 request

l2t4_sii_iq_dequeue I 1 L2T->SIU L2Tag is unloading a bank4 request

l2t5_sii_iq_dequeue I 1 L2T->SIU L2Tag is unloading a bank5 request

l2t6_sii_iq_dequeue I 1 L2T->SIU L2Tag is unloading a bank6 request

l2t7_sii_iq_dequeue I 1 L2T->SIU L2Tag is unloading a bank7 request

l2t0_sii_wib_dequeue I 1 L2T->SIU L2Tag is unloading a bank0 write
invalidate data buffer

l2t1_sii_wib_dequeue I 1 L2T->SIU L2Tag is unloading a bank1 write
invalidate data buffer

l2t2_sii_wib_dequeue I 1 L2T->SIU L2Tag is unloading a bank2 write
invalidate data buffer

l2t3_sii_wib_dequeue I 1 L2T->SIU L2Tag is unloading a bank3 write
invalidate data buffer

l2t4_sii_wib_dequeue I 1 L2T->SIU L2Tag is unloading a bank4 write
invalidate data buffer

l2t5_sii_wib_dequeue I 1 L2T->SIU L2Tag is unloading a bank5 write
invalidate data buffer

l2t6_sii_wib_dequeue I 1 L2T->SIU L2Tag is unloading a bank6 write
invalidate data buffer

l2t7_sii_wib_dequeue I 1 L2T->SIU L2Tag is unloading a bank7 write
invalidate data buffer

L2Buffer to SIO signals

l2b0_sio_ctag_vld I 1 L2B->SIU Response packet Valid (First Cycle)
from L2 bank 0

TABLE 6-21 SIU-L2 Interface List (Continued)
Chapter 6 System Interface Unit (SIU) 6-73

l2b1_sio_ctag_vld I 1 L2B->SIU Response packet Valid (First Cycle)
from L2 bank 1

l2b2_sio_ctag_vld I 1 L2B->SIU Response packet Valid (First Cycle)
from L2 bank 2

l2b3_sio_ctag_vld I 1 L2B->SIU Response packet Valid (First Cycle)
from L2 bank 3

l2b4_sio_ctag_vld I 1 L2B->SIU Response packet Valid (First Cycle)
from L2 bank 4

l2b5_sio_ctag_vld I 1 L2B->SIU Response packet Valid (First Cycle)
from L2 bank 5

l2b6_sio_ctag_vld I 1 L2B->SIU Response packet Valid (First Cycle)
from L2 bank 6

l2b7_sio_ctag_vld I 1 L2B->SIU Response packet Valid (First Cycle)
from L2 bank 7

l2b0_sio_data I 32 L2B->SIU Read data/write response packet from
L2 bank0

l2b1_sio_data I 32 L2B->SIU Read data/write response packet from
L2 bank1

l2b2_sio_data I 32 L2B->SIU Read data/write response packet from
L2 bank2

l2b3_sio_data I 32 L2B->SIU Read data/write response packet from
L2 bank3

l2b4_sio_data I 32 L2B->SIU Read data/write response packet from
L2 bank4

l2b5_sio_data I 32 L2B->SIU Read data/write response packet from
L2 bank5

l2b6_sio_data I 32 L2B->SIU Read data/write response packet from
L2 bank6

l2b7_sio_data I 32 L2B->SIU Read data/write response packet from
L2 bank7

l2b0_sio_ue_err I 1 L2B->SIU UE on Read data from L2 bank0

l2b1_sio_ue_err I 1 L2B->SIU UE on Read data from L2 bank1

l2b2_sio_ue_err I 1 L2B->SIU UE on Read data from L2 bank2

l2b3_sio_ue_err I 1 L2B->SIU UE on Read data from L2 bank3

l2b4_sio_ue_err I 1 L2B->SIU UE on Read data from L2 bank4

l2b5_sio_ue_err I 1 L2B->SIU UE on Read data from L2 bank5

l2b6_sio_ue_err I 1 L2B->SIU UE on Read data from L2 bank6

TABLE 6-21 SIU-L2 Interface List (Continued)
6-74 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

l2b7_sio_ue_err I 1 L2B->SIU UE on Read data from L2 bank7

l2b0_sio_parity[1:0] I 2 L2B->SIU Parity on Read data from L2 bank0

l2b1_sio_parity[1:0] I 2 L2B->SIU Parity on Read data from L2 bank1

l2b2_sio_parity[1:0] I 2 L2B->SIU Parity on Read data from L2 bank2

l2b3_sio_parity[1:0] I 2 L2B->SIU Parity on Read data from L2 bank3

l2b4_sio_parity[1:0] I 2 L2B->SIU Parity on Read data from L2 bank4

l2b5_sio_parity[1:0] I 2 L2B->SIU Parity on Read data from L2 bank5

l2b6_sio_parity[1:0] I 2 L2B->SIU Parity on Read data from L2 bank6

l2b7_sio_parity[1:0] I 2 L2B->SIU Parity on Read data from L2 bank7

TABLE 6-21 SIU-L2 Interface List (Continued)
Chapter 6 System Interface Unit (SIU) 6-75

6.8.2 SIU-NCU Interface List

TABLE 6-22 SIU-NCU Interface List

Signal Name I/O Size From/To Timing Description

NCU to SII

ncu_sii_gnt I 1 NCU->SIU Grant – xfr packet to NCU starting
next cycle

ncu_sii_dmuctag_uei I 1 NCU->SIU Inject uncorrectable error for ctag

ncu_sii_dmuctag_cei I 1 NCU->SIU Inject correctable error for ctag

ncu_sii_dmua_pei I 1 NCU->SIU Inject address parity error

ncu_sii_dmud_pei I 1 NCU->SIU Inject Data parity error

ncu_sii_niuctag_uei I 1 NCU->SIU Inject uncorrectable error for ctag

ncu_sii_niuctag_cei I 1 NCU->SIU Inject correctable error for ctag

ncu_sii_niua_pei I 1 NCU->SIU Inject address parity error

ncu_sii_niud_pei I 1 NCU->SIU Inject data parity error

SII to NCU

sii_ncu_req O 1 SIU->NCU Packet request from SIU to NCU

sii_ncu_data O 32 SIU->NCU Packet header/data from SIU to NCU

sii_ncu_parity[1:0] O 2 SIU->NCU Parity on data from SIU to NCU

sii_ncu_dmuctag_ue O 1 SIU->NCU Uncorrectable error for ctag

sii_ncu_dmuctag_ce O 1 SIU->NCU Correctable error for ctag

sii_ncu_dmua_pe O 1 SIU->NCU Address parity error

sii_ncu_dmud_pe O 1 SIU->NCU Data parity error

sii_ncu_niuctag_ue O 1 SIU->NCU Uncorrectable error for ctag

sii_ncu_niuctag_ce O 1 SIU->NCU Correctable error for ctag

sii_ncu_niua_pe O 1 SIU->NCU Address parity error

sii_ncu_niud_pe O 1 SIU->NCU Data parity error

sii_ncu_syn_vld O 1 SIU->NCU Syndrome valid signal

sii_ncu_syn_data[3:0] O 4 SIU->NCU Syndrome bus total 16 cycle xfr
syndrome

SIO to NCU

sio_ncu_ctag_ue O 1 SIU->NCU Uncorrectable error for ctag

sio_ncu_ctag_ce O 1 SIU->NCU Correctable error for ctag
6-76 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

sio_ncu_data_parity O 1 SIU->NCU Data parity error

Partial L2 Bank Mode bits

ncu_sii_pm I 1 NCU->SIU 0=all 8 banks available
1=partial mode and need to look at
each ncu_sii_ba* signals

ncu_sii_ba01 I NCU->SIU 0=bank0 and bank1 unavailable
1=both banks available

ncu_sii_ba23 I NCU->SIU 0=bank2 and bank3 unavailable
1=both banks available

ncu_sii_ba45 I NCU->SIU 0=bank4 and bank5 unavailable
1=both banks available

ncu_sii_ba67 I NCU->SIU 0=bank6 and bank7 unavailable
1=both banks available

L2 Index Hashing Enable bit

ncu_sii_l2_idx_hash_en I NCU->SIU 1=enable hashing of PA for L2 index.

TABLE 6-22 SIU-NCU Interface List (Continued)
Chapter 6 System Interface Unit (SIU) 6-77

6.8.3 SIU-NIU Interface List

TABLE 6-23 SIU-NIU Interface List

Signal Name I/O Size From/To Timing Description

NIU to SII signals

niu_sii_hdr_vld I 1 NIU->SIU Asserted during the header phase of
any requests from NIU to SIU. Not
asserted during the data transfer
phase.

niu_sii_reqbypass I 1 NIU->SIU Valid during the header phase only.
0: Current request is for the bypass
queue
1: Current request is for the ordered
queue

niu_sii_datareq I 1 NIU->SIU Valid during the header phase only.
0: Current request is a read, with no
payload;
1: Current request is a write, with 1 or
4 cycles of data payload

niu_sii_datareq16 I 1 NIU->SIU Valid during the header phase only.
Don't care if niu_sii_datareq is 0.
Otherwise should always be 0 for the
supported modes expected from NIU:
Current write request has 64B data
payload;

niu_sii_data[127:0] I 128 NIU->SIU Packet header/data for L2.
(Big-endian)

niu_sii_parity[7:0] I 4 NIU->SIU Parity of data payload cycles (127:0)

SII to NIU signals

sii_niu_oqdq O 1 SIU->NIU Transaction credit for the ordered
queue

sii_niu_bqdq O 1 SIU->NIU Transaction credit for the ordered
queue

SIO to NIU signals
6-78 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

sio_niu_hdr_vld O 1 SIU->NIU Envelops the header of any requests
from SIU to NIU. Not asserted during
the data transfer phase. NIU
determines from the header if and
how much data will follow.

sio_niu_data[127:0] O 128 SIU->NIU Packet header/data for NIU

sio_niu_parity[7:0] O 4 SIU->NIU Parity of payload cycles (127:0)

TABLE 6-23 SIU-NIU Interface List (Continued)
Chapter 6 System Interface Unit (SIU) 6-79

6.8.4 SIU-DMU Interface List

TABLE 6-24 SIU-DMU Interface List

Signal Name I/O Size From/To Timing Description

DMU to SII signals

dmu_sii_hdr_vld I 1 DMU->SIU Asserted during the header phase of
any requests from DMU to SIU. Not
asserted during the data transfer
phase.

dmu_sii_reqbypass I 1 DMU->SIU Valid during the header phase only.
Asserted for PIO rd cpl's

dmu_sii_datareq I 1 DMU->SIU Valid during the header phase only.
0: Current request is a read, with no
payload;
1: Current request is a write, with 1 or
4 cycles of data payload

dmu_sii_datareq16 I 1 DMU->SIU Valid during the header phase only.
Don't care if dmu_sii_datareq is 0.
0: Current write request has 64B data
payload;
1: Current write request has 16B data
payload. (meant for NCU – int/PIO
read data)

dmu_sii_data[127:0] I 128 DMU->SIU Packet header/data for L2/NCU.
(Big-endian)
For PIO read completions, the 64 bit
PIO payload will be duplicated on
both halves of the 128 bit data bus.
Which 64 bits to replicate will be
determined by dmu_sii_be[15:0]

dmu_sii_be[15:0] I 16 DMU->SIU Packet data byte enables/errors. Only
valid during data transfer phase. (Bit
position matches Byte position on the
data bus.)

dmu_sii_parity[7:0] I 4 DMU->SIU Parity of data payload cycles (127:0)

dmu_sii_be_parity I 1 DMU->SIU Parity of dmu_sii_be[15:0]

SII to DMU signals

sii_dmu_wrack_tag[3:0] O 4 SIU->DMU j2d_d_wrack_tag[3:0] DSN/DMU
name
Transaction credit id for dma wrack

sii_dmu_wrack_parity O 1 SIU->DMU Parity bit for the sii_dmu_wrack_tag
6-80 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

6.8.5 SIU-TCU Interface List

sii_dmu_wrack_vld O 1 SIU->DMU j2d_d_wrack_vld DSN/DMU name
Valid signal for j2d_d_wrack_tag

SIO to DMU signals

sio_dmu_hdr_vld O 1 SIU->DMU Envelops the header of any requests
from SIU to DMU. Not asserted
during the data transfer phase. DMU
determines from the header if and
how much data will follow.

sio_dmu_data[127:0] O 128 SIU->DMU Packet header/data for DMU

sio_dmu_parity[7:0] O 4 SIU->DMU Parity of payload cycles (128:0)

TABLE 6-25 SIU-TCU Interface List

Signal Name I/O Size From/To Timing Description

TCU to SII

tcu_sii_vld I 1 TCU->SII Valid signal to qualify the tcu_sii_data

tcu_sii_data I 1 TCU->SII Serial data bus for dma rd/wr request

SIO to TCU

sio_tcu_vld O 1 SIO->TCU Valid signal to qualify the sio_tcu_data

sio_tcu_data O 1 SIO->TCU Serial bus for DMA return data/hdr

SII to DBG

sii_dbg_l2t0_req[1:0] O 2 SII->DBG 00=no req, 01=rd,10=wr,11=wr8

sii_dbg_l2t1_req[1:0] O 2 SII->DBG 00=no req, 01=rd,10=wr,11=wr8

sii_dbg_l2t2_req[1:0] O 2 SII->DBG 00=no req, 01=rd,10=wr,11=wr8

sii_dbg_l2t3_req[1:0] O 2 SII->DBG 00=no req, 01=rd,10=wr,11=wr8

sii_dbg_l2t4_req[1:0] O 2 SII->DBG 00=no req, 01=rd,10=wr,11=wr8

sii_dbg_l2t5_req[1:0] O 2 SII->DBG 00=no req, 01=rd,10=wr,11=wr8

sii_dbg_l2t6_req[1:0] O 2 SII->DBG 00=no req, 01=rd,10=wr,11=wr8

sii_dbg_l2t7_req[1:0] O 2 SII->DBG 00=no req, 01=rd,10=wr,11=wr8

TABLE 6-24 SIU-DMU Interface List (Continued)
Chapter 6 System Interface Unit (SIU) 6-81

6-82 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

CHAPTER 7

Non-Cacheable Unit (NCU)

This chapter contains the following sections:

■ Section 7.1, “Overview” on page 7-1

■ Section 7.2, “Clock Domains” on page 7-5

■ Section 7.3, “Data Flow” on page 7-5

■ Section 7.4, “ Interface Signals, Protocols, and Timing Diagrams” on page 7-10

■ Section 7.5, “Interrupts ” on page 7-42

■ Section 7.6, “NCU Global Physical Address (PA) Assignments” on page 7-45

■ Section 7.7, “Appendix A ” on page 7-69

■ Section 7.8, “Appendix B” on page 7-72

7.1 Overview
The main function of NCU is to communicate between the CMP cores (64 threads total) and
the various blocks in the IO subsystem. FIGURE 7-1 shows the connectivity of NCU with
various IO subsystem blocks as well as the XBAR, which connects to CMP core on the other
side. Traffic on XBAR side runs at CPU clock frequency whereas traffic on IO subsystem
side is at IO clock frequency. In general, traffic goes to NCU does not require high
performance and can tolerate high lateny.
7-1

FIGURE 7-1 NCU Connectivity

TABLE 7-1 shows a summary of types of traffic and bus size between each unit control
block and NCU.

TABLE 7-1 NCU / UCB Communication Type and Bus Size

Unit Control Block
(UCB)

Bus Size (downstream/ upstream
(protocol))

External req/ack/intr CSR On Chip
Interrupts

Boot Up

SII -- / 32 (SII/NCU Table4) Mondo intr., PIO
rtns

--- --- ---

DMU Mondo resp.: 4 / --
PIO: 64 / -- (NCU/DMU 5)

CSR: 32 / 32 (UCB Table2,3)

Mondo Interrupt.
Resp.
PIO rd_req / wr
requests

CSR rw

--- ---

MCUs 4 / 4 (UCB 2,3) --- CSR rw OCI ---

CCU 4 / 4 (UCB 2,3) --- CSR rw --- ---
7-2 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

7.1.1 Changes from OpenSPARC T1 IOB
Changes from 2MCUs to 4MCUs.

CTU changes to CCU + TCU.

JBUS changes to SIU + DMU with different interface format

Adds DMU CSR support.

Adds DMU PIO token ID engine to limit numbers of outstanding PIO to DMU

Adds DMU PIO memory due to OpenSPARC T2 IOMMU changes

Adds support for Mondo Interrupt ID return for DMU

Adds ASI register to comply with SUN's CMP specification

Adds L2 partial bank mode support

Internal memories upsizing to accommodate 64 threads and memory pipelines
adjustment

XBAR packet format changes

Modifies reset handling to comply with OpenSPARC T2's reset scheme

Integrates SSI (boot ROM i/f logics)

RAS logics

OpenSPARC T2 naming rule compliance.

TCU 8 / 8 (UCB 2,3) --- CSR rw --- ---

SSI (integrated
into NCU)

4 / 4 (UCB 2,3) --- CSR rw OCI Instruction
s

RST 4 / 4 (UCB 2,3) --- CSR rw --- ---

DBG 4 / 4 (UCB 2,3) --- CSR rw --- ---

TABLE 7-1 NCU / UCB Communication Type and Bus Size (Continued)
Chapter 7 Non-Cacheable Unit (NCU) 7-3

FIGURE 7-2 NCU Internal Logical Block Diagram

NCU retains most of the internal block name from OpenSPARC T1 IOB since it does
not violate the OpenSPARC T2 naming rule:

c2i – cpu to io

i2c – io to cpu

sdp – slow clock (io_clk domain) data path

sctl – slow clock control logic

fdp – fast clock (cpu_clk domain) data path

fctl – fast clock control logic's
7-4 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

7.2 Clock Domains
There are 2 clock domains in NCU : CPU clock domain and IO clock domain.

■ CPU clock domain : XBAR side communications at CPU clock frequency (targeted
for 1.4GHz)

■ IO clock domain: IO subsystem side communications at IO clock frequency
(targeted for 1.4GHz / 4 = 350MHz or 1.4GHz /3 = 467MHz)

7.3 Data Flow
Data Flow can be subdivided into the following categories:

Downstream -- packets / information going from XBAR to IO subsystem.

1. CPU non-cacheable external PIO store requests (8B max) /load requests (16B
max).

2. CPU external instruction fetch (IFILL) requests.

3. On chip CSR read / write requests (8B only) from CPU to IO subsystem.

4. Upstream – packets / information going from IO subsystem to XBAR.

5. PIO read returns (16B max).

6. External Instruction fetch returns (4B only).

7. CSR read returns (8B only).

8. Mondo Interrupts (with 16B mondo payload).

9. On-chip interrupts (MCU, SSI).

Loopback – packet / information going from XBAR and being sent back to XBAR

1. CPU Mondo Interrupt Table lookup.

2. NCU's internal CSR / ASI register access.

Undeliverable – NCU adopted the OpenSPARC T1 IOB's packet delivery policy. All
writes/STORE_REQs to NCU from core is non-posted which means core requires
STORE_ACK to confirm the packets delivery. NCU generates STORE_ACK back to
core automatically whenever a STORE_REQ is dequeued successfully from the main
downstream FIFO or the DMUPIO fifo. Therefore, core still gets a STORE_ACK for
Chapter 7 Non-Cacheable Unit (NCU) 7-5

an undeliverable STORE_REQ, and the actual STORE_REQ packet is discarded. For
undeliverable LOAD_REQ/read, NCU generates an CPX Load Return packet with
uncorrectable error bit set.

7.3.1 Downstream Path Block Diagrams
FIGURE 7-3 and FIGURE 7-4 show the logical block diagram for downstream
communication path, PCX interface is a 130 bit-wide data bus running at 1.5GHz.,
sourcing packets into NCU. The packet is then decoded by c2i_fdp and c2i_fctl
blocks to extract the CPU Mondo interrupt table access from other traffic, which
includes on-chip CSR read / write access, CPU non-cacheable external load / store
request (PIO read / write), and CPU instruction fetch request. All requests other
than Mondo interrupt table access are sent to the CPU command FIFO, which is a 32
deep domain crossing FIFO. The write control is managed by c2i_fctl block in CPU
clock domain and the read control is managed by c2i_fctl block in IO clock domain.
When a CPU packet is dequeued from the FIFO, c2i_sdp and c2i_sctl blocks will
determine which of UCB output buffers to send the packet to. Each of the UCB
output buffer contains a double buffer and a working buffer as shown in FIGURE 7-4.
7-6 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 7-3 Downstream Path Logic Block Diagram

FIGURE 7-4 Downstream Data Path Block Diagram
Chapter 7 Non-Cacheable Unit (NCU) 7-7

Note that there is no downstream communications to SIU because all non cacheable external
CPU load / store requests (PIO requests) are sent directly to DMU, and there is no CSR in
SIU neither. However, SIU talks to NCU on the upstream data return path, and this will be
covered in the upstream path.

7.3.2 Upstream Path Block Diagrams
FIGURE 7-5 and FIGURE 7-6 show the logical block diagram for the upstream
communication path. NCU collects packets from each IO block and push them into
the upstream main FIFO in IO clock domain. For Mondo Interrupt case (originated
from DMU and sent via SIU to NCU), NCU checks the internal status table for the
target CPU thread's availability and responses with an “ack” or “nack,” An “ack”
means the Mondo Interrupt is accepted, and a “nack” means it is rejected. The
upstream main FIFO is a 32 deep domain crossing FIFO, shared by all IO blocks.
Data is written in IO clock domain and read out in CPU clock domain. The head
pointer and tail pointer of the FIFO are controlled by the i2c_sctl block in IO clock
domain and i2c_fctl block in CPU clock domain, respectively. C2i_fdp and c2i_fctl
blocks also arbitrate and mux between the upstream main FIFO output and CPU
Mondo lookup data output as shown in FIGURE 7-5 and FIGURE 7-6.
7-8 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 7-5 Upstream Path Logic Block Diagram

FIGURE 7-6 Upstream Data Path Block Diagram
Chapter 7 Non-Cacheable Unit (NCU) 7-9

7.4 Interface Signals, Protocols, and Timing
Diagrams

TABLE 7-2 NCU / XBAR(CCX)IInterface Signals

NCU / XBAR(CCX) Interface Signals Direction Comment

ncu_pcx_stall_pq Output NCU back pressure control signal to CCX

pcx_ncu_data_rdy_px1 Input PCX to NCU data valid (px1 version)

pcx_ncu_data_px2[129:0] Input PCX to NCU data bus (px2 version)

cpx_ncu_grant_cx[7:0] Input CPX grant indicates the corresponding packet has
reached its CPU destination and there is room for more
packet for the same corresponding CPU destination.

ncu_cpx_req_cq[7:0] Output NCU to CPX request Signals

ncu_cpx_data_ca[144:0] Output NCU to CPX data bus

TABLE 7-3 NCU / MCU0 Interface Signals

NCU / MCU0 Interface Signals Direction Comment

mcu0_ncu_stall Input MCU0 back pressure control signal to NCU

ncu_mcu0_vld Output NCU to MCU0 data valid

ncu_mcu0_data[3:0] Output NCU to MCU0 data bus

ncu_mcu0_stall Output NCU back pressure control signal to MCU0

mcu0_ncu_vld Input MCU0 to NCU data valid

mcu0_ncu_data[3:0] Input MCU0 to NCU data bus

mcu0_ncu_e0 input Error strobe0 from MCU0

ncu_mcu0_e0i output Error injection0 to MCU0

mcu0_ncu_e1 input Error strobe1 from MCU0
7-10 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

ncu_mcu0_e1i output Error injection1 to MCU0

mcu0_ncu_e2 input Error strobe2 from MCU0

ncu_mcu0_e2i output Error injection2 to MCU0

TABLE 7-4 NCU / MCU1 Interface Signals

NCU / MCU1 Interface Signals Direction Comment

mcu1_ncu_stall Input MCU1 back pressure control signal to NCU

ncu_mcu1_vld Output NCU to MCU1 data valid

ncu_mcu1_data[3:0] Output NCU to MCU1 data bus

ncu_mcu1_stall Output NCU back pressure control signal to MCU1

mcu1_ncu_vld Input MCU1 to NCU data valid

mcu1_ncu_data[3:0] Input MCU1 to NCU data bus

mcu1_ncu_e0 input Error strobe0 from MCU1

ncu_mcu1_e0i output Error injection0 to MCU1

mcu1_ncu_e1 input Error strobe1 from MCU1

ncu_mcu1_e1i output Error injection1 to MCU1

mcu1_ncu_e2 input Error strobe2 from MCU1

ncu_mcu1_e2i output Error injection2 to MCU1

TABLE 7-5 NCU / MCU2 Interface Signals

NCU / MCU2 Interface Signals Direction Comment

mcu2_ncu_stall Input MCU2 back pressure control signal to NCU

ncu_mcu2_vld Output NCU to MCU2 data valid

ncu_mcu2_data[3:0] Output NCU to MCU2 data bus

ncu_mcu2_stall Output NCU back pressure control signal to MCU2

TABLE 7-3 NCU / MCU0 Interface Signals
Chapter 7 Non-Cacheable Unit (NCU) 7-11

mcu2_ncu_vld Input MCU2 to NCU data valid

mcu2_ncu_data[3:0] Input MCU2 to NCU data bus

mcu2_ncu_e0 input Error strobe0 from MCU2

ncu_mcu2_e0i output Error injection0 to MCU2

mcu2_ncu_e1 input Error strobe1 from MCU2

ncu_mcu2_e1i output Error injection1 to MCU2

mcu2_ncu_e2 input Error strobe2 from MCU2

ncu_mcu2_e2i output Error injection2 to MCU2

TABLE 7-6 NCU / MCU3 Interface Signals

NCU / MCU3 Interface Signals Direction Comment

mcu3_ncu_stall Input MCU3 back pressure control signal to NCU

ncu_mcu3_vld Output NCU to MCU3 data valid

ncu_mcu3_data[3:0] Output NCU to MCU3 data bus

ncu_mcu3_stall Output NCU back pressure control signal to MCU3

mcu3_ncu_vld Input MCU3 to NCU data valid

mcu3_ncu_data[3:0] Input MCU3 to NCU data bus

mcu3_ncu_e0 input Error strobe0 from MCU3

ncu_mcu3_e0i output Error injection0 to MCU3

mcu3_ncu_e1 input Error strobe1 from MCU3

ncu_mcu3_e1i output Error injection1 to MCU3

mcu3_ncu_e2 input Error strobe2 from MCU3

ncu_mcu3_e2i output Error injection2 to MCU3

TABLE 7-5 NCU / MCU2 Interface Signals
7-12 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

TABLE 7-7 NCU / SSI Interface Signals

NCU / SSI Interface Signals Direction Comment

ncu_mio_ssi_sck Output Boot ROM interface clk (iol2clk/8)

ncu_mio_ssi_mosi Output Boot ROM interface data ssi output to ROM

mio_ncu_ssi_miso input Boot ROM interface data ROM to ssi

mio_ncu_ssi_ext_int_l input Low active external trigger interupt

TABLE 7-8 NCU / DBG1 Interface Signals

NCU / DBG1 Interface Signals Direction Comment

dbg1_ncu_stall Input DBG1 back pressure control signal to NCU

dbg1_ncu_vld Input DBG1 to NCU data valid

dbg1_ncu_data[3:0] Input DBG1 to NCU data bus

ncu_dbg1_vld Output NCU to DBG1 data valid

ncu_dbg1_data[3:0] Output NCU to DBG1 data bus

ncu_dbg1_stall Output NCU back pressure control signal to DBG1

ncu_dbg1_error_event Output NCU error happens, enabled with wmr_vec_mask

TABLE 7-9 NCU / CCU Interface Signals

NCU / CCU Interface Signals Direction Comment

ccu_ncu_stall Input CCU back pressure control signal to NCU

ncu_ccu_vld Output NCU to CCU data valid

ncu_ccu_data[3:0] Output NCU to CCU data bus

ncu_ccu_stall Output NCU back pressure control signal to CCU

ccu_ncu_vld Input CCU to NCU data valid

ccu_ncu_data[3:0] Input CCU to NCU data bus
Chapter 7 Non-Cacheable Unit (NCU) 7-13

TABLE 7-10 NCU / TCU Interface Signals

NCU / TCU Interface Signals Direction Comment

tcu_ncu_stall Input TCU back pressure control signal to NCU

tcu_ncu_vld Input TCU to NCU data valid

tcu_ncu_data[7:0] Input TCU to NCU data bus

ncu_tcu_stall Output NCU back pressure control signal to TCU

ncu_tcu_vld output NCU to TCU data valid.

ncu_tcu_data[7:0] Output NCU to TCU data bus.

ncu_tcu_soc_error Output 1 pulse signal to TCU each time when an soc error
packet is generated from NCU to the core

ncu_tcu_bank_avail[7:0] output Copy from bankavail[7:0].

tcu_ncu_mbist_start[1:0] Input Mbist start (1'b0 for normal function mode)

ncu_tcu_mbist_done[1:0] Output Mbist done

ncu_tcu_mbist_fail[1:0] Output Mbist fail

tcu_dbr_gateoff Input Turn off all the vld and stall when it is 1'b1.

TABLE 7-11 NCU / RST Interface Signals

NCU / RST Interface Signals Direction Comment

rst_ncu_stall Input RST back pressure control signal to NCU

ncu_rst_vld Output NCU to RST data valid

ncu_rst_data[3:0] Output NCU to RST data bus

ncu_rst_stall Output NCU back pressure control signal to RST

rst_ncu_vld Input RST to NCU data valid

rst_ncu_data[3:0] Input RST to NCU data bus
7-14 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

rst_ncu_unpark_thread Input After each “warm reset” is de-asserted and all BISX
activities are completed, RST send in a 1-clock wide pulse
to tell NCU the system is ready to wake up the master
thread, which is the lowest available thread basing on
core_enable_status ASI register.

rst_ncu_xir_ Input External Initiated Interrupt (multi-clock wide pulse
signal) This signal triggers interrupts to cpu_thr that
based on XIR_steering register. It will be deasserted
when ncu_rst_xir_done is high.

ncu_rst_xir_done Output NCU asserts this signal back to RST block to indicate all
XIR interrupts have been generated (multi-clock wide
pulse). It will be deasserted when rst_ncu_xir_ is back to
high.

TABLE 7-12 NCU / DMU CSR Interface Signals

NCU / DMU CSR Interface Signals Direction Comment This section is currently under definition

dmu_ncu_stall Input DMU CSR bus back pressure control signal to NCU.

ncu_dmu_vld Output NCU to DMU CSR data valid.

ncu_dmu_data[31:0] Output NCU to DMU CSR data bus.

ncu_dmu_stall Output NCU CSR bus back pressure control signal to DMU.

dmu_ncu_vld Input DMU to NCU CSR data valid.

dmu_ncu_data[31:0] Input DMU to NCU CSR data bus.

TABLE 7-13 NCU / DMU PIO and Mondo Interface

NCU / DMU PIO and Mondo Interface Direction Comment

ncu_dmu_pio_hdr_vld Output Indicates ncu_dmupio_data is valid for PIO header
transaction.

ncu_dmu_mmu_addr_vld Output Indicates ncu_dmupio_data is valid for 1 cycle for
“mmu invalidate vector.” The vector is coming a write
operation into CSR register 0x80_0000_2030

ncu_dmu_pio_data[63:0] Output NCU to DMU data bus

TABLE 7-11 NCU / RST Interface Signals
Chapter 7 Non-Cacheable Unit (NCU) 7-15

dmu_ncu_wrack_par input Odd parity check for dmu_ncu_wrack_tag[3:0].

dmu_ncu_wrack_vld Input Indicates dmu_ncu_wrack_tag[3:0] is valid

dmu_ncu_wrack_tag[3:0] Input Credit ID back to NCU for PIO write completion.

ncu_dmu_mondo_ack Output Mondo Interrupt ack (ncu_dmu_mondo_id[5:0] is valid
when this signal is asserted to indicate the mondo_id it
is acking.)

ncu_dmu_mondo_nack Output Mondo Interrupt nack (ncu_dmu_mondo_id[5:0] is valid
when this signal is asserted to indicate the mondo_id it
is nacking.)

ncu_dmu_mondo_id[5:0] Output Mondo Interrupt ID, valid when ncu_dmu_mondo_ack
or ncu_dmu_mondo_nack is asserted.

dmu_ncu_ctag_ue Input Ctag double bit ue from SIO DMA read return.

ncu_dmu_ctag_uei Output Ctag double bit ue injected by RASEJR.

dmu_ncu_ctag_ce Input Error strobe from dmu (ctag ue)

ncu_dmu_ctag_cei Output Error injection signal

dmu_ncu_d_pe Input Error strobe from dmu (data parity error)

ncu_dmu_d_pei Output Error injection signal

dmu_ncu_siicr_pe Input Error strobe from dmu (siicr parity error)

ncu_dmu_siicr_pei Output Error injection signal

dmu_ncu_ncucr_pe Input Error strobe from dmu (ncucr parity error)

ncu_dmu_ncucr_pei Output Error injection signal

dmu_ncu_ie Input Error strobe from dmu (internal error)

ncu_dmu_iei Output Error injection signal

TABLE 7-14 NCU / SII Interface Signals

NCU / SII Interface Signals Direction Comment

ncu_sii_gnt Output NCU to SII grant signal to indicate there is room to
receive one more packet. Transaction should starts in the
next cycle

sii_ncu_req Input SII to NCU packet available request

sii_ncu_data[31:0] Input SII to NCU data bus

TABLE 7-13 NCU / DMU PIO and Mondo Interface
7-16 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

sii_ncu_dparity[1:0] input SII to NCU data parity (covers sii_ncu_data[31:0] bus for
data cycle only). Odd parity: bit[0] covers even bits, and
bit[1] covers odd bits.

sii_ncu_dmua_ue input Error strobe from sii (dmu pkt address ue)

ncu_sii_dmua_uei output Error injection signal

sii_ncu_dmuctag_ue input Error strobe from sii (dmu pkt ctag ue)

ncu_sii_dmuctag_uei output Error injection signal

sii_ncu_dmuctag_ce input Error strobe from sii (dmu pkt ctag ce)

ncu_sii_dmuctag_cei output Error injection signal

sii_ncu_dmud_pe input Error strobe from sii (dmu pkt data parity error)

ncu_sii_dmud_pei output Error injection signal

sii_ncu_niua_ue input Error strobe from sii (niu pkt address ue)

ncu_sii_niua_uei output Error injection signal

sii_ncu_niuctag_ue input Error strobe from sii (niu pkt ctag ue)

ncu_sii_niuctag_uei output Error injection signal

sii_ncu_niuctag_ce input Error strobe from sii (niu pkt ctag ue)

ncu_sii_niuctag_cei output Error injection signal

sii_ncu_niud_pe input Error strobe from sii (niu pkt data parity ue)

ncu_sii_niud_pei output Error injection signal

sii_ncu_syn_vld input Error syndrome vld for sii_ncu_syn_data[3:0]

sii_ncu_syn_data[3:0] output Error syndrome data bus for

ncu_sii_pm Output L2 bank partial mode. (Value is from
BANK_ENABLE_STATUS register)

ncu_sii_ba01 Output L2 bank0,1 available (Value is from
BANK_ENABLE_STATUS register)

ncu_sii_ba23 Output L2 bank2,3 available (Value is from
BANK_ENABLE_STATUS register)

TABLE 7-14 NCU / SII Interface Signals (Continued)
Chapter 7 Non-Cacheable Unit (NCU) 7-17

ncu_sii_ba45 Output L2 bank4,5 available (Value is from
BANK_ENABLE_STATUS register)

ncu_sii_ba67 Output L2 bank6,7 available (Value is from
BANK_ENABLE_STATUS register)

ncu_sii_l2_idx_hash_en Output L2 index hash enable. (Value is from
L2_IDX_HASH_EN_STATUS register)

TABLE 7-15 SIO/NCU Interface Signals

SIO/NCU Interface Signals Direction Comment

sio_ncu_ctag_ue input Error strobe from sio (ctag ue)

ncu_sio_ctag_uei output Error injection signal

sio_ncu_ctag_ce input Error strobe from sio (ctag ce)

ncu_sio_ctag_cei output Error injection signal

sio_ncu_d_pe input Error strobe from sio (data parity error)

ncu_sio_d_pei output Error injection signal

TABLE 7-16 EFUSE / NCU Interface Signals

EFUSE / NCU Interface Signals Direction Comment

efu_ncu_fuse_data Input Fuse unit serial data signal

efu_ncu_coreavl_xfer_en Input Indicates data bit is valid for core available register.

efu_ncu_bankavl_xfer_en Input Indicates data bit is valid for bank available register.

efu_ncu_fusestat_xfer_en Input Indicates data bit is valid for fusestatus reg.

efu_ncu_sernum0_xfer_en Input Indicates data bit is valid for sernum0 reg.

efu_ncu_sernum1_xfer_en Input Indicates data bit is valid for sernum1 reg.

efu_ncu_sernum2_xfer_en Input Indicates data bit is valid for sernum2 reg.

TABLE 7-14 NCU / SII Interface Signals (Continued)
7-18 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

TABLE 7-17 CCU / NCU Interface Signals

CCU / NCU Interface Signals Direction Comment

ccu_cmp_io_sync_en Input Sync. pulse for cmp domain to io domain

ccu_io_cmp_sync_en Input Sync. pulse for io domain to cmp domain

tcu_pce_ov Input TEST control. 1'b0 for normal functional mode

tcu_ncu_clk_stop Input TEST control. 1'b0 for normal functional mode

tcu_ncu_io_stop Input TEST control. 1'b0 for normal functional mode

ccu_io_out Input CCU output goes to NCU io clkgen.

tcu_aclk Input SCAN clock

tcu_bclk Input SCAN clock

TABLE 7-18 Global Signals

Global Signals Direction Comment

scan_in Input SCAN IN (1'b0 or 1'b1 for normal function mode
simulation)

scan_out Output SCAN OUT

tcu_ncu_mbist_scan_in Input Mbist scan in (1'b0 or 1'b1 for normal function mode
simulation)

ncu_tcu_mbist_scan_out Output Mbist scan out

tcu_mbist_bisi_en Input Bist engine enable (1'b0 for normal function mode)

tcu_scan_en Input SCAN enable. 1'b0 for normal functional mode

tcu_se_scancollar_in Input TEST control. 1'b0 for normal functional mode

tcu_se_scancollar_out Input TEST control. 1'b0 for normal functional mode

tcu_array_wr_inhibit Input TEST control. 1'b0 for normal functional mode
Chapter 7 Non-Cacheable Unit (NCU) 7-19

TABLE 7-19 Signals to L2T

Signals to L2T Direction Comment

ncu_l2t_pm Output L2 bank partial mode. (Value is from
BANK_ENABLE_STATUS register)

ncu_l2t_ba01 Output L2 bank0,1 available (Value is from
BANK_ENABLE_STATUS register)

Ncu_l2t_ba23 Output L2 bank2,3 available (Value is from
BANK_ENABLE_STATUS register)

ncu_l2t_ba45 Output L2 bank4,5 available (Value is from
BANK_ENABLE_STATUS register)

ncu_l2t_ba67 Output L2 bank6,7 available (Value is from
BANK_ENABLE_STATUS register)

TABLE 7-20 Signals to all SPC

Signals to all SPC Direction Comment

ncu_spc_pm Output L2 bank partial mode. (Value is from
BANK_ENABLE_STATUS register)

ncu_spc_ba01 Output L2 bank0,1 available (Value is from
BANK_ENABLE_STATUS register)

ncu_spc_ba23 Output L2 bank2,3 available (Value is from
BANK_ENABLE_STATUS register)

ncu_spc_ba45 Output L2 bank4,5 available (Value is from
BANK_ENABLE_STATUS register)

ncu_spc_ba67 Output L2 bank6,7 available (Value is from
BANK_ENABLE_STATUS register)

ncu_spc_l2_idx_hash_en Output L2 index hash enable. (Value is from
L2_IDX_HASH_EN_STATUS register)

cmp_tick_enable output ASI register cmp_tick_enable signal.

tcu_wmr_vec_mask output ASI register wmr_vec_mask signal.
7-20 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

TABLE 7-21 SPC 0

SPC 0 Direction Comment

ncu_spc0_core_enable_status Output For gating off clock to SPC0

ncu_spc0_core_running[7:0] Output 8-bit Signals to indicate parking or unparking
request to SPC0 for each thread

spc0_ncu_core_running_status[7:0] Input 8-bit Signals to indicate the current SPC0 status is
active or parking.

TABLE 7-22 SPC1

SPC1 Direction Comment

ncu_spc1_core_enable_status Output For gating off clock to SPC1

ncu_spc1_core_running[7:0] Output 8-bit Signals to indicate parking or unparking request
to SPC1 for each thread

spc0_ncu_core_running_status[7:0] Input 8-bit Signals to indicate the current SPC1 status is
active or parking.

TABLE 7-23 SPC2

SPC2 Direction Comment

ncu_spc2_core_enable_status Output For gating off clock to SPC2

ncu_spc2_core_running[7:0] Output 8-bit Signals to indicate parking or unparking request
to SPC2 for each thread

spc2_ncu_core_running_status[7:0] Input 8-bit Signals to indicate the current SPC2 status is
active or parking.

TABLE 7-24 SPC3

SPC3 Direction Comment
Chapter 7 Non-Cacheable Unit (NCU) 7-21

ncu_spc3_core_enable_status Output For gating off clock to SPC3

ncu_spc3_core_running[7:0] Output 8-bit Signals to indicate parking or unparking request
to SPC3 for each thread

spc3_ncu_core_running_status[7:0] Input 8-bit Signals to indicate the current SPC3 status is
active or parking.

TABLE 7-25 SPC4

SPC4 Direction Comment

ncu_spc4_core_enable_status Output For gating off clock to SPC4

ncu_spc4_core_running[7:0] Output 8-bit Signals to indicate parking or unparking request
to SPC4 for each thread

spc4_ncu_core_running_status[7:0] Input 8-bit Signals to indicate the current SPC4 status is
active or parking.

TABLE 7-26 SPC5

SPC5 Direction Comment

ncu_spc5_core_enable_status Output For gating off clock to SPC5

ncu_spc5_core_running[7:0] Output 8-bit Signals to indicate parking or unparking request
to SPC5 for each thread

spc5_ncu_core_running_status[7:0] Input 8-bit Signals to indicate the current SPC5 status is
active or parking.

TABLE 7-27 SPC6

SPC6 Direction Comment

ncu_spc6_core_enable_status Output For gating off clock to SPC6

ncu_spc6_core_running[7:0] Output 8-bit Signals to indicate parking or unparking request
to SPC6 for each thread

spc6_ncu_core_running_status[7:0] Input 8-bit Signals to indicate the current SPC6 status is
active or parking.

TABLE 7-24 SPC3 (Continued)
7-22 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

7.4.1 XBAR Interface

7.4.1.1 NCU / XBAR PCX Interface (Downstream)

The PCX interface is a 130 bit-wide bus with 2 bits flow control Signals. The signal
“ncu_pcx_stall_pq” is to back pressure XBAR when the downstream CPU shared
buffer becomes full. An asserted “pcx_ncu_data_rdy_px1” indicates the data bus
“pcx_ncu_data_px2[129:0]” to NCU is valid in next cycle. FIGURE 7-7 shows the case
that CPU shared buffer has available entry and is filled by PCX packets again. The
de-assertion of “ncu_pcx_stall_pq” indicates there is room for at least 6 more PCX
packets. Due to the nature of pipelining design, there may be three more packets in
flight after the assertion of “ncu_pcx_stall_pq” signal. Therefore, when
“ncu_pcx_stall_pq” signal is asserted, NCU is guaranteed to be able to accept as
least three more packets from XBAR PCX interface as shown in FIGURE 7-7. For
details of PCX or CPX packet format, please reference to “crossbar packet definition”
on OpenSPARC T2's web page.

Note that NCU is using px1 version of “data ready” signal and px2 version for “data” bus.

Note – For PCX / CPX packet format, please see “Crossbar packet definition” on
OpenSPARC T2 web page.

TABLE 7-28 SPC7

SPC7 Direction Comment

ncu_spc7_core_enable_status Output For gating off clock to SPC7

ncu_spc7_core_running[7:0] Output 8-bit Signals to indicate parking or unparking request
to SPC7 for each thread

spc7_ncu_core_running_status[7:0] Input 8-bit Signals to indicate the current SPC7 status is
active or parking.
Chapter 7 Non-Cacheable Unit (NCU) 7-23

FIGURE 7-7 Downstream PCX Interface Timing

7.4.1.2 NCU / XBAR CPX Interface (Upstream)

The CPX interface is a 146 bit-wide data bus plus 2 sets of 8 bit-wide flow control.
NCU keeps track of the number outstanding requests without grant for each of the 8
CPU. When the number of outstanding requests without grant reaches 2 for a
particular CPU, NCU will stop sending the 3rd request to the same CPU until the 1st

grant has returned. This is mainly due to CCX has 2 levels of buffering for each CPU
destination, and sending a 3rd outstanding packet to the same destination will result
in packet being lost. The Timing diagram for the CPX bus is shown in FIGURE 7-8.
7-24 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 7-8 Upstream PCX Interface Timing

7.4.2 NCU / MCU Interface
There are four MCUs on OpenSPARC T2, and they are all connected to NCU in the
same manner. The downstream and upstream paths are both 4 bit-wide data bus
with 2 control Signals. The interface protocol is a 128 bit packet being spread into 32
cycles of transactions. NCU only sends type “READ_REQ,” and “WRITE_REQ.”
with 8B request size to MCU for CSR access. The packet types that MCU sends
upstream to NCU are:

“READ_ACK,” with 8B payload in response to a successful “READ_REQ,” (128-bit
UCB packet)

“READ_NACK,” without payload in response to an unsuccessful “READ_REQ,”
(64-bit UCB packet without payload)

“INT,” for on chip interrupt, resulting from some error conditions in MCU (64-bit
UCB Int. packet with dev_id = 1)

FIGURE 7-9 and FIGURE 7-10 show the downstream and upstream timing diagram for
NCU / MCU interface.
Chapter 7 Non-Cacheable Unit (NCU) 7-25

FIGURE 7-9 NCU to MCU/SSI/RNG/CCU/RST Downstream Timing Diagram (back-to-back case)
7-26 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 7-10 MCU/SSI/RNG/CCU/RST to MCU Upstream Timing Diagram
(back-to-back read ack return of IFIKK return with 8B payload))

7.4.3 Boot ROM Interface (NCU/SSI))
NCU has integrated the SSI interface logics which originated from OpenSPARC T1.
With modification, the ncu_mio_ssi_sck frequency is now programmable. It could be
iol2clk/8 (default) or iol2clk/4. There are 4 i/o pins directly connecting to the
external. Please reference to appendix regarding the boot ROM interface. The
original SSI UCB interface has become NCU's internal Signals and is no longer
visible from outside of NCU cluster. If a request from CPU is an IFILL request, but
the 40-bit PA is not addressed to SSI (0xFF_Fxxxx_xxxx), NCU/SSI classifies this as
an un-deliverable packet, and will reply with IFILL return to CPU with
uncorrectable error set. When CPU initiates an IFILL request to NCU, CPU expects
only 4 bytes IFILL load return. For IFILL request, CPU should only request 4Byte.
The F4B field in CPX packet should always be set to “1”. However, for SSI's CSR
request, CPU should always do 8-byte access similar to all other CSR access. SSI also
supports non-IFILL and non CSR type access, which read or write to external. For
this type of requests, SSI supports 1,2,4,8 bytes access.

ncu_mio_ssi_sck could be programmed as iol2clk/8 or iol2clk/4, depends on the
CSR register NCU_SCKSEL. This register is warm_reset protected. The new value
programmed into NCU_SCKSEL register, can't effects current ncu_mio_ssi_sck until
next warm reset.
Chapter 7 Non-Cacheable Unit (NCU) 7-27

After warm reset, NCU holds up to 5 ms before sending 1st request. This is the time
FPGA needs to lock sck clock. However, during test and debug mode TCU can drive
tcu_sck_bypass signal to “1”, and this will cause NCU/SSI to skip the 5ms wait.
System developer should make sure the external boot ROM interface logic is
stabilized and ready before SSI sends out the first request.

7.4.4 NCU / CCU Interface
The CCU interface is same as the NCU/MCU interface in UCB packet format. The
request size is always 8B and the request types that NCU sends downstream to CCU
are “READ_REQ,” and “WRITE_REQ.” CCU returns the following to NCU:

■ “READ_ACK, "with 64 bit payload in response to a successful CSR
“READ_REQ;”

■ “READ_NACK,” without payload in response to an unsuccessful CSR
“READ_REQ.”

The interface timing diagram for NCU/CCU is same as NCU/MCU, which can be
found in FIGURE 7-9 and FIGURE 7-10.

7.4.5 NCU / RST Interface
The RST interface is same as the NCU/MCU interface in UCB packet format. The
request size is always 8B and the request types that NCU sends downstream to RST
are “READ_REQ,” and “WRITE_REQ.” RST returns the following to NCU:

■ “READ_ACK,”with 64 bit payload in response to a successful CSR “READ_REQ;”

■ “READ_NACK,” without payload in response to an unsuccessful CSR
“READ_REQ.”

The interface timing diagram for NCU/RST is same as NCU/MCU, which can be
found in FIGURE 7-9 and FIGURE 7-10.

7.4.6 NCU / DMUCSR Interface
The DMUCSR Interface is same as the NCU interface in UCB packet format. The
request size is always 8B, and the request types that NCU sends downstream to
DMUCSR interface are “READ_REQ,” and “WRITE_REQ.” DMUCSR interface
returns the following to NCU:

■ “READ_ACK,”with 64 bit payload in response to a successful CSR “READ_REQ;”

■ “READ_NACK,” without payload in response to an unsuccessful CSR
“READ_REQ.”
7-28 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

The interface timing diagram for NCU/DMUCSR is same as NCU/NIU, which can
be found in FIGURE 7-11 and FIGURE 7-12.

7.4.7 NCU / DBG Interface
NCU/DBG interface is similar to NCU/MCU interface. The downstream and upstream paths
are both 4 bit-wide data bus with 2 control Signals. The interface protocol is a 128 bit packet
being spread into 32 cycles of transactions. NCU only sends type “READ_REQ,” and
“WRITE_REQ.” with 8B request size to DBG for CSR access. The packet types that DBG
sends upstream to NCU are:

■ “READ_ACK,” with 8B payload in response to a successful “READ_REQ,” (128-
bit UCB packet)

■ “READ_NACK,” without payload in response to an unsuccessful “READ_REQ,”
(64-bit UCB packet without payload)

Please refers to NCU/MCU downstream and upstream timing diagrams for NCU /
DBG interface.

7.4.8 NCU / TCU Interface
The TCU interface is similar to NCU/MCU or NCU interfaces using UCB packet
format except it is an 8-bit data bus plus 2 control Signals each way. For write_req,
read_req, and read_ack type, the packet size is 128-bit and requires 16 cycles to
complete the transaction. For read_nack type, the packet size is 64-bit, and requires 8
cycles to complete the transaction. TCU is intended to connect to the external service
processor (JTAG / TAP controller,) and, therefore, is capable to initiate request type
UCB packet into NCU. TCU can be in both master or slave mode.

NCU in Niagra2 does not support JTAG/TAP access across the Crossbar to L2s nor
CPUs. Therefore, TCU is limited to access the following via NCU: NCU's CSR,
MCUs' CSR, NIU's CSR/PIO, SSI's CSR, DMU's CSR+PIO, RST's CSR, CCU's CSR.

The request type UCB packet from TCU to NCU should contain the following fields: Buffer
ID (always 2'b01), a valid 40-bit PA field, a valid Packet Type and a Request Size field .On
the return path, when an UCB packet returned to NCU with the Buffer ID field marked as
TAP packet, NCU routes the packet back to TCU accordingly. All write requests from TCU
are “posted,” which means no “ack” is generated back to TCU after a write request, and the
packet will be dropped silently if address is illegal. This implies TCU can generated multiple
consecutive write requests (possibly back-to-back) in a short period of time because it does
not require “ack” for a write request. However, once TCU generates a read requests to NCU,
there should not be any more requests until a “READ_ACK” or “READ_NACK” UCB
packet has returned back to TCU. NCU does not support Interrupt type packet nor IFILL
type packet on NCU/TCU interface.
Chapter 7 Non-Cacheable Unit (NCU) 7-29

TCU / NCU interface is designed as a low performance, infrequent access interface. Unlike
other interface, NCU provides only minimum buffering for TCU accessing. Excessive traffic
from TCU can possibly slow down performance of NCU due to lack of buffering issue.

The interface timing diagram for NCU/TCU is same as NCU/MCU, which can be
found in FIGURE 7-9and FIGURE 7-10 with data bus set to [7:0] and number of cycles
set to 16.

7.4.9 NCU / DMUPIO Interface
NCU sends PIO read/write request (non cacheable LOAD_REQ / STORE_REQ)
directly through the NCU / DMUPIO interface. NCU keeps a total of 16 “credit
ID”s. Each PIO request sends to DMU will consume a “credit ID,” which will be
returned from the signal dmu_ncu_wrack_tag[3:0] after a PIO write is completed.
The PIO read returned packet from SIU also has a returning “credit ID” embedded
in its header. These returned “credit ID”s are put back to the pool and will be reused
again. Therefore, there can be a maximum of 16 outstanding PIO read and PIO write
requests. Note that DMU has a limit of processing up to 16 PIO requests FIGURE 7-11
show the timing diagram the DMUPIO interface.. Signal dmu_ncu_mmu_addr_vld
will be asserted when CPU perform a write to NCU's MMU_ID_ADDR register, and
the value of the register is put on to the ncu_dmu_piodata[63:0] bus.

TABLE 7-29 UCB Packet Types supported on TCU / NCU interface

WRITE_REQ TCU->NCU 128-bit UCB packet (8B header + 8B payload)

READ_REQ TCU->NCU 128-bit UCB packet (8B header + 8B meaningless payload)

READ_ACK NCU->TCU 128-bit UCB packet (8B header + 8B payload).
Note: PA and Size fields are invalid in a return packet.

READ_NACK NCU->TCU 64-bit UCB packet (8B header only).
Note: PA and Size fields are invalid in a return packet.
7-30 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 7-11 NCU / DMUPIO Interface Timing Diagram

7.4.10 NCU / DMU Mondo Response Interface
After receiving Mondo Interrupt packet from SIU, NCU directly response to DMU
with the Mondo ID which is qualified by an “ack” or a “nack” at the same cycle. The
6-bit ID bus is valid when “ncu_dmu_mondo_ack” or “ncu_dmu_mondo_nack”
signal is asserted. FIGURE 7-12 shows the timing diagram for NCU / DMU Mondo
Response interface.
Chapter 7 Non-Cacheable Unit (NCU) 7-31

FIGURE 7-12 NCU / DMU Mondo Response Interface Timing Diagram (from NCU to DMU.)

7.4.11 NCU / SII Interface
SII only has upstream path to NCU. Packets received from SII are either PIO read
returns or Mondo Interrupts. Wen signal “ncu_siu_gnt” is asserted, in response to
an asserted “siu_ncu_req”, a new packet transaction should start in the next cycle.
Once a packet transaction is in progress, NCU ignores the signal “siu_ncu_req” until
two cycle before ending of the current packet. Details of the interface timing is
shown in FIGURE 7-13. packet from SII to NCU always have 5 cycles (one header cycle
with 4 payload cycles.)
7-32 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 7-13 NCU / SIU Interface Timing Diagram (from SIU to NCU)

7.4.12 EFUSE Interface
NCU only receive Signals from EFUSE. This interface has a serial data signal shared
by different register. EFUSE will guarantee there are 22 consecutive bits/data with
MSB first per “*dshift” assertion as shown if the following diagram. The only
exception is efu_ncu_fusestat_dshift signal, which is 64-bit status information
inputting into NCU's EFUSE Status CSR register.
Chapter 7 Non-Cacheable Unit (NCU) 7-33

FIGURE 7-14 EFU / NCU Interface Timing Diagram.

7.4.13 Packet Format

7.4.13.1 UCB (Unit Control Block) Data Packet Format

TABLE 7-30 UCB Data Packet Format

bit Name definition

[127:64] Payload Data 8B Payload Data. If packet is from PCX, this field is from PCX's
data field. Payload is valid only for “WRITE_REQ,”
“READ_ACK,” and “IFILL_ACK” types packets
For “READ_REQ,” and “IFILL_REQ” packet, this 8B
payload is meaningless.
For “READ_NACK,” or “IFILL_NACK” types, there is no
payload.

[63:55] ByteMask (use only for TCU to DMUPIO packets)
This field is being ignored in general. Only exception is when
TCU initiates a DMUPIO request. In such case, this field is being
treated similar to PCX packet's size field.
7-34 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

[54:15] 40 bit PA This field is valid only for request type packet, and should be
ignored for return type packet.

CSR Address:
Upper 8 bit indicates the block that it should go to. Individual
block should only look at the lower 32 bits

If packet is from PCX, this field is from PCX's address field.

[14:12] Request Size (This field is being ignored in TCU to DMUPIO packets)
This field is valid only for request type packets and should be
ignored for return type packets. If packet is from PCX, this field is
from PCX's size field.

Supported size for request type:
3'b000 : 1 Byte (valid only for SSI non-ifill type)
3'b001 : 2 Byte (valid only for SSI non-ifill type)
3'b010 : 4 Byte (valid only for SSI, can be ifill or non-ifill

type)
3'b011 : 8 Byte (for all other access)

note: UCB protocol only support up to 8Byte payload max.
DMUPIO is not in UCB protocol, and, therefore ,is not limited by
this restriction.

[11:10] Buffer ID NCU sends 2'b00 if a request is originated from Core and sends
2'b01 if request is originated from TCU. All UCB clients returning
packets to NCU must return the same value in this field as in the
original request packet.

TABLE 7-30 UCB Data Packet Format
Chapter 7 Non-Cacheable Unit (NCU) 7-35

7.4.13.2 UCB (Unit Control Block) Interrupt Packet Format

[9:7] CPU ID [2:0] This field indicates the source CPUID this packet is from, or the
target CPUID this packet should be send back to.

[6:4] Thread ID [2:0] This field indicates the target thread this packet is from or
targeting to.

[3:0] Packet Type
4'b0000: READ NACK (generates CPX NCU Load Return with
U.E. if packet is to CPX)
4'b0001: READ ACK (generates CPX NCU Load Return if packet is to
CPX)

4'b0011: IFILL ACK (generates CPX NCU Ifill Return if packet is to CPX)

4'b0111: IFILL NACK (generates CPX NCU Ifill Return with err if packet is
to CPX)

4'b0100: READ REQ (from PCX LOAD if packet is from PCX)
4;b0101: WRITE REQ (from PCX STORE if packet is from PCX)

4'b0110: IFILL REQ (from PCX Inst.FILL if packet is from PCX)

TABLE 7-31 UCB Interrupt Packet Format

bit Name definition

[63:57] reserved Reserved (may not be 0)

[56:51] Interrupt vector interrupt vector (valid only when Packet Type=INT_VEC,
MCU, SSI should always use Packet Type=INT, which cause s
NCU to ignore this field)

[50:19] Reserved Reserved (may not be 0)

[18:10] Device ID This field identify the entry of the int_man mem. lookup table.

[9:7] CPU ID This field indicates the target CPU this interrupt packet should
be sent to when Packet Type=INT (should not be use by,MCU,
or SSI)

[6:4] Thread ID This field indicates the target thread this interrupt packet
should be sent to when Packet Type=INT

[3:0] Packet Type 4'b1000: INT (interrupt)
4'b1100: INT_VEC (interrupt w/ vector field,cpu_id,and
thread_id valid)

TABLE 7-30 UCB Data Packet Format
7-36 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

7.4.13.3 SII to NCU Header Format

Each header is followed by 4 cycles of payload data.

7.4.13.4 NCU to DMUPIO Header Format

TABLE 7-32 SIU to NCU Header Format

Header Cycle
“siu_ncu_data[31:0]”

name definition

[31] TimeOut Packet timed out (this will cause a CPX NCU Load Return packet
with 'err' field set to uncorrectable error)

[30] DmuAE Unmapped Error (this will cause a CPX NCU Load Return packet
with 'err' field set to uncorrectable error)

[29] DmuUe Uncorrected error from DMU (this will normally cause a CPX
NCU Load Return packet with 'err' field set to uncorrectable error)

[28] Ebit Packet error bit (indicates packet has error and already reported
by SII, and NCU will terminate this packet silently with any other
action)

[27:22] Reserved Reserved (ignore by NCU)

[21:16] dmc_tag_ecc[5:0] dmc_ctag ecc check bits

[15:0] dmc_tag[15:0] dmc_tag[15] = 0 --> Mondo Interrupt packet
For Mondo Interrupt, NCU returns {dmc_tag[14:11],dmc_tag[2:1]}
back to DMU with Mondo_ack or Mondo_nack Signals asserted.

Targeted cpu_thread ID = payload[75:70]
mondo_data0=payload[127:64]
mondo_data1=payload[63:0]

. dmc_tag[15] = 1 --> PIO read return packet
dmc_tag[14:12] : reserved (must be 0)
dmc_tag[11:8] : NCU credit ID return,
dmc_tag[7:6] : buf_id[1:0], 2'b00=normal, 2'b01=jtag access
dmc_tag[5:0] : cpu_thread[5:0]

TABLE 7-33 NCU to DMUPIO Header Format.

Header Cycle
“ncu_dmupio_data[63:0]”

name definition

[63:61] Reserved Reserved (may not be 0)

[60] PIO read 1'b1 for PIO read
1'b0 for PIO write
Chapter 7 Non-Cacheable Unit (NCU) 7-37

7.4.13.5 DMUPIO Read Request Address and Data Format

When CPU sends a non-cacheable external LOAD_REQ request (PIO read request)
to NCU via the PCX interface, the packet contains a 40 bit address, request type,
request size, etc.(please reference to the 'Crossbar Packet Definition' document on
OpenSPARC T2 web page) Followings are rules for read access to the external PCI
space.

1. The 40-bit address is a byte address pointing to the 1st byte CPU is interested in.

2. The most CPU asks for are 16 bytes which is indicated by the PCX packet's size
field.

[59:56] NCU Credit ID 4-bit Credit from that will eventually return back
to NCU for reuse. This is to guarantee that there
can only be 16 outstanding PIO transactions as
DMU cannot take more than 16.

[55:48] Byte Count / Byte Mask This field is directly come from 'size' field of a
PCX packet

For PIO read : (cannot count on upper 5bit to be
zero for read case from PCX packet)

8'bxxxx_x000 : 1 Byte
8'bxxxx_x001 : 2 Bytes
8'bxxxx_x010 : 4 Bytes
8'bxxxx_x011 : 8 Bytes
8'bxxxx_x100 : 16Bytes

For PIO write :
8bit byte mask indicates which of the 8B of

store data should be updated

[47:40] NCU PIO ID {buf_id[1:0],CPU_thrID[5:0]}

[39:38] reserved Must be 0

[37:36] Command Mapping Please see PCIE base/mask CSR registers for
mapping details.
2'b11 : Mem64 space
2'b10 : Mem32 space
2'b01 : IO space (if PA[28]=1'b1)
2'b00 : Config space (if PA[28]=1'b0)

[35:0] Bus Address PA address [35:0]. This address is PCX packet
address, masked with mask registers.

TABLE 7-33 NCU to DMUPIO Header Format.
7-38 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

3. DMU/NCU returns 16B to CPU via XBAR (with 64 msb is replicated to 64 lsb for
non 16B returns)

4. DMU/NCU do not align the return data.

5. For 2 Byte LOAD_REQ, the fetch should not cross the 2 Byte boundary

(i.e. ByteAddress should be 0,2,4,6,8..., case 3 below)

6. For 4 Byte LOAD_REQ, the fetch should not cross the 4 Byte boundary

(i.e. ByteAddress should be 0,4,8,..., case 4 below)

7. For 8 Byte LOAD_REQ, the fetch should not cross the 8 Byte boundary

(i.e. ByteAddress should be 0,8,..., case 5 below)

8. For 16 Byte LOAD_REQ, the fetch should not cross the 16 Byte boundary

(i.e. ByteAddress should be 0,x10,x20,x30,..., case 6 below)

Example: let's focus on the lower 16 bits of the 36-bit address, and assume the upper
24 bits point to the correct PIO region in the following cases.

TABLE 7-34 PIO Read Address and Data Format

Case (in plain English) note Lower 16 bits of
PA field in PCX

packet

Lower 2 bit of
size field in PCX

packet

16 Byte return from SIU some
time later

Case 1: LOAD_REQ
Byte Address 1 for 1

Byte

(Byte Address
can be any
value for 1
Byte)

16'h0001 3'b000
(means 1 Byte)

{2{64'hxxAB_xxxx_xxxx_xxxx}}

(x's means unknown, cpu 'don't
care,' and could be anything
depends on what DMU is
reading)

Case 2: LOAD_REQ
Byte Address 3 for 1

Byte

(Byte Address
can be any
value for 1
Byte)

16'h0003 3'b000 {2{64'hxxxx_xxAB_xxxx_xxxx}}

Case 3: LOAD_REQ
Byte Address 4 for 2

Bytes

(Byte Address
1,3,5,7 are
illegal)

16'h0004
3'b001
(means 2
Bytes)

{2{64'hxxxx_xxxx_ABCD_xxxx}}
Chapter 7 Non-Cacheable Unit (NCU) 7-39

7.4.13.6 DMUPIO Write Request Address and Data Format

when CPU sends a non-cacheable external STORE_REQ (PIO write request) to NCU
via the PCX interface, the packet contains a 40 bit byte address, request type,
request size, etc.(please reference to the 'Crossbar Packet Definition' document on
OpenSPARC T2 web page) Followings are rules for write access to the external PCI
space.

1. The 40-bit address from PCX is a byte address pointing to the 1st byte CPU is
interested in.

2. The most CPU generated store is 8 Bytes which is indicated by the PCX packet's
byte mask field.

3. NCU support “partial store” feature by sending the 8bit 'byte mask field', which
is position mask, directly to DMU. The 8bit byte mask field can be at any
combinations. DMU in OpenSPARC T2 also supports “partial store” feature.

4. NCU does not align any payload data. The 8B payload data is sent to DMU
unmodified. The masked 36-bit byte address is sent to DMU with the lower 3 bits
PA[2:0] being turn off (always 0) for write only.

Case 4: LOAD_REQ
Byte Address 4 for 4

Bytes

(Byte Address
1~3 or 5~7 are
illegal)

16'h0004
3'b010
(means 4
Bytes)

{2{64'hxxxx_xxxx_ABCD_EF01}}

Case 5: LOAD_REQ
Byte Address 8 for 8

Bytes

(Byte Address
1~7 or 9~f are
illegal)

16'h0008
3'b011
(means 8
Bytes)

{2{64'hABCD_EF01_2345_6789}}

Case 6: LOAD_REQ
Byte Address 0x10 for

16 Bytes

(Byte Address
1~f are illegal) 16'h0010

3'b100
(means 16
Bytes)

{64'hABCD_EF01_2345_6789_
0123_4567_89AB_CDEF}

Note: this does not imply any
data replication, just all bits are
valid and no replication for a
16B load return.

TABLE 7-34 PIO Read Address and Data Format
7-40 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

Example: let's focus on the lower 16 bits of the 40-bit address, and assume the upper
24 bits point to the correct PCI PIO region in the following cases.

TABLE 7-35 PIO Write Address and Data Format

Case (in plain English) note Lower 16 bits of
address field

from PCX packet

8 bit size field
from PCX packet

8 Byte payload from PCX and
to DMU

Ex. 1: STORE_REQ
Byte Address 1 for 1

Byte

(Byte Address
from CPU can
be any value
pointing to 1st
critical Byte)

16'h0001
(sending to
DMU as
16'h0000)

8'b0100_0000
64'hxxAB_xxxx_xxxx_xxx

(x's means unknown, cpu 'don't
care,' and could be anything
depends on what DMU is
reading)

Ex. 2: STORE_REQ
Byte Address 5 for 1

Byte

(Byte Address
from CPU can
be any value
pointing to 1st
critical Byte)

16'h0005
(sending to
DMU as
16'h0000)

8'b0000_0100 64'hxxxx_xxxx_xxAB_xxxx

Ex. 3: STORE_REQ
Byte Address 3 for 2

Bytes (contiguous)

(Byte Address
from CPU can
be any value
pointing to 1st
critical Byte)

16'h0003
(sending to
DMU as
16'h0000)

8'b0001_1000 64'hxxxx_xxAB_CDxx_xxxx

Ex. 4: STORE_REQ
Byte Address 3 for 2

Bytes
(non-contiguous)

(Byte Address
from CPU can
be any value
pointing to 1st
critical Byte)

16'h0003
(sending to
DMU as
16'h0000)

8'b0001_0010 64'hxxxx_xxAB_xxxx_CDxx

Ex. 5: STORE_REQ
Byte Address 1 for 4

Bytes
(non-contiguous)

(Byte Address
from CPU can
be any value
pointing to 1st
critical Byte)

16'h0001
(sending to
DMU as
16'h0000)

2'b0101_0011 64'hxxAB_xxCD_xxxx_EF01
Chapter 7 Non-Cacheable Unit (NCU) 7-41

7.5 Interrupts

7.5.1 Mondo Interrupt Path (External Interrupts)
All interrupts come from DMU / SIU are treated as Mondo Interrupts. It is
originated from DMU but send to NCU via SIU. Mondo Interrupts in NCU, actually,
including external devices interrupts and MSI Interrupts. However, NCU does not
distinguish between them. FIGURE 7-15 shows detail for the Mondo Interrupt path
and control. Since NCU serves Mondo Interrupts in the order of receiving, DMU is
guarantee to have Mondo “ack” or “nack” back in the order of sending
7-42 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 7-15 Mondo Interrupt Path
Chapter 7 Non-Cacheable Unit (NCU) 7-43

7.5.2 Non Mondo Interrupt (On Chip Interrupt)
The on chip interrupt or Non Mondo Interrupt is identified by its device ID. Each
device ID associates with an interrupt source and also index to an entry in Interrupt
Management Table (int_man table). This non-mondo interrupt is a “fire-and-forget”
type interrupt because once NCU fires the interrupt to the processor, no further
information is retained inside NCU. FIGURE 7-15 shows details of the non-mondo
type interrupt path, and a list of device ID can be found in TABLE 7-36.

TABLE 7-36 Device ID Assignments

Device ID definition

0 Reserved

1 MCU ECC errors, counter rollover, SSI
errors

2 SSI Interrupt from EXT_INT_L pin

3 ~ 63 Reserved
7-44 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 7-16 Non Mondo Interrupt Path

7.6 NCU Global Physical Address (PA)
Assignments
Chapter 7 Non-Cacheable Unit (NCU) 7-45

7.6.1 Global Physical Address Assignments
NCU also serves as the Physical Address parser. Each packet dequeued from the
downstream main FIFO carries a 40-bit address, also known as physical address
(PA). NCU determines the destination of the packet by examining the 8 MSB
(bit[39:32]) of the physical address. The address range of each IO subsystem block
can be found in TABLE 7-37.

In OpenSPARC T2, CCX (Crossbar) automatically filters out all L2 related packets (L2 non-
cacheable CSR and all cacheable packet,) and send them directly to L2. Therefore, packets
come from PCX interface to NCU are guaranteed to have bit[39] set to “1'b1.”

TABLE 7-37 Global Physical Address Assignments

MSB Address Range[39:32] Assignment

0x80 NCU

0x82 Reserved

0x83 CCU

0x84 MCUs
[13:12] = 2'b00 for MCU0
[13:12] = 2'b01 for MCU1
[13:12] = 2'b10 for MCU2
[13:12] = 2'b11 for MCU3

0x85 TCU

0x86 DBG

0x87 Reserved

0x88 DMUCSR

0x89 RST

0x90 ASI CPU shared registers

0x91 ~ 0x9F Reserved

0xA0 ~ 0xBF L2 CSR (handles by CCX directly and does not come
to NCU)

0xD0 ~ 0xFE Reserved

0xFF SSI (boot ROM)
7-46 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

7.6.2 NCU Local CSR Assignments

7.6.2.1 NCU Management

Each device sends its device ID to NCU along with the UCB interrupt packet. The
device ID is used to index into the Interrupt Management table.

MONDO_INT_VEC performs the identical function for Mondo Interrupts that
INT_MAN performs for other IO interrupts, except that the CPU_ID (thread ID) is
specified in the Mondo interrupt transaction.

This register is warm reset protected.

TABLE 7-38 Interrupt Management – INT_MAN (0x80_0000_0000) (count 128 step 8)

Bit Name Initial Value R/W Description

[63:14] Reserved 0 RO Reserved

[13:8] CPU X RW CPUID to manage the device

[7:6] Reserved 0 RO Reserved

[5:0] Vector X RW Interrupt Vector

TABLE 7-39 Mondo Interrupt Vector Register – MONDO_INT_VEC (0x80_0000_0a00)

Bit Name Initial Value R/W Description

[63:6] Reserved 0 RO Reserved

[5:0] Vector 0 RW Interrupt Vector for Mondo interrupts
(encodes bit set in
ASI_SWVR_INTR_RECEVIE)

TABLE 7-40 Processor Serial Number – SER_NUM (0x80_0000_1000)

Bit Name Initial Value R/W Description

[63:44] sernum2 0 RO Chip's serial number programmed by efuse

[43:22] sernum1 0 RO Chip's serial number programmed by efuse

[21:0] sernum0 0 RO Chip's serial number programmed by efuse
Chapter 7 Non-Cacheable Unit (NCU) 7-47

This register is warm reset protected.

This register is warm reset protected.

The following Bank Available, Bank Enable and Bank Enable Status works the same
fashion as the ASI's Core Available, Core Enable and Core Enable status. Bank
Available is only programmable by EFUSE after POR event, and will not change.
This default value is propagated in to Bank Enable register which is programmable
at any time after POR event. Finally, the Bank Enable Status register is the one that
being used by different clusters / clock disabling. The Bank Enable Status is only
updated from Bank enable register at the de-assertion of WMR event.

TABLE 7-41 EFUSE Status – EFU_STAT (0x80_0000_1008)

Bit Name Initial Value R/W Description

[63:0] efu_status
0xFFFFFFFFFF

FFFFFF

RO Efuse status programmed by efuse block

TABLE 7-42 Core Available – CORE_AVAIL (0x80_0000_1010)

Bit Name Initial Value R/W Description

[63:0] Core_avail 0xFFFFFFFFFF
FFFFFF

RO Core available programmed by efuse
This register is same as core_available in
ASI

TABLE 7-43 Bank Available – BANK_AVAIL (0x80_0000_1018)

Bit Name Initial Value R/W Description

[63:8] Reserved 0 RO Reserved

[7:0] Bank_avail 0xFF RO Bank available programmed by EFUSE
This register indicates the availability of
each L2 bank.
7-48 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

This register is warm reset protected.

This register is warm reset protected.

There are certain rules for L2 partial bank mode, please refer to L2, SIU, CCX
specifications for details. The Bank Enable Status changes only after the de-assertion
of WMR event. NCU provides a signal for each bank pair. For example, BA01 means
bank 0 and bank 1. BA01 is “0” if bank 0 or bank 1 is disable or unavailable.

Since there are encoding involves between Bank Enable and Bank Enable Status. A preview
version of partial bank Signals is provided whenever there is a change in Bank Enable
register. However, the final/usable copy that provided to different clusters will not be
changed until after WMR event.

The PM (partial mode) signal is 1 if any of the bank is not enable. Each of the BA* signal is
a result of 2 bank enable being “ANDED” together. However, there are some illegal
combinations of BA* Signals, and NCU is the BA* rule enforcer. Please refer to
SIU/L2/CCX document for illegal case details. The following is the illegal case
mapping by NCU.

TABLE 7-44 Bank Enable – BANK_ENABLE (0x80_0000_1020)

Bit Name Initial Value R/W Description

[63:8] Reserved 0 RO Reserved

[7:0] Bank_enable 0xFF RW Received initial from Bank Available after
POR event. This programed value is
reflected onto Bank Enable Status at the de-
assertion of WMR event. (note: hardware
forces a non-available bank indicated by
Bank Available register to 0, so that SW
cannot enable a non-available bank)

TABLE 7-45 Illegal Case Mapping

 Illegal PM,BA67,BA45,BA23,BA01 combinations Resulting BA67,BA45,BA23,BA01

1,0,0,0,0 --> 1,0,0,0,0

(Bad Chip, no mapping)

1,0,1,1,1 --> 1,0,0,1,1

1,1,0,1,1 --> 1,0,0,1,1

1,1,1,0,1 --> 1,1,1,0,0

1,1,1,1,0 --> 1,1,1,0,0
Chapter 7 Non-Cacheable Unit (NCU) 7-49

TABLE 7-46 Bank Enable Status – BANK_ENABLE_STATUS (0x80_0000_1028)

Bit Name Initial Value R/W Description

[63:13] Reserved 0 RO Reserved

[12] PM_preview 0 RO L2 partial mode preview value

[11] BA67_preview 1 RO BA67 preview value

[10] BA45_preview 1 RO BA45 preview value

[9] BA23_preview 1 RO BA23 preview value

[8] BA01_preview 1 RO BA01 preview value

[7:5] Reserved 0 RO Reserved

[4] PM 0 RO L2 partial mode
(final copy to different clusters)

[3] BA67 1 RO Availability of bank 6 and bank 7 (final copy
to different clusters)

[2] BA45 1 RO Availability of bank 4 and bank 5 (final copy
to different clusters)

[1] BA23 1 RO Availability of bank 2 and bank 3 (final copy
to different clusters)

[0] BA01 1 RO Availability of bank 0 and bank 1 (final copy
to different clusters)

TABLE 7-47 L2 Index Hash Enable – L2_IDX_HASH_EN (0x80_0000_1030)

Bit Name Initial Value R/W Description

[63:1] Reserved 0 RO Reserved

[0] L2_Idx_Hash_en 0 RW L2 indexing enable. New value will not
propagate to L2_Idx_hash_en_status until
the next wrm_reset.
7-50 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

This register is warm reset protected.

This register is warm reset protected.

7.6.2.2 RAS Related Registers

Logics sets ESR bit on the error indication (thus recording the error) if the
corresponding bit in the ELE is set. Errors will continue to be recorded until a logged
error also has its respective EIE bit set. This causes the NCU to dispatch an
“SocError” message using a CPX Error Indication Packet. A “snapshot” of the ESR
be taken/stored in the PER register and the ESR cleared.

TABLE 7-48 L2 Index Hash Enable Status – L2_IDX_HASH_EN_STATUS (0x80_0000_1038)

Bit Name Initial Value R/W Description

[63:1] Reserved 0 RO Reserved

[0] L2_Idx_hash_en_statu
s

0 RO Final / usable copy of l2_index_hash_en to
SII and SPC

TABLE 7-49 NCU/SSI SCK clock select – NCU_SCKSEL (0x80_0000_3040)

Bit Name Initial Value R/W Description

[63:2] Reserved 0 RO Reserved

[1:0] ncu_scksel 0 RW when “01”, ssi_sck = iol2clk / 4
all other cases, ssi_sck = iol2clk / 8
Chapter 7 Non-Cacheable Unit (NCU) 7-51

All CPUTHR ID fields are protected by ECC (SecDed) in NCU's memories. As a
general policy, if an uncorrectable error happens at CPUTHR ID, NCU terminates
the corrupted packet silent without replying to any of the CPUTHR ID since the
CPITHR ID is unknown. TABLE 7-50 shows expected NCU behavior when NCU
detected an error.

TABLE 7-50 NCU Response to Error

Error type Cause of source Transaction (return packet) Syndrome reg

NcuDmuCredit DMUPIO store from
PCX interface

When NCU received wack with
parity error, NCU drop the
wack_tag.

No

NcuCtagCe [23] 1 DMUPIO read
return
for sii interface
2. MONDO interrupt
from sii interface

Complete. send load return
cpx packet without error

Complete. send INT cpx
packet without error

No

NcuCtagUe [22] 1. DMUPIO read
return
from sii interface
2. MONDO interrupt
from sii interface

Terminated. Do not send load
return CPX packet

Continue. send INT CPX
packet with error
but not ack back mondo id

Format 2 data
(ctag is corrupted)

NcuDataParity [14] 1. DMUPIO read
return
from SII interface
2. MONDO interrupt
from sii interface

Continue. Send load return
CPX packet with error

terminate, do not send INT
CPX packet and
not ack back mondo id

Format 2 data

NcuDmuUe[21] 1. DMUPIO
store/load (read)
from PCX interface

Terminate. Not forward packet
to DMUPIO.
If cputhr id is corrupted: no
response is generated
If cputhr id is not corrupted:
return without error bit set for
store, return with error bit set
for load.

Format 1
RCTP=4'hf
RCTP data match with
PCX packet
7-52 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

NcuCpxUe [20] 1. PIO/CSR store
from PCX interface.

2. Load return/IO
interrupt form Ios

Continue transfer packet to
target. Don't send store ack
return CPX packet. (EJR write
can't be affected) \
Terminate. Don't send load
return/Interrupt CPX packet.

No

NcuPcxUe [19] PIO/CSR load/store
form PCX interface

Terminate. Don't pass done
packet to target. Don't send
store ack return CPX packet

Format 1
RCTP=4'h1011
RCTP data match with
PCX packet
(data is corrupted data)

NcuPcxData[18] PIO/CSR Load from
PCX interface

PIO/CSR store from
PCX interface

Continue (read)

Terminated. (write)
Ack back to CPU without error.

Format 1
RCTP = 4'h0110
RCTP data match with
PCX packet

NcuIntTable [17] Load INT table from
PCX interface

IO interrupts form IO
(NIU/MCU/SSI)
interface

Continue, send load ack return
CPX packet with error

terminate. Don’t' send INT
CPX packet

Format 1
RCTP = 4'hf
RCTP data match with
PCX packet
format 1
RCTP = 4'h6
RCTP data match with
interrupt table (corrupted)

NcuMondoFifo[16] load MONDO table
from PCX interface

terminate. Don’t sent ack
return CPX packet

NcuMondoTable[15] Load the MOND table Continue, send load ack return
CPX packet with error

TABLE 7-51 Error Status Register - ESR (0x80_0000_3000)

Bit Name Initial Value R/W Description

[63] valid 0 RW Valid : indicates that any error or multiple error has
been recorded.

[62:41] Reserved 0 RO Reserved

[42] NcuDmuCredit 0 RW Credit token to NCU for DMU pio write credits

TABLE 7-50 NCU Response to Error
Chapter 7 Non-Cacheable Unit (NCU) 7-53

[41] Mcu3Ecc 0 RW MCU3 ECC Correctable (exceeded data CE
threshold)

[40] Mcu3Fbr 0 RW MCU3 Fbdimm Recoverable

[39] SpareBit[4] 0 RW This bit is always set to 0 and does not caputre
anything regardless of EJR settings (see note below
table)

[38] Mcu2Ecc 0 RW MCU2 ECC Correctable (exceeded data CE
threshold)

[37] Mcu2Fbr 0 RW MCU2 Fbdimm Recoverable

[36] SpareBit[3] 0 RW This bit is always set to 0 and does not caputre
anything regardless of EJR settings (see note below
table)

[35] Mcu1Ecc 0 RW MCU1 ECC Correctable (exceeded data CE
threshold)

[34] Mcu1Fbr 0 RW MCU1 Fbdimm Recoverable

[33] SpareBit[2] 0 RW This bit is always set to 0 and does not caputre
anything regardless of EJR settings (see note below
table)

[32] Mcu0Ecc 0 RW MCU0 ECC Correctable (exceeded data CE
threshold)

[31] Mcu0Fbr 0 RW MCU0 Fbdimm Recoverable

[30] SpareBit[1] 0 RW This bit is always set to 0 and does not caputre
anything regardless of EJR settings (see note below
table)

[29] NiuDataParity 0 RW Data Parity error in the DMA read return from the
SIO

[28] NiuCtagUe 0 RW Ctag double bit Uncorrected error from the SIODMA
read return

[27] NiuCtagCe 0 RW Ctag single bit Corrected Error from the SIO DMA
read return

[26] SioCtagCe 0 RW Ctag single bit Corrected Error after the OLD Fifo.

[25] SioCtagUe 0 RW Ctag double bit Uncorrected Error from the OLD
Fifo. Recommended Fatal Error

[24] SpareBit[0] 0 RW (Does not capture anything)

[23] NcuCtagCe 0 RW Ctag single bit Corrected error on Interrupt write or
PIO read return.

[22] NcuCtagUe 0 RW Cag double bit error on Interrupt write or PIO read
return. Recommended Fatal Error. (NCUSYN)

TABLE 7-51 Error Status Register - ESR (0x80_0000_3000)
7-54 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

[21] NcuDmuUe 0 RW For IOMMU conflicts. (NCUSYN)

[20] NcuCpxUe 0 RW Error in Output Fifo to CPX.

[19] NcuPcxUe 0 RW CPU PIO/CSR commands, may be Fatal. (NCUSYN)

[18] NcuPcxData 0 RW Error in CPU PCX Fifo. (NCUSYN)

[17] NcuIntTable 0 RW Error in NCU read of Interrupt table. (NCUSYN)

[16] NcuMondoFifo 0 RW Parity/ECC error in read of Mondo Fifo

[15] NcuMondoTabl
e

0 RW Parity/ECC error in CPU read Mondo table

[14] NcuDataParity 0 RW Parity for Interrupt write or PIO read return from the
SIO. (NCUSYN)

[13] DmuDataParity 0 RW Data Parity error in the DMA read return from the
SIO

[12] DmuSiiCredit 0 RW Parity error in the DMA write acknowledge Credit
from the SII. Recommended Fatal Error

[11] DmuCtagUe 0 RW Ctag duble bit Uncorrected error from the SIO DMA
read return. Recommended Fatal Error

[10] DmuCtagCe 0 RW Ctag single bit Corrected error from the SIO DMA
read return

[9] DmuNcuCredit 0 RW Parity error in the PIO read/Mondo acknowledge
Credit from the NCU Recommended Fatal Error

[8] DmuInternal 0 RW Rocommended Fata Error

[7] SiiDmuAparity 0 RW Parity error for Address field for DMA transactions
from DMU Fifo. (SIISYN)

[6] SiiNiuDParity 0 RW Data parity error for DMA writes from DMU Fifo.
(SIISYN)

[5] SiiDmuDParity 0 RW Data parity error for DMA writes from DMU Fifo.
(SIISYN)

[4] SiiNiuAParity 0 RW Parity error fro Address field for DMA transactions
from NIU Fifo. (SIISYN)

[3] SiiDmuCtagCe 0 RW Ctag single bit Corrected error, in transaction from
NIU Fifo

[2] SiiNiuCtagCe 0 RW Ctag single bit Corrected error in transaction from
NIU Fifo

[1] SiiDmuCtagUe 0 RW Ctag double bit Uncorrected ECC or Command
Parity Error in transaction from DMU Fifo.(SIISYN)

[0] SiiNiuCtagUe 0 RW Ctag double bit Uncorrected ECC or Command
Parity Error in transaction from NIU Fifo.(SIISYN)

TABLE 7-51 Error Status Register - ESR (0x80_0000_3000)
Chapter 7 Non-Cacheable Unit (NCU) 7-55

This register is warm reset protected.

Note – Bit[30], [33], [36], and [39] in the ESR register does not capture anything from
hardware point of view. Even though the corresponding EJE is set, these bit still
capture 0. However, software can set these bit to 1 and cause SOC interrupt or fatal
error for testing purposes.

ELE provides the capability to select individual error events to be logged in the ESR.
If a 'Log Enable' bit is set, and the corresponding error type signal is asserted, then
the respective bit position in the ESR's “Recorded Error Type” field is set.

This register selects individually logged errors to dispatch an SocError message.
Each bit enables interrupting (dispatching SOCError) for the respective bit position
in the ESR. Interrupts may be sent if no other SOCError is still pending as indicated
by the PER valid bit=1. Thus, if no pending SOCError (i.e. PER valid=0) and the
respective “Interrupt Enable” bit is set, the SOCError indication will be dispatched
for logged errors at this bit location.

TABLE 7-52 Error Log Enable - ELE (0x80_0000_3008)

Bit Name Initial Value R/W Description

[63:43] Reserved 0 RO Reserved

[42:0] Error Log Enable 0x7FFFFFFFFF
F

RW 1-to-1 corresponding to ESR register

TABLE 7-53 Error Interrupt Enable - EIE (0x80_0000_3010)

Bit Name Initial Value R/W Description

[63:43] Reserved 0 RO Reserved

[42:0] Error Interrupt
Enable

0 RW 1-to-1 corresponding to ESR register
7-56 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

This register provides the capability to select individual error checking nodes to
have their parity/ECC bits flipped. When the respective bit is set, the parity/ECC
will be flipped, causing on error, for this particular parity/ECC checking location.

Each error type may be program to cause a Fatal Error This register enables an error
to cause the signal “ncu_rst_fatal_error” to be asserted to the Reset Unit. If the
respective “Fatal Error Enable” bit is set, and the corresponding error type is
asserted, a fatal error will be dispatched to the Reset Unit. This functionality is not
dependent on the settings of the ESR, PER, ELE or EIE.

This register is a snapshot copy of the entire 64-bit of the ESR. This “snapshot” is
taken when NCU initiates an SOC Error packet dispatch. This is caused when an
error type occurs that has both the respective “log” enable and respective
“interrupt” enable bit positions set. After an SOC Error message, the thread's trap
handler may read this register to determine the error “cause”. When this register's
Valid bit is set further SOCError message dispatches are disabled.

This register is warm reset protected.

The SII Error Syndrome Register stores the syndrome (header) information from an
SII caused error event. This register is located in NCU. Data is sent to NCU from SII
on a special 4-bit serial bus (please refer to Appendix B). When the logging is disable
for this error type, NCU will simply ignore the data syndrome data transfer from SII.

TABLE 7-54 Error Injection Register - EJR (0x80_0000_3018)

Bit Name Initial Value R/W Description

[63:43] Reserved 0 RO Reserved

[42:0] Error Injection
Enable

0 RW 1-to-1 corresponding to ESR register with
exception of bit[30],[33],[36], and [39],
which the corresponding ESR bit always
capture 0 regardless of EJR is set.

TABLE 7-55 Fatal Error Enable - FEE (0x80_0000_3020)

Bit Name Initial Value R/W Description

[63:43] Reserved 0 RO Reserved

[42:0] Fatal Error
Enable

0 RW 1-to-1 corresponding to ESR register

TABLE 7-56 Pending Error Register - PER (0x80_0000_3028)

Bit Name Initial Value R/W Description

[63:0] (same as ESR) (same as ESR) (same as ESR) (same as ESR)
Chapter 7 Non-Cacheable Unit (NCU) 7-57

In this case, it will retain the prior data already stored in the SIISYN register. If
bit[63],“Valid”-bit, is already set, NCU will ignore further SIISYN coming from SII
until software clears this bit.

This register is warm reset protected.

This register is warm reset protected.

TABLE 7-57 SII Error Syndrome - SIISYN (0x80_0000_3030)

Bit Name Initial Value R/W Description

[63] valid 0 RW valid

[62:59] Reserved 0 RO Reserved

[58:56] Etag 0 RW Indicates which type of error is associated
with this syndrome. This is the lower 3-bit
of the error type index in ESR (SII error
types only limited to bit7-bit0). For
example, the “Etag” of a “SiiNiuAParity”
error = 4.

[55:40] Ctag 0 RW 16-bit CTAG or ID field from SII or
DMU/SII header (refer to SII MAS)

[39:0] PA 0 RW 40 physical address (refer to SII MAS)

TABLE 7-58 NCU Error Syndrome - NCUSYN (0x80_0000_3038)
If bit[62] is 0: format 1

Bit Name Initial Value R/W Description

[63] Valid 0 RW Valid

[62] Format=0 0 RW Format 0

[61:58] RCTP 0 RW Rqtyp,Cpu,Thr,PA valid

[57:56] Reserved 0 RO Reserved

[55:51] etag 0 RW Which bit in ncuesr causes loading of
syndrome

[50:46] Rqtyp 0 RW Packet request type

[45:43] Cpu_id 0 RW CPU ID

[42:40] Thr_id 0 RW Thread ID

[39:0] PA 0 RW 40bit PA
7-58 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

This register is warm reset protected.

This register is warm reset protected.

7.6.2.3 Mondo Table Access

The following register are used to manage the Mondo Interrupts.

When NCU receives a Mondo interrupt, it sets the Busy bit and ack DMU. When a Busy bit
is set, it means an interrupt is waiting to be serviced or is being serviced. Software needs to
reset the Busy bit after it completes servicing the interrupt. If the Busy bit is already set
when an interrupt arrives at NCU, a NACK will be sent back to DMU. The Busy bit is set
after a reset and software has to clear it to begin receiving interrupts.

TABLE 7-59 NCU Error Syndrome - NCUSYN (0x80_0000_3038)
If bit[62] is 1

Bit Name Initial Value R/W Description

[63] Valid 0 RW Valid

[62] Format=1 0 RW Format 1

[61:58] Reserved 0 RW Rqtyp,Cpu,Thr,PA valid

[57:56] Reserved 0 RO Reserved

[55:51] etag 0 RW Which bit in ncuesr causes loading of
syndrome

[50:46] Reserved 0 RW Packet request type

[45:43] Reserved 0 RW CPU ID

[42:40] Reserved 0 RW Thread ID

[39:0] CTAG 0 RW {24'b0,ctag[5:0]}

TABLE 7-60 DBG1 Error Event Trigger Enable - NCU_CREG_DBGTRIG_EN (0x80_0000_4000)

Bit Name Initial Value R/W Description

[63:1] Reserved 0 R/O reserved

[0] dbgtrigen 0 R/W Enable dbg1 error event trigger.
Chapter 7 Non-Cacheable Unit (NCU) 7-59

There are two Mondo Interrupt Mondo Tables. The tables are read-only by software and the
entries are updated by DMU Mondo interrupts, provided that corresponding Busy bit is not
currently set. NCU will ack the interrupt if it is not busy, otherwise the NCU will NACK it.

When a thread reads the following alias register, it is reading its own entry in the Mondo
Data0 table (i.e. The PA will from PCX bus will be ignored, and the cputhr[5:0] will be used
for accessing the table entry.) This is designed for a CPU thread accessing its own entry
without doing address calculation or knowing its own cpu thread I.D. If access if from JTAG
the cputhr[5:0] in UCB packet will be used for table indexing.

When a thread reads the following alias register, it is reading its own entry in the Mondo
Data1 table (i.e. The PA will from PCX bus will be ignored, and the cputhr[5:0] will be used
for accessing the table entry.) This is designed for a CPU thread accessing its own entry
without doing address calculation or knowing its own cpu thread I.D. If access if from JTAG
the cputhr[5:0] in UCB packet will be used for table indexing.

TABLE 7-61 Mondo Interrupt Data0 – MONDO_INT_DATA0 (0x80_0004_0000) (Count 64 Step 8)

Bit Name Initial Value R/W Description

[63:0] Data0 X RO First 64 bits of Mondo interrupt data

TABLE 7-62 Mondo Interrupt Data1 – MONDO_INT_DATA1 (0x80_0004_0200) (Count 64 Step 8)

Bit Name Initial Value R/W Description

[63:0] Data1 X RO Second 64 bits of Mondo interrupt data

TABLE 7-63 Alias Mondo Interrupt Data0 – MONDO_INT_ADATA0 (0x80_0004_0400)

Bit Name Initial Value R/W Description

[63:0] Data0 X RO First 64 bits of Mondo interrupt data

TABLE 7-64 Alias Mondo Interrupt Data1 – MONDO_INT_ADATA1 (0x80_0004_0600)

Bit Name Initial Value R/W Description

[63:0] Data1 X RO Second 64 bits of Mondo interrupt data
7-60 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

When a thread reads the following alias register, it is reading its own entry in the Mondo
Busy table (i.e. The PA will from PCX bus will be ignored, and the cputhr[5:0] will be used
for accessing the table entry.) This is designed for a CPU thread accessing its own entry
without doing address calculation or knowing its own cpu thread I.D. If access if from JTAG
the cputhr[5:0] in UCB packet will be used for table indexing.

7.6.3 ASI Registers
The ASI registers could be accessible by both JTAG and core. The algorithm for
mapping from ASI address to IO address is as follows:

PA[39:32] = 0x90

PA[31:29] = core_id[2:0] (physical core id)

PA[28:26] = tid[2:0] (thread id)

PA[25:18] = asi[7:0]

PA[17:3] = VA[17:3]

PA[2:0] = 000

TABLE 7-65 Mondo Interrupt Busy – MONDO_INT_BUSY(0x80_0004_0800) (Count 64 Step 8)

Bit Name Initial Value R/W Description

[63:7] Reserved 0 RO Reserved

[6] Busy 1 RW Hardware set Busy to “1” when an interrupt
is received. Hardware nacks an incoming
Mondo interrupt if Busy bit is already set.

[5:0] Reserved 0 RO Reserved

TABLE 7-66 Alias Mondo Interrupt Busy – MONDO_INT_ABUSY(0x80_0004_0a00)

Bit Name Initial Value R/W Description

[63:7] Reserved 0 RO Reserved

[6] Busy 1 RW Hardware set Busy to “1” when an interrupt
is received. Hardware nacks an incoming
Mondo interrupt if Busy bit is already set.

[5:0] Reserved 0 RO Reserved
Chapter 7 Non-Cacheable Unit (NCU) 7-61

If it's a register that is shared by all virtual cores, then the core_id, PA[31:29] and
thread_id, PA[28:26] are ignored. NCU always decode only PA [25:0] if PA[39:32]=
0x90.

7.6.3.1 Core Available Register – ASI_CORE_AVAILABLE
(0x90_0104_0000)

(ASI:41 VA:00)

This register is programmed by EFUSE controller after POR is deasserted. NCU will detect
the de-assertion of efu_ncu_coreavail_dshift signal which triggers update to Core Enable,
Core Enable Status and XIR Steering registers. The granularity of the fuses is at each
physical core level, and there are 8 core in OpenSPARC T2. Therefore, physically there are
only 8 bits for this register. Hardware automatically expands each bit (representing a core) to
8 bits and becomes a total of 64 bit representing 64 threads.

■ JTAG accessible (RO)

This register is warm reset protected.

7.6.3.2 Core Enable Status Register – ASI_CORE_ENABLE STATUS
(0x90_0104_0010)

(ASI:41 VA:10)

The Core Enable Status Register is updated from Core Enable register at the deassertion of
“warm reset”, or from Core Available register at de-assertion of efu_ncu_coreavail_dshift
signal (after POR deasserted). JTAG could program the Core Enable register after POR and
before the “warm reset,” so that Core Enable Status register takes the value of Core enable at
the next “warm reset” deassertion.

Hardware implements only 8-bit for this register. When SW reads, NCU
automatically expands each bit to 8-bit wide and becomes 64 bits total to represent
64 threads. In OpenSPARC T2, CPU uses the value of this register to gate off the
clock to the appropriate physical core.

■ JTAG accessible (RO)

TABLE 7-67 Core Available Register

Bit Name Initial Value R/W Description

[63:0] Core_available 0xFFFFFFFFF
FFFFFFF(by

POR)

RO A one means the thread is available
7-62 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

■ A thread that is not available in the Core Available register must have its
corresponding status bit set to 0 by hardware.

7.6.3.3 Core Enable Register – ASI_CORE_ENABLE
(0x90_0104_0020)

ASI:41 VA:20

This register is first update after POR (actually at the assertion of
efu_ncu_coreavail_dshift) based on Core Available register. When SW uses this
register to enable/disable a core or thread, the effect of programming this register
will take place only after the following “warm reset.”

Hardware implements only 8 bits, representing 8 cores for this register. When reading, NCU
expands each bit into 8 bits and becomes a total of 64 bits, representing 64 threads. When
writing, NCU ANDed 8 corresponding bits to a physical core to reduce the 64 bits Signals
down to 8 bits which representing 8 cores.

■ JTAG accessible: RW

■ Bits corresponding to the same core is ANDed together by NCU before writing
into the register. So, if one thread is being disabled, all threads within the same
physical core are also being disabled.

■ Hardware forces all threads in an unavailable core's (based on Core Available
register) to be disabled.

■ Hardware enforces “no all-core-disabled” rule to protect the situation that all
cores are disabled by SW or by JTAG. If JTAG writes all 0s to this register, NCU
will set the lowest available core (based on Core Available register) to 1. If CPU
writes all 0 to this register, NCU will keep the bit corresponding to CPU that
initiates the command to 1. A disabled / unavailable thread (basing on core
available and core enable status registers) should never access this register.
Unpredictable hardware behavior will be resulted in such case.

TABLE 7-68 Core Enable Status Register

Bit Name Initial Value R/W Description

[63:0]
Core_enable_s
tatus

0xFFFFFFFFF
FFFFFFF

RO A one means the thread is currently enabled

TABLE 7-69 Core Enable Register

Bit Name Initial Value R/W Description

[63:0] Core_enable 0xFFFFFFFFF
FFFFFFF (by

POR)

R/W A one means the thread will be enable
following the next “warm reset”
Chapter 7 Non-Cacheable Unit (NCU) 7-63

This register is warm reset protected.

7.6.3.4 XIR Steering Register – ASI_XIR_STEERING
(0x90_0104_0030)

(ASI:41 VA30)

SW can program which thread gets XIR when XIR pin is asserted. SW can program
this register such that all threads, a subset of threads, a thread, or none of the
threads will get XIR.

XIR Steering register first receives a default value based on Core available register after POR
(actually at deassertion of efu_ncu_coreavail_dshift). At each deassertion of “warm reset,”
XIR Steering register gets new default value basing on Core Enable register which could be
programmed by SW or JTAG.

■ JTAG accessible RW

■ If a core is not enable, all corresponding bits in XIR Steering register are force to 0
by hardware.

7.6.3.5 Core Running RW Register –
ASI_CORE_RUNNING_RW(0x90_0104_0050)

(ASI:41 VA:50)

SW uses this register to park or unpark a thread. Each bit position corresponds to a
thread. If the bit is set to 1, the thread is running. When set to 0, the thread is parked.
A parked thread stops execute new instructions and will not initiate transaction
except in response to a coherancy transaction initiated by other threads. It could take
arbitrarily long from the time this register is programmed to the thread is actually
parked or unparked.

Upon “warm reset,” this register is set to all 0. When NCU receives the rst_ncu_wake_thread
signal from RST cluster, NCU will set the lowest available thread bit to 1 based on Core
Enable Status register. This thread becomes the master thread. Privileged software, running
on the master thread, will subsequently write to this register to unpark other threads. It is up
to software to perform the initializations that are required by thread upon unparking. There
are 3 ways to program this register:

TABLE 7-70 XIR Steering Register

Bit Name Initial Value R/W Description

[63:0] Xir_steering 0xFFFFFFFFFF
FFFFFF

R/W A one means the thread will receive a
“reset” interrupt when XIR external pin is
asserted
7-64 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

1. Writing directly to Core Running RW register

2. Alternatively, SW can write a 1 to the corresponding thread bit in Core Running
W1S register. This results in setting the corresponding bit in Core Running RW
register to 1.

3. Alternatively, SW can write a 1 to the corresponding thread bit in Core Running
W1C register. This results in clearing the corresponding bit the Core Running RW
register to 0.

■ JTAG accessible RW

■ Hardware forces all unavailable or disabled threads to be parked (base on Core
Enable Status register) Writing 1 into the disabled thread bits will have no effect.

Only JTAG is able to park all threads during debug by writing all '0' to core_running
register. Other than JTAG, hardware enforce “no all-thread-parked” rule. When core
write to core_running register to park all threads, the hardware will keep the
requesting thread unparked. A disabled / unavailable thread (basing on core
available and core enable status registers) or a parked thread should never access
this register. Unpredictable hardware behavior will be resulted in such case.

7.6.3.6 Core Running Status Register –
ASI_CORE_RUNNING_STATUS (0x90_0104_0058)

(ASI:41 VA:58)

Each SPC thread will send spc_core_running_status to indicate its status. The SPC
thread determines the status of each thread by the following criteria. The SPC thread
receives a request to park or unpark the based upon a '1' to '0' or '0' to '1' transition
on the ncu_spc_core_running signal from NCU. An indeterminate time later, once all
activity for that thread has been processed (the store buffer is empty, any pending
cache and TLB misses have bee processed, and all instructions have completed
execution), the SPC will drive the spc_cmp_core_running_status signal to a '0' (to
signal the thread is parked) or to a '1' (to signal the thread is running). Upon “warm
reset,” Core Running Status should be all 0s.

TABLE 7-71 Core Running RW Register

Bit Name Initial Value R/W Description

[63:0] Core_running RW 0x1 (by POR
and WMR)

R/W A one means the thread is being unparked. A zero
means the thread is current park or disabled. The
status is reported in Core_running_status register
Chapter 7 Non-Cacheable Unit (NCU) 7-65

7.6.3.7 Core Running W1S Register – ASI_CORE_RUNNING_W1S
(0x90_0104_0060)

(ASI:41 VA:60)

7.6.3.8 Core Running W1C Register – ASI_CORE_RUNNING_W1C
(0x90_0104_0068)

(ASI:41 VA:68)

7.6.3.9 Interrupt Vector Dispatch Register – INT_VEC_DISP
(0x90_01CC_0000)

(ASI:73 VA:00)

TABLE 7-72 Core Running Status Register

Bit Name Initial Value R/W Description

[63:0]
Core_running_stat
us

0x1 (by POR
and WMR)

RO A one means the thread is currently running. A
zero means the thread is currently parked or
disabled.

TABLE 7-73 Core Running W1S Register

Bit Name Initial Value R/W Description

[63:0] Core_running_W1S N/A WO Write one to a bit will cause the corresponding bit
in core_running_rw register to be set to a one.
Write zero or

TABLE 7-74 Core Running W1C Register

Bit Name Initial Value R/W Description

[63:0] Core_running
_W1C

N/A WO Write one in a bit will cause the
corresponding bit int core_running_rw
register to be cleared to a zero. Write zero
means no change on the bit.
7-66 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

A thread may write to the following register to trigger an interrupt to another
thread. NCU will generate an interrupt packet and send to a targeted CPU Thread
specified in CPU_TH[5:0]. TCU may also write into this register to generate an
interrupt to a specific CPU Thread.

7.6.3.10 RAS Error Steering Register – RAS_ERR_STEERING
(0x90_0104_1000)

(ASI:41 VA:1000)

This register stores the virtual core ID (VCID), which is used by NCU to determine
the error thread target of socerror messages. This 6-bit cpuid + threadid will be
included in cpx packet. Refers to RAS spec, section 7.3.

This register is warm reset protected.

7.6.3.11 ASI CMP Tick Enable Register –
ASI_CMP_TICK_ENABLE(0x90_0140_0038)

(ASI:41 VA:38)

TABLE 7-75 Interrupt Vector Dispatch Register

Bit Name Initial Value R/W Description

[63:14] Reserved 0 RO Reserved (NCU ignores write to these bits)

[13:8] Thread 0 WO CPU_TH[5:0]

[7:6] Reserved 0 RO Reserved (NCU ignores write to these bits)

[5:0] Vector 0 WO Interrupt Vector (encodes bit set in
ASI_SWVR_INTR_RECEVIE)

TABLE 7-76 RAS Error Steering Register

Bit Name Initial Value R/W Description

[63:6] reserved 0 RO Reserved.

[5:0] VCID 0 RW cpuID+threadID for target error thread
location.
Chapter 7 Non-Cacheable Unit (NCU) 7-67

This register is used to synchronize the TICK register of all physical cores. Refers to
OpenSPARC T2 Programmer’s Reference Manual spec 14.1.5.

Its value is preserved across warm reset.

7.6.3.12 ASI Warm Reset Vector Mask Register –
ASI_WMR_VEC_MASK(0x90_0114_0018)

(ASI:45 VA:18)

When this register is set to '1' by software, POR, WMR or DBR will be able to be
directed to RAM, at location (0x000000020). Refers to DBG spec section 3.2 and
appendix 10.3.4.

Its value will be preserved during warm reset.

Please note that POR and WMR are events, not Signals

■ Please reference to SUN's CMP spec. for more details on each signal

■ Please reference to RST MAS spec. for detailed POR and WMR events

TABLE 7-77 ASI CMP Tick Enable Register

Bit Name Initial Value R/W Description

[63:1] reserved 0 RO Reserved.

[0] tick_enable 0 RW Set to '1' to enable incrementing of TICK
registers in all physical cores.

TABLE 7-78 ASI Warm Reset Vector Mask Register

Bit Name Initial Value R/W Description

[63:1] reserved 0 RO Reserved.

[0] Wmr_vec_mas
k

0 RW Send to TCU for wmr protect.
7-68 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

7.7 Appendix A
SSI Software Interface

Addresses within the SSI address range (0xFF_F000_0000 to 0xFF_FFFF_FFFF) are
issued to the off-chip SSI interface bus. The only transactions that are supported
directly to the SSI interface are:

1, 2, 4, 8 Byte aligned Reads

1, 2, 4, 8 Byte aligned Writes

Since the Boot ROM is predominantly used for instructions, which is explicitly
always big-endian, all accesses to the SSI interface bus are treated as big-endian.

1. SSI Register Interface The SSI registers all deal with error handling, so are
described in Chapter 12 of the OpenSPARC T2 Programmer’s Reference Manual,
Error Handling.

2. SSI Error Handling TABLE 7-79 describes the SSI's handling of errors. The error
indication on read returns is delivered regardless of the ERREN bit, where it is up
to the processor to ignore the error or receive it. Logging the error and sending an
error interrupt are controlled by the ERREN bit. Note that returning zeros on an I-
fetch timeout will tend to cause an illegal instruction trap.

3. SSI Interrupts

SSI generates interrupts for two reasons: either the EXT_INT_L pin was asserted,
or an error was detected.

The external interrupt pin is intended to be used by the FPGA, and has NO
ordering protection, meaning when EXT_INT_L is asserted, an interrupt is issued
to the IOB, without checking any transactions in flight. The interrupt is delivered
to the IOB using the SSI device ID, i.e. (device ID == 2).

EXT_INT_L is treated as an asynchronous input, meaning the JBI must
synchronize it to its internal clock before using it. Also, EXT_INT_L is treated as
an edge-triggered interrupt, meaning that JBI will detect a rising edge on the

TABLE 7-79 SSI Error Handling

Error TType Severity Logs Returns ERREN

SSI Parity Error Read Uncorrectable Just the bit Data with error indication Asynch Intr

SSI Parity Error Write Uncorrectable Just the bit N/A Asynch Intr

SSI Timeout Read Uncorrectable Just the bit All Zeros with error indication Asynch Intr

SSI Timeout Write Uncorrectable Just the bit N/A Asynch Intr
Chapter 7 Non-Cacheable Unit (NCU) 7-69

synchronized signal, and issue an interrupt to the IOB on those rising edges. If the
actual use is level-sensitive, software is responsible for querying the FPGA device
(or whatever is driving EXT_INT_L), to see if the interrupt is still asserted, at the
end of the interrupt handler.

To guarantee being seen, EXT_INT_L must be asserted for at least 4.5 JBUS cycles.

Error interrupts, when enabled, are delivered to the IOB using the error device ID,
(device ID == 1).

4. SSI Interface The Serial System Interface (SSI) is defined for to allow
microprocessors to access peripherals in a low pin count fashion. The
OpenSPARC T2 chip will not directly interface to peripherals but instead will
provide a interface that can be easily converted to peripheral protocols by an
external Programmable Logic Device (PLD). Isolating the OpenSPARC T2 chip
from these peripherals allows the devices to use higher voltage signalling and
provides a mechanism for protocol conversion.

For the purposes of this discussion, some assumptions of the environment will be
made. The JBUS will be assumed to run at 200 MHz nominally, although the
actual frequency could be somewhat less than 200. In addition the OpenSPARC
T2 chip is assumed to interface to either a CPLD or a more complex FPGA. In the
former case, the CPLD may just interface to a Flash PROM. In the latter case, the
FPGA may include peripherals of its own (e.g. RS232 UART or system
management microprocessor) and have a dedicated parallel (8-bit or wider)
interface to Flash ROMs and potentially SRAMs. All of these peripherals would
be memory mapped into the 256 Megabyte SSI addressable location area
(FF_F000_0000 FF_FFFF_FFFF). All devices accessable off the SSI interface will
be only targets OpenSPARC T2 will always be the master of the bus.

5. Functional Interface

The SSI interface includes three pins: SSI_SCK (clock), SSI_MOSI (master
out/slave in), and SSI_MISO (master in/slave out). SSI_CLK and SSI_MOSI are
outputs of OpenSPARC T2, and SSI_MISO is an input. The SSI_SCK is a free
running clock, toggling whenever the on chip JBUS clock is toggling. It is
assumed to be nominally 50 Mhz, but is always a divide by 4 or 8 of the JBUS
clock.

6. SSI Request

An SSI request is transmitted on the SSI_MOSI line. It can be either a read
command or a write commad. The format of all these requests is 1 start bit, 3 bit
command (CMD[2:0]), a 28 bit address, 0-64 bits of data, and a parity bit. The
high order (most significant) bit within the command, address and data are
always transmitted first, with the low order bit transferred last. Zeros are
transmitted as a low voltage value and ones are transmitted as a high value. A
start bit is a high value.

CMD[2] is 0 for write, 1 for read
7-70 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

CMD[1:0] encodes the transaction size as follows:

2'b00 - 1 byte

2'b01 - 2 byte

2'b10 - 4 byte

2'b11 - 8 byte

For every SSI request, a SSI response is expected. A succeeding request can not be
sent until the preceding request has had a response. (No command pipelining is
supported.)

When OpenSPARC T2 has no request to transfer or is waiting for a response, the
SSI_MOSI line is held in the low voltage state.

The parity bit is set such that the number of 1s in the start bit, the command, the
address, any data bits, and the parity bit is an even number.

7. SSI Response

An SSI response is received on the SSI_MISO line. It can be either a read response
which must contain data or a write response which must contain no data. The
format of a read response is 1 start bit, 8-64 data bits, and 1 parity bit. The format
of a write response is 1 start bit and 1 parity bit. The high order (most significant)
bit within the data are always transmitted first, with the low order bit transferred
last. Zeros are transmitted as a low voltage value and ones are transmitted as a
high value. A start bit is a high value.

The parity bit is set such that the number of 1s in the start bit, any data bits, and
the parity bit is an even number. This means a write response is two 1's in
consecutive cycles.

When the target has no response to transfer or is processing a request, the
SSI_MISO line is held in the low voltage state.

Electrical Interface

The SSI_SCK, SSI_MOSI, SSI_MISO, and EXT_INT_L Signals will be HSTL Signals
at 1.5V. Care must be taken on the input so that overshoot doesn't exceed the 1.5V
VDD for long enough to induce gate oxide breakdown for the CO27.C process.
(See the signal ERS for voltage levels and currents.)

When driving OpenSPARC T2 will drive SSI_MOSI for 3 JBUS cyles prior to a
SSI_SCK rising edge and hold SSI_MOSI for 1 JBUS cycle after the SSI_SCK rising
edge. When receiving, OpenSPARC T2 will wait 3 JBUS cycles after a rising
SSI_SCK edge to sample the input line.
Chapter 7 Non-Cacheable Unit (NCU) 7-71

7.8 Appendix B
The following is the Sii/NCU interface data format which results in the SIISYN
syndrome register.

siisyn_data[63:0] comes from SII to NCU, 4-bit at a time (see following timing
diagram) ,

starting 1st transfer in bit[3:0], then bit[7:4], and so on
Siisyn_data[39:0] = PA,
siisyn_data[55:40] = ctag,
siisyn_data[61] = niud_pe,
Siisyn_data[60] = niua_pe,
siisyn_data[59] = niuctag_ue,
siisyn_data[58] = dmud_pe,
Siisyn_data[57] = dmua_pe,
siisyn_data[56] = dmuctag_ue,

NCU will encode siisyn_data[61:56] to 3-bit Etag, siisyn[58:56] as in TABLE 7-80

TABLE 7-80 SII/NCU Interface Data Format

siisyn_data[61] “000001
”

“000001” “000001” “000001” “000001” “000001”

Etag[2:0] “001” “111” “101” “000” “100” “110”
7-72 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 7-17 SII to NCU Eror Strobe

FIGURE 7-18 Sii to NCU Error Syndrome

FIGURE 7-19 SII to NCU Error Strobe and Syndrome Transfer Example
Chapter 7 Non-Cacheable Unit (NCU) 7-73

7-74 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

CHAPTER 8

Data Management Unit (DMU)

This chapter contains the following sections:

■ Section 8.1, “Overview” on page 8-2

■ Section 8.2, “Functional Description of DMC Sub-blocks” on page 8-6

■ Section 8.3, “Transaction Manager Unit (TMU)” on page 8-6

■ Section 8.4, “Interrupt Message Unit (IMU)” on page 8-7

■ Section 8.5, “Record Management Unit” on page 8-31

■ Section 8.6, “Transaction Scoreboard Unit (TSB)” on page 8-32

■ Section 8.7, “Memory Management Unit (MMU)” on page 8-32

■ Section 8.8, “Context Manager Unit (CMU)” on page 8-34

■ Section 8.9, “Packet Manager Unit (PMU)” on page 8-36

■ Section 8.10, “Packet Scoreboard (PSB)” on page 8-36

■ Section 8.11, “Cache Line Unit (CLU)” on page 8-37

■ Section 8.12, “Data In Unit (DIU)” on page 8-38

■ Section 8.13, “Data Out Unit (DOU)” on page 8-39

■ Section 8.14, “DSN Overview” on page 8-40

■ Section 8.15, “DSN Block Diagrams” on page 8-41

■ Section 8.16, “DSN Detailed Block Diagram” on page 8-42

■ Section 8.17, “DSN Interface Descriptions” on page 8-43

■ Section 8.18, “Pin Mapping” on page 8-66

■ Section 8.19, “RAS” on page 8-67

■ Section 8.20, “Resets” on page 8-73

■ Section 8.21, “CSR’s” on page 8-74

■ Section 8.22, “Transaction Ordering” on page 8-77
8-1

8.1 Overview
The OpenSPARC T2 PCI-Express subsystem leverages the Data Management Core
(DMC) from VSP Fire ASIC for PCI-Express Packet processing. With the additional
glue logic (DSN block) between Fire DMC IP, N2 SIU (system interface unit) and N2
NCU (non-cacheable unit), the DSN block plus Fire DMC constitutes the Data
Management Unit (DMU) in the OpenSPARC T2 PCI-Express Subsystem.

This specification document the high level DMU function.

The DMU is responsible for managing and directing all command and data flows
from/to PCI-Express Unit (PEU), System Interface Unit (SIU), and Non-Cacheable
Unit (NCU). The DMU has 3 primary external interfaces, one to the SIU, one to the
NCU and one to the PEU.

The DMU manages Transaction Layer Packet (TLP) to/from the PEU and maintains
the same ordering as from the PEU and then to the SIU. For maintaining ordering
between PEU and SIU, the DMU requires the policy that has PIO reads pulling DMA
writes to completion. When the PEU issues complete TLP transactions to the DMU,
the DMU segments the TLP packet into multiple cacheline oriented SIU commands
and issues them to the SIU. The DMU also queues the response cachelines from SIU,
reassembly the multiple cachelines into one TLP packet with maximal payload size.
Furthermore, the DMU accepts / queues the PIO transactions requests from NCU,
and coordinates with the appropriate destination, to which the address and data will
be sent.

The DMU encapsulates the functions necessary to resolve a virtual PCI-Express
packet address into a L2 cacheline physical address which can be presented on the
SIU interface. The DMU also encapsulates the functions necessary to interpret PCI-
Express Message Signaled Interrupts, Emulated INTX Interrupts and provides the
functions to post interrupt events to queues managed by software in main memory
and generates the Solaris Interrupt Mondo to notify software. The DMU decodes
INTACK and INTNACK from interrupt targets and conveys the information to the
Interrupt Function so it can move on to service the next interrupt if any (for
INTACK) or replay the current interrupt (for INTNACK).
8-2 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

8.1.1 DMC Block Diagram

FIGURE 8-1 DMC Block Diagram

CLU
CTM

16x60

Data Cmd

16x60x2

CRM

Cmd

PMU PRM

4x79

PSB

32x44
+16x6

P
I
O

D
M
A

M
S
I

P
I
O

D
M
A

Cmd Rcrd

2KB
16x

19B
2KB

RCM

4x93

CMU

CTX
TCM

4x80

Data

4x60

Ingr Pkt Rcrd Egr Pkt Rcrd

32x(48+5+11+5)
16x(48+4)

MMU TDB

VTB PTB

4KB

Schd Rcrd

TSB
32x48

RMUSRM

LRM

TSB

IMU INT Out Rcrd LRM Rcrd

8x116(FF)

6x124(FF)
RRM

6x70(FF)

Retired Rcrd

DIM DEMTMU

DIM Rcrd RRM Rcrd

4x128(FF)5x126(FF)

PEC Rcrd

Align

PIO
DMA/
INT

Unsup./
Fault

MSI Data

INT In Rcrd

2x13112x17

Mondo Req

INT
Ack/Nack

SRM Rcrd

6x123(FF)

DMC

PEC Rcrd
Chapter 8 Data Management Unit (DMU) 8-3

8.1.2 Abbreviation
DMU - Data Management Unit

SIU - System Interface Unit

NCU - Non-Cacheable Unit

PEU – PCI-Express Unit

CLU – Cache Line Unit

CTM – Cacheline Transmit Manager

CRM – Cacheline Receive Manager

PMU – Packet Manager Unit

CMU – Context Manager Unit

IOMMU – IO Memory Management Unit

IMU – Interrupt and Message Unit

RMU – Record Manager Unit

TMU – Transaction Manager Unit

DIU – Data-In Unit

DOU – Data-Out Unit

TSB – Transaction ScoreBoard

PSB – Packet ScoreBoard

VTB – Virtual Tag Buffer

TDB – Translation Data Buffer

MSI – Message Signal Interrupt

8.1.3 General DMC IP Ingress Pipeline Operations
1. TMU dequeues PEU TLP Record from input Queue.

2. TMU parses PEU TLP Record - extract record contents, Data.

3. TMU moves write data to DATA Pool if necessary.

4. RMU builds/Installs Transaction entry on Transaction scoreboard (TRN SCBD)
8-4 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

5. RMU build Schedule Record and enqueue Schedule Record to IOMMU

6. IOMMU Manager dequeues Schedule Record, builds VAR record (if necessary),
enqueues VAR record on VAR Queue, dequeues VAR record, does VA-> PA
translation and returns results in PhyAD Q, Merges PhyAD from PhyAD Q into
Schedule Record, enqueues Schedule Record to Context Manager

7. Context Receive Manager dequeues Schedule Record, and installs context in
current Context (CNTXT) Lists

8. Context Manager fetches next Context from CNTXT list, builds Packet Record,
enqueues Packet Record to Packet Receive Manager

9. Packet Receive Manager dequeues Packet Record, Breaks up Packet Record into
cacheline oriented record, builds a Cacheline Command Record, enqueues
Cacheline Command Record to Cacheline Transmit Manager, builds/updates
Packet Scoreboard entry.

10. Cacheline Transmit Manager dequeues Cacheline Command Record, enqueues
cacheline Command Record onto DSN interface, pulls data from DATA pool and
enqueues data on outgoing data queue to DSN.

8.1.4 General Egress Pipeline Operations
DMA Rd Data Responses:

1. CRM (Cacheline Receive Manager) dequeues a DATA return from the DMA read
request, builds Packet Record, enqueues Packet Record to TCM (Transmit Context
Mgr.) Queue, updates PKT scoreboard

2. TCM (Transmit Context Manager) dequeues Packet Record, matches the context
to a current Context (CNTXT) list entry, processes the context, builds a Retire
Record, enqueues Retire Record to Retire Record Manager, marks the Context as
done if all Packet Records have been returned, retires Context

3. RRM (Retire Record Manager) dequeues Retire Record, updates Transaction
Scoreboard, builds and issues TLP Record to Transaction Manager.

4. Transaction Manager dequeues TLP Record, builds a PEU Record enqueues PEU
Record to PEU Egress Interface Layer HDR FIFO with address in DMC DATA
Pool

5. PEU Egress Interface Layer moves data from DMU Data Pool to VC Data Buffer

Commands (PIO):

1. CRM dequeues a PIO Record from the DSN, builds Packet Record, enqueues
Packet Record to Transmit Context Mgr Queue, updates PKT scoreboard.
Chapter 8 Data Management Unit (DMU) 8-5

2. Transmit Context Manager dequeues Packet Record, bypasses Context, builds and
enqueues Retire Record to Retire Record Manager.

3. Retire Record Manager dequeues Retire Record, builds and issues TLP Record to
Transaction Manager.

4. Transaction Manager dequeues TLP Record, builds a PEU Record and enqueues
the record into the Egress Interface Layer HDR FIFO.

5. Egress Interface Layer moves data from DMC PIO Pool to VC Data Buffer

8.2 Functional Description of DMC Sub-
blocks
The DMC contains several groups of functions, including Cache Line Unit (CLU),
Packet Manager Unit (PMU), Context Manager Unit (CMU), IO Memory
Management Unit (IOMMU), Record Manager Unit (RMU), Interrupt and Message
Unit (IMU), Transaction Manager Unit (TMU), Transaction Scoreboard (TSB), Packet
Scoreboard (PSB), Data Buffers (DIU and DOU). The following sections describe the
architecture, functionality and change requirement of each groups.

8.3 Transaction Manager Unit (TMU)

8.3.1 TMU Function Description:
The TMU interfaces with the Interface Layer Unit (ILU) of the PEU to manage the
TLPs ingress and egress flows. It consists of two sub-blocks, Data Ingress Manager
(DIM) and Data Egress Manager (DEM).

8.3.1.1 Data Ingress Manager (DIM)

In the ingress direction, ILU pushes header record to a record FIFO residing in DIM.
These records include a pointer to a packet payload in the IDB of PEU. The DIM
manages the DIB buffer space allocation on a cacheline basis. It aligns a packed 16-
byte wide data pulled from IDB to a non-packed cacheline oriented data format,
calculates byte masks, and pushes the data and byte mask to DIU.
8-6 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

Meanwhile, DIM sends release records to ILU when it pulls data out of IDB. The
DIM identifies a Message Signaled Interrupt (MSI) type from a DMA Mwr. On a MSI
operation, it checks the data parity and pushed the result along with the payload to
IMU MSI data FIFO, and a reformed header record is pushed to LRM record FIFO.

The records out of DIM is in strict order as the records into DIM. For non-MSI
records with payload, the record will be pushed into LRM record FIFO before the
associated payload is transferred from IDB in PEU to DIU in DMC. DIM passes DIU
DMA write buffer and PIO read completion buffer write pointers to CLU. CLU
knows if the payload associated with certain records is ready by comparing the
write pointers to its own data buffer read pointers.

For MSI, DIM pushes an MSI associated payload directly into IMU MSI data FIFO
and passes the MSI record to IMU via LRM, and the payload can not arrive IMU
after the associated record.

8.3.1.2 Data Egress Manager (DEM)

In the egress direction, the header records are pushed by the RMU to a record FIFO
residing in DEM. DEM computes the full 64-bit address from a 40-bit encoded
address for PIO memory 64-bit address access. It pushes the reformatted header
records down to the EIL record FIFO if the FIFO is not full.

8.3.1.3 MSI-X Support:

To support MSI-X, the datapath width between DIM and IMU MSI data fifo need to
be increased from 16 bits to 32 bits.

8.4 Interrupt Message Unit (IMU)

8.4.1 IMU Function Description:

8.4.1.1 Definition of Terms
■ Event Queue - A ring buffer in memory defined by a physical base address which

is cacheline aligned, it's size in cachelines, a head pointer, and a tail pointer.
Chapter 8 Data Management Unit (DMU) 8-7

■ Event Queue Interrupt - A type of Mondo interrupt to notify software that a given
event queue has entries in it which need to be processed. This type of Mondo
interrupt can only be mapped to Solaris interrupt numbers 24-59.

■ Event Queue Number - A number between 0 and 35 which is used to uniquely
identify which given event queue an event queue write is destined for.

■ Event Queue Write - A 64 byte write to memory (virtual or physical) which is
caused by the reception of a MSI/Message from PEU. The IMU actually only
writes 16 bytes into the DMC DIU, the remaining bytes are zero filled when CLU
dispatches the write packets to DSN.

■ Inband Interrupt - A sub set of I/O bus interrupts which are received by
OpenSPARC T2 PEU via the normal flow of traffic on the PCI-Express. MSI s and
INT x emulated messages fall into the category.

■ Internal Interrupt - A type Mondo interrupt which is generated internally by N2
IO subsystem. They are caused by errors which occur within the chip. Each unit
has the ability to generate 1 internal interrupt which are then mapped to Solaris
Interrupt numbers 62 (DMU) and 63(PEU).

8.4.1.2 IMU Functional Descriptions

The IMU handles MSIs (Message Signal Interrupts), PCIE messages, INTx emulation
interrupts, and internal interrupts (error and event). In response to receiving one of
the above transactions requests, the IMU must generate a response which will be
either a null record, an event queue write record or a Solaris interrupt Mondo
record. It also generates properly formatted 16 bytes of data required with each
transaction.

IMU uses event queues to queue up MSI's and valid PCIE messages received which
require software notification. An event queue is tied to a specific processor and
generates only one outstanding Solaris Mondo interrupt for one or more than one
write to the event queue.

MSIs are mandatory in PCI-Express. They are queued in one or more event queues
located in system memory. Each event queue generates only one outstanding Solaris
Mondo interrupt. When the MSI record is dequeued off the In Interrupt Record
Queue and associated DATA is dequeued off of the MSI data queue, the MSI data is
decoded and EQ state is looked up. If EQ is available, a new header record is formed
and enqueued into the Out Interrupt Record Queue. At the same time, the data is
sent to DIU along with the corresponding the parity and byte enables generated by
IMU. The process of PCI-Express Message is similar to MSI except no associated
data. When MSI's and Messages pass through the command/header pipeline, an EQ
write is performed if no error conditions occur. The tail pointer for the EQ is
incremented automatically to prepare for the next EQ write. When a difference is
seen between the head and tail pointers, a Mondo will be generated for the event
8-8 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

queue and sent to the Mondo Request Queue in LRM. The Event Queue Mondo
record re-enters the IMU via the In Interrupt Record Queue at a later point. This
Event Queue Mondo is then enqueued onto the Out Interrupt Record Queue.

INTx emulation interrupts trigger the state machine transition to generate a Mondo
record. Then the Mondo record is enqueued to the Mondo Request Queue in the
LRM. After being tagged by LRM, the Mondo record flows back to IMU to be
processed via In Interrupt Record Queue, and then is enqueued onto the Out
Interrupt Record Queue as other type of records.

Internal interrupts for error and status notification will generate one or more Solaris
interrupt Mondo vectors. They will not use the event queues since some of the errors
would be detected when trying to write to an event queue.

8.4.1.3 IMU Mondo State Machine

IMU uses a level sensitive interrupt mechanism and is governed by a certain set of
rules which may be found below. Also please refer to the state machine diagram.

■ A host bus interrupt can be in one of three states: IDLE, RECEIVED, or
PENDING.

a. IDLE - represents the state where no interrupts have been reported.

b. RECEIVED - indicates that an interrupt has been detected by the hardware and
should be delivered to the processor if/when the valid bit is set in its mapping
register.

c. PENDING - represents the state when the interrupt has been queued to be or
has been sent to the processor to be handled.

■ A detection of an interrupt by hardware when the current interrupt state is IDLE
causes a state transition from IDLE to RECEIVED.

■ Any subsequent detection of the same interrupt by hardware is dropped until
software resets the state machine back to IDLE.

■ If the valid bit for a given interrupt in the RECEIVED state is enabled and the
hardware has scheduled that interrupt for transmission to the processor, a state
transition occurs from RECIEVED to PENDING.

■ At no point can hardware make any other transitions in the state machine besides
the previously two afore mentioned transitions.

■ The state for each interrupts can be set to any desired state by software.

■ If SW sets the state machine into a given state, all of the HW arcs for that state are
still valid and any events and or state transitions which should occur in that state
will occur.
Chapter 8 Data Management Unit (DMU) 8-9

FIGURE 8-2 IMU Mondo State Machine

8.4.1.4 PCI-Express/PCI-X/PCI MSI Capability Structure

The capabilities mechanism in PCI-Express/PCI-X/PCI end device is used to
identify and configure a MSI capable device. The message capability structure is
illustrated below. Each device function that supports MSI (in a multi-function
device) must implement its own MSI capability structure.

To request service, an MSI function writes the contents of the Message Data register
to the address specified by the contents of the Message Address register (and,
optionally, the Message Upper Address register for a 64-bit message address).

Compatability Structure for 32-bit Message Address

31 ---- 16 15 ----- 8 7 ----- 0

Message Control Nxt Ptr Cap ID

Message Address

Message Data

IDLE = 00

RECEIVED = 01 PENDING = 11

No Interrupt detectedSW PIO

SW PIO

SW PIO

SW PIO

SW valid is enabled and

interrupt has been scheduled

SW valid is not enabled
8-10 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

Compatability Structure for 64-bit Message Address

31 ---- 16 15 ----- 8 7 ----- 0

Message Control Nxt Ptr Cap ID

Message Address

Message Upper Address

Message Data
Chapter 8 Data Management Unit (DMU) 8-11

FIGURE 8-3 IMU Block Diagram

8.4.1.5 IMU Mondo INO Mapping Table

TABLE 8-1 IMU Mondo INO Mapping

INO Function

INO's 0-19 Reserved

INO 20-23 4 interrupts for PCI Express INTx Emulation
-20 INTA
-21 INTB
-22 INTC
-23 INTD

Out Cmd Sub-Blk

Cmd Decode Sub-Blk

State Check Sub-
Blk

EQ Check Sub-Blk

Replay Status Sub-Blk

Interrupt State
Sub-Blk

Group Controller
Sub-Blk

Data
Mover
Sub-
Blk

Header RecordMSI Data

EQ LookupHeader Command

Header Command

Lookup Reply

Data Address

Data Address

MSI Data In Intr record Q Intf

Mondo
Replays

Mondo Replay Status IntfHeader Command

Q Intf
8-12 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

8.4.1.6 IMU CSRs Change List

Interrupt Mapping Registers (0x601000 – 0x601150) 42 consecutive registers, one for each
Mondo)

INO 24 – 59 36 Event Queue Interrupts

INO 60 – 61 Reserved

INO 62 DMU Internal Interrupt

INO 63 PEU Internal Interrupt

TABLE 8-2 Interrupt Mapping Registers

Field Bits Reset
Name

Reset
Value

Type Description

MDO_MODE [63] rst_l 0x0 RW This bit is used to select which of the 2 mondo
formats the mondo will use. A value of 1 = Data
Baring Mondo. A value of 0 = Non Data Baring
Mondo (Normal Mondo). The value of this bit, will
be used as bit 63 of the first data word in the Mondo
vector. In general, EQ mondo s should have this bit
set to 1 and non EQ Mondos should set this bit to 0.

RESERVED [62:32] rst_l 0x0 RW Reserved field

V [31] rst_l 0x0 RW Valid bit: When set to 0, interrupt will not be
dispatched to Core. Has no other impact on interrupt
state.

Thread_ID [30:25] rst_l 0x0 RW Thread ID of the core that this interrupt will be sent
to.

RESERVED [24:10] Reserved field

INT_CNTRL_
NUM

[9:6] rst_l 0x0 RW Interrupt Controller Number. This is used to select
which Interrupt controller will issue the interrupt.
This is a 1-hot value only 1 bit may be selected at a
time. Valid Values are as follows: 0000 - No controller
selected 0001 - Interrupt Controller 0 0010 - Interrupt
Controller 1 0100 - Interrupt Controller 2 1000 -
Interrupt Controller 3 If other values are
programmed this is a programming error the results
are undefined

RESERVED [5:0] Reserved field

TABLE 8-1 IMU Mondo INO Mapping (Continued)
Chapter 8 Data Management Unit (DMU) 8-13

TABLE 8-3 Interrupt Clear Registers (0x601400 – 0x601440) 42 consecutive registers, one for each
Mondo

Field Bits Reset
Name

Reset
Value

Type Description

RESERVED [63:2] Reserved field

INT_STATE [1:0] rst_l 0x0 RW Writing of the register, the value of the lower two
bits are used to control the state bits for the interrupt
state machine associated with this interrupt. The
following values my be written: 00 - Set the state
machine to IDLE state. 01 - Set the state machine to
RECEIVED state. 10 - Reserved, If this value is used
it is a programming error. The results are undefined.
11 - Set the state machine to PENDING state. When
reading from this register, the actual state of the
associated interrupt state machine are read. The legal
values are the same as listed above.

TABLE 8-4 Interrupt Retry Timer Register (0x601A00)

Field Bits Reset
Name

Reset
Value

Type Description

RESERVED [63:25] Reserved field

Limit [1:0] rst_l 0x0 RW Limit the retry interval in clock cycles (N2 IO Clock
Frequency)

TABLE 8-5 Interrupt State Status Register I (0x601A10)

Field Bits Reset
Name

Reset
Value

Type Description

STATE [63:0] rst_l 0x0 R State Values for Mondos 0 through 31 Each state is 2
bits in the register with the MSB being the 2nd bit of
Mondo 31 and the LSB being the 1st bit of Mondo 0.
8-14 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

TABLE 8-6 Interrupt State Status Register II (0x601A18)

Field Bits Reset
Name

Reset
Value

Type Description

STATE [63:0] rst_l 0x0 R State Values for Mondos 32 through 63 Each state is 2
bits in the register with the MSB being the 2nd bit of
Mondo 63 and the LSB being the 1st bit of Mondo 32.

TABLE 8-7 INTX Status Register (0x0060B000)

Field Bits Reset
Name

Reset
Value

Type Description

RESERVED [63:4] Reserved field

INT_A [3] rst_l 0x0 R INT A Status 0= No INTX 1= INTX This register will
be set when an assert INT A message is received and
will be cleared when a deassert INT A message is
received or when cleared via the INT A Clear
Register by software

INT_B [3] rst_l 0x0 R INT B Status 0= No INTX 1= INTX This register will
be set when an assert INT B message is received and
will be cleared when a deassert INT B message is
received or when cleared via the INT B Clear
Register by software

INT_C [3] rst_l 0x0 R INT C Status 0= No INTX 1= INTX This register will
be set when an assert INT C message is received and
will be cleared when a deassert INT C message is
received or when cleared via the INT C Clear
Register by software

INT_D [3] rst_l 0x0 R INT D Status 0= No INTX 1= INTX This register will
be set when an assert INT D message is received and
will be cleared when a deassert INT D message is
received or when cleared via the INT D Clear
Register by software

TABLE 8-8 INT A Clear Register (0x0060B008)

Field Bits Reset
Name

Reset
Value

Type Description

RESERVED [63:1] Reserved field

CLR [0] rst_l 0x0 RW1C Write 0 = has no effect, Write 1 will clear the INT A
bit of the INTX Status Register. When reading, the
value of the INT A bit from the INTX Status
Register will be returned
Chapter 8 Data Management Unit (DMU) 8-15

TABLE 8-9 INT B Clear Register (0x0060B010)

Field Bits Reset
Name

Reset
Value

Type Description

RESERVED [63:1] Reserved field

CLR [0] rst_l 0x0 RW1C Write 0 = has no effect, Write 1 will clear the INT B
bit of the INTX Status Register. When reading, the
value of the INT B bit from the INTX Status
Register will be returned

TABLE 8-10 INT C Clear Register (0x0060B018)

Field Bits Reset
Name

Reset
Value

Type Description

RESERVED [63:1] Reserved field

CLR [0] rst_l 0x0 RW1C Write 0 = has no effect, Write 1 will clear the INT C
bit of the INTX Status Register. When reading, the
value of the INT C bit from the INTX Status
Register will be returned

TABLE 8-11 INT D Clear Register (0x6010B018)

Field Bits Reset
Name

Reset
Value

Type Description

RESERVED [63:1] Reserved field

CLR [0] rst_l 0x0 RW1C Write 0 = has no effect, Write 1 will clear the INT D
bit of the INTX Status Register. When reading, the
value of the INT D bit from the INTX Status
Register will be returned
8-16 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

TABLE 8-12 Event Queue Base Address Register (0x00610000)

Field Bits Reset
Name

Reset
Value

Type Description

ADDRESS 63:19 rst_l 0x0 RW EQ Base Address, 512K Aligned This address has
to a properly formatted physical or virtual address.
Meaning if this address is suppose to be bypass it
needs the upper 14 address bits [63:50] set to all 1
s, address bits [49:39] set to zero. The lower bits of
the address [38:18] are used as the cacheable
physical address on L2$. For a virtual address bit
63 need to be zero, bits [62:32] are don’t care, bits
[31:18] used to access the IOMMU.

RESERVED 18:0 Reserved field

TABLE 8-13 Event Queue Control Set Registers (0x00611000 – 0x00611118) - 36 consecutive registers, one for
each EQ

Field Bits Reset
Name

Reset
Value

Type Description

RESERVED [63:58] Reserved field

ENOVERR [57] rst_l 0x0 L 0-no action;1-Set OVERR bit, A read of this register
is not allowed. This bit should only be set if the EQ
is currently in the ACTIVE state. Setting this bit
when the EQ is IDLE will cause undetermined
results.

RESERVED [56:45] Reserved field

EN [44] rst_l 0x0 L 0-no action;1-Enable EQ, EQ will be running when
STATE = ACTIVE, A read of this register is not
allowed. This bit should only be written when the
EQ is currently IDLE. If the EQ is not in the IDLE
state this operation will have no effect on the state
of the EQ.

RESERVED [43:0] Reserved field
Chapter 8 Data Management Unit (DMU) 8-17

TABLE 8-14 Event Queue Control Clr Registers (0x00611200 – 0x00611318) 36 consecutive registers, one for
each EQ

Field Bits Reset
Name

Reset
Value

Type Description

RESERVED [63:58] Reserved field

COVERR [57] rst_l 0x0 L 0-no action; 1-Clear OVERR bit, A read of this
register is not allowed.

RESERVED [56:48] Reserved field

E2I [47] rst_l 0x0 L 0-no action;1-Go from ERROR to IDLE, A read of
this register is not allowed. This bit should only be
written when the EQ is currently in the error. If the
EQ is not in the ERROR state this operation will
have no effect on the state of the EQ.

RESERVED [46:45] Reserved field

DIS [44] rst_l 0x0 L 0-no action; 1-Disable EQ. A read of this register is
not allowed. This bit should only be set if the EQ is
currently in the ACTIVE state. If the EQ is not in
the ACTIVE state this operation will have no effect
on the state of the EQ.

RESERVED [43:0] Reserved field

TABLE 8-15 Event Queue State Register (0x00611400 – 0x00611518) - 36 consecutive registers, one for each
EQ

Field Bits Reset
Name

Reset
Value

Type Description

RESERVED [63:3] Reserved field

STATE [2:0] rst_l 0x0 L Event Queue State 001-IDLE, 010-ACTIVE, 100-
ERROR
8-18 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

TABLE 8-16 Event Queue Tail Register – (0x00611600 – 0x00611718) - 36 consecutive registers, one for each
EQ

Field Bits Reset
Name

Reset
Value

Type Description

RESERVED [63:58] Reserved field

OVERR [57] rst_l 0x0 R 1-EQ Overflow occurred.

RESERVED [56:7] Reserved field

TAIL [6:0] rst_l 0x0 RW Value of the current HW tail pointer. In normal
operation it is read by SW and written by HW.

TABLE 8-17 Event Queue Head Registers – (0x00611800 – 0x611918) - 36 consecutive registers, one for each
EQ

Field Bits Reset
Name

Reset
Value

Type Description

RESERVED [63:7] Reserved field

TAIL [2:0] rst_l 0x0 RW EQ Head Pointer. Initialize by s/w, written by s/w
during operation.

TABLE 8-18 MSI Mapping Registers - (0x00620000 – 0x006207f8) - 256 consecutive registers, one for each
MSI

Field Bits Reset
Name

Reset
Value

Type Description

V [63] rst_l 0x0 RW 0 - Not Valid, A received MSI of this number will
be treated as an error. 1 - Valid, A received MSI of
this number will be routed to the EQ specified in
the eqnum field

EQWR_N [62] rst_l 0x0 R 0 - OK to write to, a received MSI of the number
will be will be sent to the EQ specified. 1 - MSI
already in EQ, received MSI of the number will be
will be treated as a duplicate. S/W must clear this
bit BEFORE calling the clients interrupt handler.

RESERVED [61:6] Reserved field

EQNUM [5:0] rst_l 0x0 RW Event Queue Number
Chapter 8 Data Management Unit (DMU) 8-19

TABLE 8-19 MSI Clear Registers – (0x00628000 – 0x006287f8) - 256 consecutive registers, one for each MSI

Field Bits Reset
Name

Reset
Value

Type Description

RESERVED [63] Reserved field

EQWR_N [62] rst_l 0x0 RW1C Write 0 = has no effect. Write 1 = will clear the
EQWR_N bit of the MSI Mapping Register. When
reading, the value of the EQWR_N bit from the
MSI Mapping Register will be returned

RESERVED [61:0] Reserved field

TABLE 8-20 Interrupt Mondo Data 0 Register – (0x0062c000)

Field Bits Reset
Name

Reset
Value

Type Description

DATA [63:6] rst_l 0x0 RW Data 0 word, bits 63:6 of mondo used for a data
baring mondos with the mode bit set to 1.

RESERVED [5:0] Reserved field

TABLE 8-21 Interrupt Mondo Data 1 Register – (0x0062c008)

Field Bits Reset
Name

Reset
Value

Type Description

DATA [63:0] rst_l 0x0 RW Data 1 word of mondo used for data baring
mondos with the mode bit set to 1.

TABLE 8-22 ERR COR Mapping Register (0x00630000)

Field Bits Reset
Name

Reset
Value

Type Description
8-20 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

V [63] rst_l 0x0 RW 0 - Not Valid, A received message of this type will
be treated as an error. 1 - Valid, A received
message of this type will be routed to the EQ
specified in the eqnum field

RESERVED [62:6] Reserved field

EQNUM [5:0] rst_l 0x0 RW Event Queue Number

TABLE 8-23 ERR NONFATAL Mapping Register (0x00630008)

Field Bits Reset
Name

Reset
Value

Type Description

V [63] rst_l 0x0 RW 0 - Not Valid, A received message of this type will
be treated as an error. 1 - Valid, A received
message of this type will be routed to the EQ
specified in the eqnum field

RESERVED [62:6] Reserved field

EQNUM [5:0] rst_l 0x0 RW Event Queue Number

TABLE 8-24 ERR FATAL Mapping Register (0x00630010)

Field Bits Reset
Name

Reset
Value

Type Description

V [63] rst_l 0x0 RW 0 - Not Valid, A received message of this type will
be treated as an error. 1 - Valid, A received
message of this type will be routed to the EQ
specified in the eqnum field

RESERVED [62:6] Reserved field

EQNUM [5:0] rst_l 0x0 RW Event Queue Number

TABLE 8-22 ERR COR Mapping Register (0x00630000) (Continued)
Chapter 8 Data Management Unit (DMU) 8-21

TABLE 8-25 PM PME Mapping Register (0x00630018)

Field Bits Reset
Name

Reset
Value

Type Description

V [63] rst_l 0x0 RW 0 - Not Valid, A received message of this type will
be treated as an error. 1 - Valid, A received
message of this type will be routed to the EQ
specified in the eqnum field

RESERVED [62:6] Reserved field

EQNUM [5:0] rst_l 0x0 RW Event Queue Number

TABLE 8-26 PME To ACK Mapping Register (0x00630020)

Field Bits Reset
Name

Reset
Value

Type Description

V [63] rst_l 0x0 RW 0 - Not Valid, A received message of this type will
be treated as an error. 1 - Valid, A received
message of this type will be routed to the EQ
specified in the eqnum field

RESERVED [62:6] Reserved field

EQNUM [5:0] rst_l 0x0 RW Event Queue Number

TABLE 8-27 IMU Error Log Enable Register (0x00631000)

Field Bits Reset
Name

Reset
Value

Type Description

RESERVED [62:15] Reserved field

SPARE_LOG_EN [14:10] por_l 0x1 RW Spare Error, Error Log Enable Bits

EQ_OVER_LOG_EN [9] por_l 0x1 RW EQ Overflow Error, Error Log Enable
Bit

EQ_NOT_EN_LOG_EN [8] por_l 0x1 RW EQ Not Enabled, Error Log Enable
Bit

MSI_MAL_ERR_LOG_EN [7] por_l 0x1 RW Malformed MSI, Error Log Enable
Bit

MSI_PAR_ERR_LOG_EN [6] por_l 0x1 RW MSI Data Parity Error, Error Log
Enable Bit
8-22 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

PMEACK_MES_NOT_EN_LOG_
EN

[5] por_l 0x1 RW PME to ACK Message Not Enabled,
Error Log Enable Bit

PMPME_MES_NOT_EN_LOG_E
N

[4] por_l 0x1 RW PM PME Message Not Enabled,
Error Log Enable Bit

FATAL_MES_NOT_EN_LOG_E
N

[3] por_l 0x1 RW Fatal Message Not Enabled, Error,
Log Enable Bit

NONFATAL_MES_NOT_EN_LO
G_EN

[2] por_l 0x1 RW Non Fatal Message Not Enabled,
Error Log Enable Bit

COR_MES_NOT_EN_LOG_EN [1] por_l 0x1 RW Correctable Message Not Enabled,
Error Log Enable Bit

MSI_NOT_EN_LOG_EN [0] por_l 0x1 RW MSI Not Enabled, Error Log Enable
Bit

TABLE 8-28 IMU Interrupt Enable Register (0x00631008)

Field Bits Reset
Name

Reset
Value

Type Description

RESERVED [63:47] Reserved field

SPARE_S_INT_EN [46:42] rst_l 0x0 RW Spare Error, Secondary Interrupt
Enable Bits

EQ_OVER_S_INT_EN [41] rst_l 0x0 RW EQ Overflow Error, Secondary
Interrupt Enable Bit

EQ_NOT_EN_S_INT_EN [40] rst_l 0x0 RW EQ Not Enabled, Secondary
Interrupt Enable Bit

MSI_MAL_ERR_S_INT_EN [39] rst_l 0x0 RW Malformed MSI, Secondary
Interrupt Enable Bit

MSI_PAR_ERR_S_INT_EN [38] rst_l 0x0 RW MSI Data Parity Error, Secondary
Interrupt Enable Bit

PMEACK_MES_NOT_EN_S_INT_EN [37] rst_l 0x0 RW PME to ACK Message Not Enabled,
Secondary Interrupt Enable Bit

PMPME_MES_NOT_EN_S_INT_EN [36] rst_l 0x0 RW PME Message Not Enabled,
Secondary Interrupt Enable Bit

FATAL_MES_NOT_EN_S_INT_EN [35] rst_l 0x0 RW Fatal Message Not Enabled,
Secondary Interrupt Enable Bit

NONFATAL_MES_NOT_EN_S_INT_EN [34] rst_l 0x0 RW Fatal Message Not Enabled,
Secondary Interrupt Enable Bit

TABLE 8-27 IMU Error Log Enable Register (0x00631000) (Continued)
Chapter 8 Data Management Unit (DMU) 8-23

COR_MES_NOT_EN_S_INT_EN [33] rst_l 0x0 RW Correctable Message Not Enabled,
Secondary Interrupt Enable Bit

MSI_NOT_EN_S_INT_EN [32] rst_l 0x0 RW MSI Not Enabled, Secondary
Interrupt Enable Bit

RESERVED [31:15] Reserved field

SPARE_P_INT_EN [14:10] Spare Error, primary Interrupt
Enable Bits

EQ_OVER_P_INT_EN [9] EQ Overflow Error, primary
Interrupt Enable Bit

EQ_NOT_EN_P_INT_EN [8] rst_l 0x0 RW EQ Not Enabled, Primary Interrupt
Enable Bit

MSI_MAL_ERR_P_INT_EN [7] rst_l 0x0 RW Malformed MSI, Primary Interrupt
Enable Bit

MSI_PAR_ERR_P_INT_EN [6] rst_l 0x0 RW MSI Data Parity Error, Primary
Interrupt Enable Bit

PMEACK_MES_NOT_EN_P_INT_EN [5] rst_l 0x0 RW PME to ACK Message Not Enabled,
Primary Interrupt Enable Bit

PMPME_MES_NOT_EN_P_INT_EN [4] rst_l 0x0 RW PME Message Not Enabled, Primary
Interrupt Enable Bit

FATAL_MES_NOT_EN_P_INT_EN [3] rst_l 0x0 RW Fatal Message Not Enabled, Primary
Interrupt Enable Bit

NONFATAL_MES_NOT_EN_P_INT_EN [2] rst_l 0x0 RW Fatal Message Not Enabled, Primary
Interrupt Enable Bit

COR_MES_NOT_EN_P_INT_EN [1] rst_l 0x0 RW Correctable Message Not Enabled,
Primary Interrupt Enable Bit

MSI_NOT_EN_P_INT_EN [0] rst_l 0x0 RW MSI Not Enabled, Primary Interrupt
Enable Bit

TABLE 8-29 IMU Interrupt Status Register – (0x00631010)

Field Bits Reset
Name

Reset
Value

Type Description

RESERVED [63:47] Reserved field

SPARE_S [46:42] rst_l 0x0 RW Spare Error, Secondary Error Status
Bit 1 = Error Received

EQ_OVER_S [41] rst_l 0x0 RW EQ Overflow Secondary Error Status
Bit 1 = Error Received

TABLE 8-28 IMU Interrupt Enable Register (0x00631008) (Continued)
8-24 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

EQ_NOT_EN_S [40] rst_l 0x0 RW EQ Not Enabled Secondary Error
Status Bit 1 = Error Received

MSI_MAL_ERR_S [39] rst_l 0x0 RW Malformed MSI Secondary Error
Status Bit 1 = Error Received

MSI_PAR_ERR_S [38] rst_l 0x0 RW MSI Data Parity Secondary Error
Status Bit 1 = Error Received

PMEACK_MES_NOT_EN_S [37] rst_l 0x0 RW PME to ACK Message Not Enabled
Secondary Error Status Bit 1 = Error
Received

PMPME_MES_NOT_EN_S [36] rst_l 0x0 RW PM PME Message Not Enabled
Secondary Error Status Bit 1 = Error
Received

FATAL_MES_NOT_EN_S [35] rst_l 0x0 RW Fatal Message Not Enabled
Secondary Error Status Bit 1 = Error
Received

NONFATAL_MES_NOT_EN_S [34] rst_l 0x0 RW Non Fatal Message Not Enabled
Secondary Error Status Bit 1 = Error
Received

COR_MES_NOT_EN_S [33] rst_l 0x0 RW Correctable Message Not Enabled
Secondary Error Status Bit 1 = Error
Received

MSI_NOT_EN_S [32] rst_l 0x0 RW MSI Not Enabled Secondary Error
Status Bit 1 = Error Received

RESERVED [31:15] Reserved field

SPARE_P [14:10] rst_l 0x0 RW Spare Error, Primary Error Status Bit
1 = Error Received

EQ_OVER_P [9] rst_l 0x0 RW EQ Overflow Primary Error Status
Bit 1 = Error Received

EQ_NOT_EN_P [8] rst_l 0x0 RW EQ Not Enabled Primary Error
Status Bit 1 = Error Received

MSI_MAL_ERR_P [7] rst_l 0x0 RW Malformed MSI Primary Error Status
Bit 1 = Error Received

MSI_PAR_ERR_P [6] rst_l 0x0 RW MSI Data Parity Primary Error Status
Bit 1 = Error Received

PMEACK_MES_NOT_EN_P [5] rst_l 0x0 RW PME to ACK Message Not Enabled
Primary Error Status Bit 1 = Error
Received

PMPME_MES_NOT_EN_P [4] rst_l 0x0 RW PM PME Message Not Enabled
Primary Error Status Bit 1 = Error
Received

TABLE 8-29 IMU Interrupt Status Register – (0x00631010) (Continued)
Chapter 8 Data Management Unit (DMU) 8-25

FATAL_MES_NOT_EN_P [3] rst_l 0x0 RW Fatal Message Not Enabled Primary
Error Status Bit 1 = Error Received

NONFATAL_MES_NOT_EN_P [2] rst_l 0x0 RW Non Fatal Message Not Enabled
Primary Error Status Bit 1 = Error
Received

COR_MES_NOT_EN_P [1] rst_l 0x0 RW Correctable Message Not Enabled
Primary Error Status Bit 1 = Error
Received

MSI_NOT_EN_P [0] rst_l 0x0 RW MSI Not Enabled Primary Error
Status Bit 1 = Error Received

TABLE 8-30 IMU Error Status Clear Register (0x00631018)

Field Bits Reset
Name

Reset
Value

Type Description

RESERVED [63:47] Reserved field

SPARE_S [46:42] por_l 0x0 RW1C Spare Error, Secondary Error Status
Bit 1 = Error Received

EQ_OVER_S [41] por_l 0x0 RW1C EQ Overflow Secondary Error Status
Bit 1 = Error Received

EQ_NOT_EN_S [40] por_l 0x0 RW1C EQ Not Enabled Secondary Error
Status Bit 1 = Error Received

MSI_MAL_ERR_S [39] por_l 0x0 RW1C Malformed MSI Secondary Error
Status Bit 1 = Error Received

MSI_PAR_ERR_S [38] por_l 0x0 RW1C MSI Data Parity Secondary Error
Status Bit 1 = Error Received

PMEACK_MES_NOT_EN_S [37] por_l 0x0 RW1C PME to ACK Message Not Enabled
Secondary Error Status Bit 1 = Error
Received

PMPME_MES_NOT_EN_S [36] por_l 0x0 RW1C PM PME Message Not Enabled
Secondary Error Status Bit 1 = Error
Received

FATAL_MES_NOT_EN_S [35] por_l 0x0 RW1C Fatal Message Not Enabled
Secondary Error Status Bit 1 = Error
Received

NONFATAL_MES_NOT_EN_S [34] por_l 0x0 RW1C Non Fatal Message Not Enabled
Secondary Error Status Bit 1 = Error
Received

TABLE 8-29 IMU Interrupt Status Register – (0x00631010) (Continued)
8-26 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

COR_MES_NOT_EN_S [33] por_l 0x0 RW1C Correctable Message Not Enabled
Secondary Error Status Bit 1 = Error
Received

MSI_NOT_EN_S [32] por_l 0x0 RW1C MSI Not Enabled Secondary Error
Status Bit 1 = Error Received

RESERVED [31:15] Reserved field

SPARE_P [14:10] por_l 0x0 RW1C Spare Error, Primary Error Status Bit
1 = Error Received

EQ_OVER_P [9] por_l 0x0 RW1C EQ Overflow Primary Error Status
Bit 1 = Error Received

EQ_NOT_EN_P [8] por_l 0x0 RW1C EQ Not Enabled Primary Error
Status Bit 1 = Error Received

MSI_MAL_ERR_P [7] por_l 0x0 RW1C Malformed MSI Primary Error Status
Bit 1 = Error Received

MSI_PAR_ERR_P [6] por_l 0x0 RW1C MSI Data Parity Primary Error Status
Bit 1 = Error Received

PMEACK_MES_NOT_EN_P [5] por_l 0x0 RW1C PME to ACK Message Not Enabled
Primary Error Status Bit 1 = Error
Received

PMPME_MES_NOT_EN_P [4] por_l 0x0 RW1C PM PME Message Not Enabled
Primary Error Status Bit 1 = Error
Received

FATAL_MES_NOT_EN_P [3] por_l 0x0 RW1C Fatal Message Not Enabled Primary
Error Status Bit 1 = Error Received

NONFATAL_MES_NOT_EN_P [2] por_l 0x0 RW1C Non Fatal Message Not Enabled
Primary Error Status Bit 1 = Error
Received

COR_MES_NOT_EN_P [1] por_l 0x0 RW1C Correctable Message Not Enabled
Primary Error Status Bit 1 = Error
Received

MSI_NOT_EN_P [0] por_l 0x0 RW1C MSI Not Enabled Primary Error
Status Bit 1 = Error Received

TABLE 8-30 IMU Error Status Clear Register (0x00631018) (Continued)
Chapter 8 Data Management Unit (DMU) 8-27

TABLE 8-31 IMU Error Status Set Register (0x00631020)

Field Bits Reset
Name

Reset
Value

Type Description

RESERVED [63:47] Reserved field

SPARE_S [46:42] por_l 0x0 RW1S Spare Error, Secondary Error Status
Bit 1 = Error Received

EQ_OVER_S [41] por_l 0x0 RW1S EQ Overflow Secondary Error Status
Bit 1 = Error Received

EQ_NOT_EN_S [40] por_l 0x0 RW1S EQ Not Enabled Secondary Error
Status Bit 1 = Error Received

MSI_MAL_ERR_S [39] por_l 0x0 RW1S Malformed MSI Secondary Error
Status Bit 1 = Error Received

MSI_PAR_ERR_S [38] por_l 0x0 RW1S MSI Data Parity Secondary Error
Status Bit 1 = Error Received

PMEACK_MES_NOT_EN_S [37] por_l 0x0 RW1S PME to ACK Message Not Enabled
Secondary Error Status Bit 1 = Error
Received

PMPME_MES_NOT_EN_S [36] por_l 0x0 RW1S PM PME Message Not Enabled
Secondary Error Status Bit 1 = Error
Received

FATAL_MES_NOT_EN_S [35] por_l 0x0 RW1S Fatal Message Not Enabled
Secondary Error Status Bit 1 = Error
Received

NONFATAL_MES_NOT_EN_S [34] por_l 0x0 RW1S Non Fatal Message Not Enabled
Secondary Error Status Bit 1 = Error
Received

COR_MES_NOT_EN_S [33] por_l 0x0 RW1S Correctable Message Not Enabled
Secondary Error Status Bit 1 = Error
Received

MSI_NOT_EN_S [32] por_l 0x0 RW1S MSI Not Enabled Secondary Error
Status Bit 1 = Error Received

RESERVED [31:15] Reserved field

SPARE_P [14:10] por_l 0x0 RW1S Spare Error, Primary Error Status Bit
1 = Error Received

EQ_OVER_P [9] por_l 0x0 RW1S EQ Overflow Primary Error Status
Bit 1 = Error Received

EQ_NOT_EN_P [8] por_l 0x0 RW1S EQ Not Enabled Primary Error
Status Bit 1 = Error Received
8-28 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

MSI_MAL_ERR_P [7] por_l 0x0 RW1S Malformed MSI Primary Error Status
Bit 1 = Error Received

MSI_PAR_ERR_P [6] por_l 0x0 RW1S MSI Data Parity Primary Error Status
Bit 1 = Error Received

PMEACK_MES_NOT_EN_P [5] por_l 0x0 RW1S PME to ACK Message Not Enabled
Primary Error Status Bit 1 = Error
Received

PMPME_MES_NOT_EN_P [4] por_l 0x0 RW1S PM PME Message Not Enabled
Primary Error Status Bit 1 = Error
Received

FATAL_MES_NOT_EN_P [3] por_l 0x0 RW1S Fatal Message Not Enabled Primary
Error Status Bit 1 = Error Received

NONFATAL_MES_NOT_EN_P [2] por_l 0x0 RW1S Non Fatal Message Not Enabled
Primary Error Status Bit 1 = Error
Received

COR_MES_NOT_EN_P [1] por_l 0x0 RW1S Correctable Message Not Enabled
Primary Error Status Bit 1 = Error
Received

MSI_NOT_EN_P [0] por_l 0x0 RW1S MSI Not Enabled Primary Error
Status Bit 1 = Error Received

TABLE 8-32 IMU RDS Error Log Register (0x00631028)

Field Bits Reset
Name

Reset
Value

Type Description TYPE

TYPE 63:58 The lowest 6 bits of the Type of the
errored transaction as seen by the
IMU in the RDS pipe stage 1111000 -
64 bit addressed MSI 1011000 - 32 bit
addressed MSI 0110xxx - Message
where xxx complies with the routing
code in PCIE spec

LENGTH 57:48 The Length of the errored
transaction

REQ_ID 47:32 The REQ ID of the errored
transaction

TABLE 8-31 IMU Error Status Set Register (0x00631020) (Continued)
Chapter 8 Data Management Unit (DMU) 8-29

Note – The field could be arranged for supporting MSI-X.

TLP_TAG 31:24 The TLP tag of the errored
transaction

BE_MESS_CODE 23:16 The message code of the Error is
associated with a Message The First
and Last Byte Enabled if the Error is
associated with a MSI

MSI_DATA 15:0 The MSI data if the Error is
associated with a MSI

TABLE 8-33 IMU SCS Error Log Register (0x00631030)

Field Bits Reset
Name

Reset
Value

Type Description TYPE

TYPE 63:58 The lowest 6 bits of the Type of the
errored transaction as seen by the
IMU in the RDS pipe stage 1111000 -
64 bit addressed MSI 1011000 - 32 bit
addressed MSI 0110xxx - Message
where xxx complies with the routing
code in PCIE spec

LENGTH 57:48 The Length of the errored
transaction

REQ_ID 47:32 The REQ ID of the errored
transaction

TLP_TAG 31:24 The TLP tag of the errored
transaction

BE_MESS_CODE 23:16 The message code of the Error is
associated with a Message The First
and Last Byte Enabled if the Error is
associated with a MSI

RESERVED 00:00:00 Reserved field

EQ_NUM 5:0 por_l 6 bx RW Eq Number that the Transaction
tried to go to but was not enabled

TABLE 8-32 IMU RDS Error Log Register (0x00631028) (Continued)
8-30 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

8.5 Record Management Unit

8.5.1 RMU Function Description
The RMU is responsible for the orderly movement of the transaction records into
and out of this unit on both ingress and egress pipelines. It talks to the IMU to deal
with all the interrupts and accesses the TSB for transaction flow control and
information tracking.

8.5.1.1 Link Receive Manger (LRM)

The LRM identifies MSIs and messages from other record types and accepts the
Mondo requests from IMU. It arbitrates the Mondo interrupt requests from IMU and
the interrupt requests from DIM and uses the local tag mechanism to manage the
command pipeline order. Then, LRM sends interrupt records back to IMU and
merges back the processed records from IMU with the other records in order and
sends them up to the SRM.

8.5.1.2 Schedule Records Manager (SRM)

The SRM calculates the byte count, accesses the TSB to build entries and posts
information on the TSB for non-posted DMA requests. It identifies and terminates
the PIO write completion, then generates PIO transaction credits accordingly and
enqueues them to the RRM. SRM builds SRM records and sends to MMU.

TABLE 8-34 IMU EQS Error Log Register (0x00631038)

Field Bits Reset
Name

Reset
Value

Type Description TYPE

RESERVED 63:6 Reserved field

EQ_NUM 5:0 por_l 6 bx RW Eq Number that the Transaction
tried to go to but was not enabled
Chapter 8 Data Management Unit (DMU) 8-31

8.5.1.3 Retire Record Manager (RRM)

The RRM accesses TSB to read or read/clear entries to retrieve some information,
such as tlp_tag, TC, attr., byte count, and lower_addr, to form the RRM records for
compilations from the Retire Records from TCM. It identifies the Mondo replies in
Retire Records and takes them off from the pipeline and forwards them to IMU. It
forms the respective RRM records and enqueues them to DEM. The RRM sorts two
sourced release records, one pushed from SRM and the other from ILU. Then, it
passes the PIO credits directly to CLU.

If it's not the last packet of DMA completion, the remaining byte count after this
packet needs to be recalculated and written back to TSB, which is “byte count” from
TSB subtracting “byte count” from retire records. Moreover, the new value of
lower_addr needs to be updated in TSB as well by adding bcnt[11:0] from retire
record to lower_addr from TSB.

8.6 Transaction Scoreboard Unit (TSB)

8.6.1 TSB Function Description
The TSB is responsible for tagging and tracking all DMA Rd requests and
unsupported transactions through the DMC in both ingress and egress pipelines.
The storage area has 32 entries of 48 bits wide, and each entry is assigned with a tag
to uniquely identify every transaction posted onto the scoreboard. The TSB manages
the issuing and retiring of all tags with a free list.

8.7 Memory Management Unit (MMU)

8.7.1 IOMMU Description
The MMU translates virtual addresses to physical addresses. The MMU has a cache
which stores a subset of translations in a Translation Storage Buffer (TSB) in main
memory. One TSB entry is called a Translation Table Entry (TTE) which is 8 bytes.
Addresses are pipelined through the MMU. If a translation misses in the cache, the
pipeline is stalled until the data is fetched after the tablewalk.
8-32 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

When a SRM record is enqueued, the virtual address (VA) is extracted from the
record to be translated and the remaining part of the record is held in the remaining
data queue until being merged with the physical address to from schedule records.
Then, the VA is sent to the Virtual Tag Block (VTB) for comparison.

The VTB contains 64 entries of virtual tags. The Translation Data Buffer (TDB) also
has 64 entries, and each entry contains 8 TTEs. If there is a hit in the VTB, one of the
eight TTEs from 64 entries in TDB will be selected and generates physical address
(PA).

8.7.1.1 Required – IOMMU Bounds Check for Bypass Mode

Fire DMC follows the JBUS spec and uses {PA[42:41]==00, PA[40:36]==agent_id} for
cacheable space. I n the IOMMU bypass mode, the logic does a bounds check with
pa[63:42]!= 0x3FFF_00. In OpenSPARC T2, only supports a 40 bit cacheable address,
with pa[39]==0 indicating cacheable. The SII and NCU have only pa[39:0], thus the
upper pa bits will be thrown away at the interface to the SII and NCU blocks. SW
must observe these address spaces when programming the IOMMU or IO devices.
The IOMMU bypass logic will be modified to detect if pa[63:39]!= 0x1FFF_800 to
conform to the new address ranges.

8.7.1.2 Required – Customized Virtual Tag Buffer Design

Fire uses the random logic to implement Virtual Tag Buffer CAM. The synthesis
CAM logic in Fire ASIC costs a huge area. To reduce the area impact, OpenSPARC
T2 will custom design the Virtual Tag Buffer. Please Refer to dmu_vtb_cam_spec for
detail CAM implementation. The followings describe what have been changed in
functionality:

In Fire design, the lookup reference address is compared to stored data in each of the 64
entries, and generates a decoded 64-bit vector, hit[63:0]. The hit output is registered in the
next cycle. In OpenSPARC T2 Design CAM design, the lookup reference address is
registered at the input of the CAM, The registered key is compared to stored data in each of
the 64 entries, and generates a decoded 64-bit vector, hit[63:0]. The hit output is
unregistered.

In Fire design, the lookup reference address is 16-bit wide (pcie[31:16]). In
OpenSPARC T2 CAM design, the lookup address is increased to 29-bit (5-bit table-id
plus pcie[39:16]).
Chapter 8 Data Management Unit (DMU) 8-33

8.7.1.3 Required – Customized Physical Tag Buffer Design

Fire uses the random logic to implement Physical Tag Buffer CAM. The synthesis
CAM logic in Fire ASIC costs a huge area. To reduce the area impact, OpenSPARC
T2 will custom design the Physical Tag Buffer. Please Refer to dmu_ptb_cam_spec
for detail CAM implementation. The followings describe what have been changed in
functionality:

In Fire design, the lookup reference address is compared to stored data in each of the 64
entries, and generates a decoded 64-bit vector, hit[63:0]. The hit output is registered in the
next cycle. In OpenSPARC T2 Design CAM design, the lookup reference address is
registered at the input of the CAM, The registered key is compared to stored data in each of
the 64 entries, and generates a decoded 64-bit vector, hit[63:0]. The hit output is
unregistered.

8.7.1.4 Required - Add a SUN4V Mode to support the hypervisor
features:

Please refers to IOMMU MAS for detail:

8.8 Context Manager Unit (CMU)

8.8.1 CMU Function Description
The CMU is responsible for managing DMU pipelines and serves as the ordering
point for transactions in both ingress and egress pipelines. The CMU keeps the order
of DMA completions in the egress pipeline and the order of DMA requests and PIO
completions in the ingress pipeline. The CMU contains three sub blocks.

8.8.1.1 Receive Context Manager (RCM)

The RCM dequeues Schedule Record from its input schedule record queue. It
translates them into an ordered sequence of Packet Records which carry a payload
segment of the requested data length in the Schedule Record with a maximum size
of MaxPayload. It builds and manages a context entry for each DMA Read Schedule
Record and assigns a unique Context Number to the Packet Record. The RCM builds
Packet Records and enqueues them in strong order to the output Packet Record
queue in the ingress pipeline destined for the Packet Record Manager (PRM).
8-34 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

From the Schedule Record, the RCM determines the number of Packet Record to be
built, the packet sequence number for each Packet Record, the length of each Packet
Record, the physical address of each Packet Record. If the Schedule Record is a DMA
Mem Rd, one unique Context Record is requested from the context block. A packet
sequence list array allocation is requested and a packet sequence list is constructed
containing packet sequence entries for each Packet Record. The packet sequence list
is bound to the unique context number.

8.8.1.2 Receive Context Entries

8.8.1.3 Transmit Context Manager (TCM)

The TCM dequeues Packet Records from its input record queue, processes the record
according to its referenced context and generates Retire Records to enqueue to its
output record queue to RRM. The TCM builds and maintains a context ordering for
a series of Packet Records until completion by updating the Context Entry associated
with the context and current packet sequence being processed.

The Packet Record is parsed to obtain the context number, packet sequence number.
The context number is used to look up the context entry and the pointer to the
packet sequence list. The packet sequence number is used to locate the associated
entry in the packet sequence list. All type of transactions except DMA Rd
Completion bypass the context lookup. If the packet satisfies the ordering bit in the
context entry, the Retire Record is built and issued. If the Packet Record is returned
out of order, the current Packet Record is stored to the context list pointed by its
packet sequence list entry until prior Packet Records are returned. When all packet
sequence for a context have been sent, the packet sequence numbers and the context
number are retired. There is a strong ordering between packet sequence of the same
context, but no ordering between different context.

8.8.1.4 Transmit Context Entries

8.8.1.5 Context Block (CTX)

The CTX contains the context record, the packet sequence list entry, and the context
list entry. They are responsible for sequencing data in incremental address order for
a DMA Rd Completion from SIU, which can be returned out of order. The context
record contains the context number and the pointer to the beginning of the packet
sequence entry list and the ordering bits to guarantee the packet order. Each packet
sequence list belongs to a specific context and each packet sequence entry records
Chapter 8 Data Management Unit (DMU) 8-35

the completion status and the pointer to the context list entry if necessary. The
context list is a temporary storage which contains the Packet Records returned out of
order.

8.9 Packet Manager Unit (PMU)

8.9.1 PMU Function Description
The PMU interfaces with the CMU and CLU in the ingress pipeline. It segments
packets issued by CMU into a series of cacheline oriented requests to CLU. It also
interfaces with the PSB to manage and track packet transactions in the pipeline. The
PMU contains only one sub-block, the Packet Receive Manager (PRM).

8.9.1.1 Packet Receive Manager (PRM)

The PRM dequeues the Packet Records in the ingress pipeline. From the address,
byte enables, and length of the Packet Records, it determines the number of
Cacheline Command Records to build and the physical address of each Cacheline
Command Record. The PRM requests a packet tag from the PSB to put in each
Cacheline Command Record of the same packet group along with the length and
cacheline status. It the Packet Record carries a DMA Wr, PIO Rd completion, Mondo
Interrupt Wr request, or MSI Wr request, no packet tag is required and no packet
scoreboard entry is written. In case of a PIO completion, the PRM looks up the PSB
to retrieve thread id and includes them in the Cacheline Command Record sent to
CLU. For DMA Rd requests, the sbd_tag is replaced with pk_tag from PSB in the
Cacheline Command Record.

8.10 Packet Scoreboard (PSB)
The PSB encapsulates the functions necessary to tag and track the internal packet
transactions in the DMU pipelines. It is composed of two scoreboards, one tracks
PIO's and another for DMA's.
8-36 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

8.10.0.1 Required, add jtag to thread id

The PIO scoreboard has an entry for each PIO. In the existing code, bit jbc_tag[9:0]
held the transaction number, agent_id and jbus_id. The agent_id and jbus_id are
concatenated to form a thread_id for N2. However this is only 64 id's, one more bit
is to be added to account for jtag access by the NCU.

8.11 Cache Line Unit (CLU)

8.11.1 CLU Function Description
The CLU manages the DMC-DSN interface. It consists of two sub-blocks, Cacheline
Transmit Manager (CTM) and Cacheline Receive Manager (CRM).

8.11.1.1 Cacheline Transmit Manager (CTM)

The CTM transmits requests to DSN for DMA MWr, DMA MRd, and Interrupts. It
also returns PIO Rd completions to DSN. It moves data associated with these
transactions from the DIU to DSN. CTM fully manages DOU DMA Rd buffer space
and works with the DIM sub-block to manage the DIU buffer space for DMA Wrs,
PIO Cpls, and INTs. It also issues tablewalk requests received from the MMU to
DSN. Lastly, it forks unsupported requests and PCIE requests with error s to the
Cacheline Receive Manager (CRM) for completion return to PCIE.

CTM release buffer space to the DIM for all transactions with data except for
Mondo, which is managed by IMU. CTM exports to DIM the last DIU read pointer
for DMA Wr and INT transaction data pulled from the DIU. DIM exports to CTM
the last write pointer for DMA Wr and PIO Cpl transaction data writes to the DIU.
CTM uses the read/write pointers to determine if the DIU is empty for a current
data pull operation. CTM stalls the pipeline until the appropriate section of the DIU
is not empty for either a DMA Wr or PIO Cpl data pull operation.

8.11.1.2 Cacheline Receive Manager (CRM)

The CRM receives DMA Rd/INT responses, tablewalk data responses, and PIO
Rd/Wr requests form DSN. It moves data associated with these transactions to
either the DOU (for DMA Rd responses and PIO Wr requests) or to the MMU (for
tablewalk data responses). It manages out-of-order cacheline responses for DMA
Chapter 8 Data Management Unit (DMU) 8-37

Rds using the PSB to track packet build status. It formulates Packet Records for
DMA Rd/INT responses and PIO Rd/Wr requests. It generates error completion
packet records for unsupported/faulted PCIE requests forked from CTM.

For DMA Rd response, CRM uses the d_ptr field of the dmu_tag returned to quickly
route the data to the DOU DMA data buffer. Data is moved independently of CRM's
command processing pipeline. For PIO Wrs, the PIO Wr data buffer space in the
DOU is dedicated and maximally sized. PIO Wr data is quickly moved by CRM to
the DOB PIO data buffer.

CRM accesses the PSB for each PCIE DMA Rd response record received from DSN.
It performs a read/modify/write operation to the PSB for tracking the responses
associated with a packet. For each record response, CRM uses the pk_tag to index
into PSB to check the cl_total field. If cl_total is 1, CRM builds a packet record issues
it to the TCM and clears the PSB entry. It it's not, CRM decrements the cl_total field
and writes the updated value back to the PSB. When 1st_cl field is set in the
response, CRM updates the d_ptr field to the value of the d_ptr from the dmu_tag of
the cacheline response.

8.11.1.3 Mondo Interrupt -> One Data Beat

The CTM block currently only extracts 1 data beat from the DIU ram, and then
constructs the last 3 data beats and inserts 0's. The CTM block state machine which
generates these extra beats will change to only output the first data beat which
contains the Mondo payload.

8.12 Data In Unit (DIU)

8.12.1 DIU Function Description
The DIU is the storage buffer for all data associated with the ingress transactions
and is composed of one synchronous dual port RAM and a set of storage flops.
These are the DMA Wr/PIO Rd RAM and flops for the INT data. There are two
separate write interfaces and one unified read port interface for the two storage
elements. The DIM utilizes a write interface to the DMA Wr/PIO Rd RAM and IMU
utilizes the second write interface directly to the INT DATA. The CLU will interface
these elements via the unified read port interface.
8-38 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

For the INT data, 16 separate transactions can be stored in the registers since there
are 16 entries. The storage is divided into two regions, one for 12 EQ writes and the
other for 4 Mondos. In the RAM, 128 rows of total 192 rows are dedicated for DMA
Wr data and the remaining are for PIO Rd completions.

8.13 Data Out Unit (DOU)

8.13.1 DOU Function Description
The DOU is the storage buffer for all data associated with the egress transactions
and is composed of two synchronous dual port RAMs They are the DMA Rd RAM
and PIO Wr RAM. There are two write interfaces and one unified read post interface
for the two RAMs. The EIL in PEU utilizes the read interface to the DMA Rd and
PIO Wr RAMs and the CRM utilizes the write interfaces to the two RAMs.

The data RAM store data and parity. The EIL uses the two most significant bits of
the address supplied to select which RAM to be read from. The DMA Rd RAM has
2176 bytes available and is organized into 128 rows. The PIO Wr RAM has 1088
bytes that are organized into 64 rows for up to 16 separate transactions.

8.13.2 SRAM

8.13.2.1 Adding Test Features

Modify the SRAMs by adding JTAG and BIST functionality. Also add the required
JTAG and BIST pins and logic external to the SRAMs. See the individual SRAM
specifications for details on the external BIST logic added for each SRAM.

The current SRAMs are TDB, DIU, and 2 DOU rams. The existing synthesized cam in
the MMU will be implemented as a custom cam/ram block.

There will be 2 BIST controllers at the DMU top level, 1 for rams and another for
cams. The control/data wires into DMU will be added into the rtl. Control of the
BIST engines will be external to the DMU with these wires being added at the DMU
top level. DFT will be responsible for the BIST engines and the external control and
registers which will be outside of the DMU.

Modify the srams to clear the inputs flops on reset, and implement the hold
functionality for scan test.
Chapter 8 Data Management Unit (DMU) 8-39

8.14 DSN Overview
This is the specification for the interface block between the PCI-ex controller sub-
block DMU and the core blocks NCU and SIU. The DMU<->NCU interface is for
PIO read and write commands, interrupt acknowledges, DMU MMU snoop
invalidate vectors and CSR reads/writes.

The DMU <-> SIU interface is for DMA reads/writes, inbound interrupts (Mondo
and MSI) from the PIC-EX bus and PIO read completions.

The existing DMC (renamed DMU for OpenSPARCT2) remains unchanged, the
DMU will interface through the SIU to the Level 2 cache thus there are some
interface modifications needed. These modifications will be implemented in a new
sub-block placed between the DMU and SIU/NCU blocks, to be called the DSN
block.

The interfaces will be converted in this new block. The existing interfaces typically
had separate command and data buses. The new interface adds a header cycle at the
beginning of each transfer, which multiplexes the command info onto the data bus in
the first cycle, thus there will be 1 extra cycle for each transaction. The following
sections describes the various interfaces.

The interfaces to the DMU expect a data push model with unique credit ids, and the
DSN will exploit this when modifying the transaction behaviors.

It appears that the DMU, SIU and NCU are all big endian, with byte_sel[0] matching
data_bits[127:120] for all interfaces.

Also regarding the address buses:

1. The DMU address bus is from [42:6] always cache line aligned, the DSN block
will drop address bits[42:40].

2. The DSN PIO logic expects the NCU to send PA[35:0], always double work
aligned, with the byte mask in the header.

The above address buses are then consistent with what the OpenSPARC T2
Programmer’s Reference Manual allows if the SIU and DMU manage the upper bits.
SW must manage DMA addresses so they fall into the cacheable range, and for PIO’s
the NCU must manage PA[39:36] such that they always map to the PA[35:0]
expected by the DMU.
8-40 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

8.15 DSN Block Diagrams

FIGURE 8-4 Interface Block Diagram
Chapter 8 Data Management Unit (DMU) 8-41

8.16 DSN Detailed Block Diagram

FIGURE 8-5 Detailed Block Diagram
8-42 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

8.17 DSN Interface Descriptions

8.17.1 DSN-SIU Interface
The DSN-SIU interface will be used for all DMA’s, sending Interrupts and PIO rd
completions. It will have the following features:

1. It is expected that on all SIU responses it will return the dmc_tag[15:0] exactly as
sent in the DMU->SIU command header.

2. DMA’s and Interrupts will be credit id based with the DMU managing a total of
16 outstanding credits. The SIU will return the credit id for DMA writes (MSI’s
will be write packets) on the wrack bus, and the credit id for read completions
will be returned with the data. When the credit id is returned the DMU will
remove it from its credit vector and free it up for reuse. Mondo interrupts also use
a credit and the SIU must forward the credit id of a Mondo interrupt to the NCU
which will return this credit id along with the mondo id in the mondo ack bus,
the DSN will form a completion packet and forward back to the CRM block
which will update the DMU credit vector.

3. PIO read completions will first be routed through the SIU so that PIO reads can
pull all preceding DMA writes into the L2 cache. The NCU will maintain a 16
entry credit scheme to limit the number of PIO’s in the DMU/SIU to 16. The
DMU/DSN will return the NCU credit id and thread id back to the SIU on PIO rd
completions, and the SIU must pass this information on to the NCU. This
information is needed by the NCU to remove the entry from its outstanding credit
list and to know which thread to return the read PIO data.

4. The SIU must have sufficient buffering to hold 16 DMA writes and 16 PIO rd
completions.

5. The interface from DSN to SIU will consist of control lines and a 128 bit data bus.
The first 128 bits sent will be a header which contains the command information
etc. subsequent cycles will contain the data.

6. The DSN block will take the information from the pins between the DSN and
DMU blocks and use it to generate the header driving to the SIU, and when the
SIU drives a header, it will take that information and create the pin data toward
the DMU.

7. On 8 byte PIO rd cpl’s the DSN block must detect which 64 bits the return data
should be located and replicate these 64 bits onto the opposite 64 bits. This can be
done by keeping a 2 bit scoreboard of pio_addr[3] indexed by the credit_id,
written on NCU vld, and reading on pio_rd_cpl’s. The duplication of the relevant
Chapter 8 Data Management Unit (DMU) 8-43

64 bits onto both halves of the 128 bit return data bus is a requirement of the core.
In addition the scoreboard must track whether the returning PIO is a 16 byte read
or 8 byte, if 16 byte then the data is not replicated, with a second bit in the
scoreboard.
8-44 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

8.17.1.1 DSN-SIU Interface List

TABLE 8-35 DSN-SIU Interface List

Signal Name I/O Size From/To Description

DSN to SIU Signals

dmu_sii_hdr_vld O 1 DMU->SIU Asserted during the header phase of any requests from
DMU to SIU. Not asserted during the data transfer phase.

dmu_sii_reqbypass O 1 DMU->SIU Asserted for PIO rd cpl’s

dmu_sii_datareq O 1 DMU->SIU Valid during the header phase only.
0: Current request is a read, with no payload;
1: Current request is a write, with 1 or 4 cycles of data
payload

dmu_sii_datareq16 O 1 DMU->SIU Valid during the header phase only. Don’t care if
dmu_sii_datareq is 0.
0: Current write request has 64B data payload;
1: Current write request has 16B data payload. (meant for
NCU - int/PIO read data)

dmu_sii_data[127:0] O 128 DMU->SIU Packet header/data for L2/NCU.
(Big-endian)
For PIO read completions, there are 2 cases, 16 byte and
<=8byte cpl’s, in the case of 8byte pio cpl’s the data will
be replicated on both halves of the bus, DSN keeps a
scoreboard to determine which 64 bits to replicate.

dmu_sii_be[15:0] O 16 DMU->SIU Packet data byte enables/errors. Only valid during data
transfer phase. (dmu_sii_be[0] is for dmu_sii_data[7:0]).

dmu_sii_parity[7:0] O 8 DMU->SIU Parity of data payload cycles (127:0)

dmu_sii_be_parity O 1 DMU->SIU Parity for dmu_sii_be[15:0]

Note: detected parity errors on d2j_data[127:0] will be signaled by flipping dmu_sii_parity[0] to SII

SIU to DSN Signals

sii_dmu_wrack_tag[3:0
]

1 4 SIU->DMU j2d_d_wrack_tag[3:0] DSN/DMU name
Transaction credit id for dma wrack

sii_dmu_wrack_par 1 1 SIU->DMU Odd parity ^sii_dmu_wrack_tag[3:0]

sii_dmu_wrack_vld 1 1 SIU->DMU j2d_d_wrack_vld DSN/DMU name
Valid signal for j2d_d_wrack_tag
Chapter 8 Data Management Unit (DMU) 8-45

8.17.1.2 SIU to DSN Egress Commands

These are the commands as defined at the DSN/DMU boundary, and must be
generated from the SIU to DSN header. Thus the DSN logic will take in the SIU
header and generate the following commands back to the DMU. .

sio_dmu_hdr_vld 1 1 SIU->DMU Envelops the header of any requests from SIU to DMU.
Not asserted during the data transfer phase. DSN
determines from the header if and how much data will
follow.

sio_dmu_data[127:0] 1 128 SIU->DMU Packet header/data for DMU

sio_dmu_parity[7:0] 1 8 SIU->DMU Parity of payload cycles (128:0).

TABLE 8-36 SIU to DSN Egress Commands

Transaction type cmd ctag

Bit width
18

2
[17:16]

16
[15:0]

DMA Rd Return 2’b00 dmc_tag[15:0]

DMA Rd Return Err 2’b01 dmc_tag[15:0]

Interrupt Nack 2’b10 N/A for N2

Interrupt Ack 2’b11 N/A for N2

TABLE 8-37 DMC_TAG Field Definitions

Field Bits Description

DMA transactions

dmc_tag[15] type 0b-indicates DMA/Int transactions

dmc_tag[14:11] cl_tag[3:0] Dmc transaction number for tracking credits

dmc_tag[10:6] d_ptr[4:0] Used for DMA Rds only-dou dma rd buffer address

dmc_tag[5:1] pkt_tag[4:0] Used for DMA Rds only-PSB index for building packet
records

dmc_tag[0] cl_sts Used for DMA Rds only-indicates 1st cacheline in packet
sequence

Int Transactions

dmc_tag[15] type 0b-indicates DMA/Int transactions

TABLE 8-35 DSN-SIU Interface List (Continued)

Signal Name I/O Size From/To Description
8-46 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

Note – The NCU will distinguish interrupts from PIO cpl’s by using dmc_tag[15].
And the NCU will use the thread_id from the mondo data to determine which
thread to interrupt.

dmc_tag[14:11] cl_tag[3:0] Dmc transaction number for tracking credits

dmc_tag[10:3] Rsv[7:0] reserved

dmc_tag[2:1] mdo_tag[1:0] mondo_tag for mondo-reply to IMU

dmc_tag[0] rsv reserved

MMU Tablewalk Transactions

dmc_tag[15] type 1b-indicates MMU Tablewalk transactions

dmc_tag[14:11] cl_tag[3:0] Dmc transaction number for tracking credits

dmc_tag[10:6] Rsv[4:0] reserved

dmc_tag[5:0] Mtag[5:0] Used for MMU tablewalks only-MMU tag for tracking
tablewalks

PIO Cpl Transactions

dmc_tag[15:12] Rsv[3:0] Must be 4’b1000

dmc_tag[11:8] jbc_trans_#[3:0] Pio transaction credit id

dmc_tag[7] Rsv

dmc_tag[6:0] thread_id[6:0] Thread id of PIO read request. If thread_id[6]==0, then
thread_id[5:0] is the thread id, if thread_id[6]==1 then it is a
jtag txn.

TABLE 8-37 DMC_TAG Field Definitions (Continued)

Field Bits Description
Chapter 8 Data Management Unit (DMU) 8-47

8.17.1.3 SIU to DSN Outbound Header sent by SIU
(DMA rd cpl’s only)

8.17.1.4 Bit Mapping from DSN to SII for DMA rd/wrt Requests

dmu_sii_data[127]= d2j_cmd[3]

TABLE 8-38 SIU to DSN Header Bit Definitions

Header cycle
siu_dsn_data Name Description

[127] Command
- DMA read response

1000_00

[127] = response bit 1 = DMA read response, this can be a PCI-ex DMA read or
a DMU MMU tablewalk response.

[126:122] reserved Ignore, may be 0 or 1

[121:84] reserved Must be 0

[83] reserved Must be 0

[82] reserved Must be 0

[81] UE 1 = error detected on dmc_tag or address accumulated
throughout the DSN->SII->l2$->SIO->DSN path. If this bit
is a 1 the DSN will block the return of the current packet
back to DMU. At this point SW must intervene and correct
because now this packet will never retire.
If this bit is set, the DMU will not return an error on
dmu_ncu_ctag_ue

[80] DE 1 = data payload has a detected uncorrectable error this
could be:
1. timeout error
2. unmapped error
3. data ue error from dram

[79:64] dmc_tag[15:0] Returned dmc_tag extracted from the DSN to SIU
command and returned without changes

[63:62] reserved Must be 0

[61:56] Ctagecc[5:0] Ecc on dmc_tag[15:0]

[55:37] reserved Must be 0

[36:0] reserved SIU does not return the DMA read address with the
completion.
8-48 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

dmu_sii_data[126]= ~d2j_cmd[3] & ~d2j_cmd[2]

dmu_sii_data[125]= !d2j_cmd[3] && d2j_cmd[1]

dmu_sii_data[124]= !d2j_cmd[3] && !d2j_cmd[1] && d2j_cmd[0]

dmu_sii_data[123]= !d2j_cmd[3] && !d2j_cmd[2]

dmu_sii_data[122]= d2j_cmd[3] || (!d2j_cmd[3] && d2j_cmd[2])

dmu_sii_data[121:120]= 2’b00

dmu_sii_data[119:83]= 0

dmu_sii_data[84]= ~^dmu_sii_data[39,37,35,33,31,29,27,25,23,21,19,17,15,13,11,

9,7,5,3,1]

dmu_sii_data[83]= ~^dmu_sii_data[38,36,34,32,30,28,26,24,22,20,18,16,14,12,10,

8,6,4,2,0]

dmu_sii_data[82]= d2j_cmd[3] && d2j_cmd[1] & !d2j_cmd[0]

dmu_sii_data[81]= d2j_cmd[3] && d2j_cmd[1] && d2j_cmd[0]

dmu_sii_data[80]= 1’b0

dmu_sii_data[79:64]= d2j_cmd[3] ? {1’b1,d2j_ctag[14:0]} : d2j_ctag[15:0]

dmu_sii_data[62]= ~^dmu_sii_data[127:122]

dmu_sii_data[61:56]= ecc on dmu_sii_data[79:64] (see below, or soc ras spec)

dmu_sii_data[39:6]= d2j_addr[33:0] -> pa[39:6]

dmu_sii_data[5:0]= 0

8.17.1.5 Bit Mapping from NCU/SIU Header to DMC for DMA/Int
ack/nack

j2d_di_cmd[1:0]= if sio_dmu_hdr_vld = 1’b1 then 1 cycle later

j2d_di_cmd[1:0] = {1’b0, DE]

delayed by 1 clock)}

else if sio_dmu_hdr_vld 1’b0 && mondo ack/nack in

the return fifo in dsn then 1 cycle later
Chapter 8 Data Management Unit (DMU) 8-49

j2d_di_cmd[1:0] = {1’b1,mondo_dout[7]}

j2d_di_ctag[15:0]= if sio_dmu_hdr_vld = 1’b1 then 1 cycle later

j2d_di_ctag[15:0] = sio_dmu_data[79:64] delayed

by 1 cycle (ecc corrected).

Else if sio_dmu_hdr_vld = 1’b0 && mondo_fifo is valid

j2d_di_ctag[15:0] = {1’b0,mondo_dout[5:2],8’b0,

mondo_dout[1:0],1’b0}

j2d_di_data[127:0]= sio_dmu_data[127:0] no delay.

j2d_d_data_err= sio_dmu_data[80] delayed by 1 cycle, + any locally detected parity
errors

Note – The mondo_fifo_dout is a delayed version of ncu_dmu_mondo_id[5:0]
through a fifo in the DSN and these bits are defined as: [5:2] = dmc_tag[14:11], [1:0]
= dmc_tag[2:1].

This fifo is needed because a dma rd return could occur at the same time as an int
ack from the NCU, so the fifo buffers up the int ack until a quiescent cycle in the
dma rd return. If a parity error is detected on the int ack from the NCU then this
packet is not placed in the fifo, and will be dropped, SW must intervene and clean
up.

Note – If dmu_sii_data[81](UE) is asserted if either the SII, l2$ or SIO detect a ctag
ecc ue, or adr parity error, and the DSN will block the return of this packet, this is
done so the DMC scoreboards do not get corrupted

Note – If dmu_sii_data[80](DE) will not be asserted for errors from the l2$. Instead
the L2$ will flip a parity bit on the outbound data, and the DSN will detect this
instead of using bit 80.

8.17.1.6 DMC to SIU Ingress Commands

These are the commands as defined at the DSN/DMU boundary. They must be
decoded and used to generate the header for DSN to SIU ingress commands.

See the SIU specification Sec. 7.5 for the header bit specification.
8-50 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

The DSN logic will build the header to the SIU using the following commands from
the DMU.

Note – 64 byte PIO’s are not supported in OpenSPARCT2, and on PIO read
completions the address will not be returned.

Note – On PIO rd return with errors, the data packet will still be sent but may be
invalid.

Note – jbc_tag is 11 bits, whereas in the d2j_ctag jbc-tag[11:8] held the credit_id, the
reason is because in the rtl the width of the jbc_tag value is a parameter and is also
used to automatically size datapaths/fifo’s etc. making in jbc_tag[11:0] would have
added a bit throughout the entire crm/pmu/psb/scoreboard/ctm path.

TABLE 8-39 DMC to SIU Ingress Command Bit Definitions

Transaction type cmd address ctag

Bit width
57

4
[56:53]

37
[52:16]

16
[15:0]

DMA Full Wr 4’b0000 PA[42:6] dmc_tag[15:0]

DMA Partial Wr 4’b0001 PA[42:6] dmc_tag[15:0]

DMA Rd 4’b0010 PA[42:6] dmc_tag[15:0]

DMA Rd Shared
(tablewalk)

4’b0011 PA[42:6] dmc_tag[15:0]

Interrupt (mondo) 4’b0100 PA[42:6] dmc_tag[15:0]

PIO Rd Return 16 4’b1000 n. a. Rsv[4:0] jbc_tag[10:0]

PIO Rd Return 64 4’b1001 PA[42:6] Rsv[5:0] jbc_tag[10:0]

PIO Rd Return Tout Err 4’b1010 n. a. Rsv[4:0] jbc_tag[10:0]

PIO Rd Return Bus Err 4’b1011 n. a. Rsv[4:0] jbc_tag[10:0]
Chapter 8 Data Management Unit (DMU) 8-51

8.17.1.7 DSN to SII Header as sent by DSN

The DSN block will take the DMU to DSN command information and concatenate
this and form a header which will be sent before the data. Below is a table of the
header values:

TABLE 8-40 DSN to SII Header Bit Definitions

Header cycle
dsn_siu_data
[msb:lsb] Name Description

[127:122] Command
- PIO Read return
- DMA read Request
- Interrupt Mondo Write
- Dma Write full cacheline
- DMA write Merge 64 bytes

1010_01
0010_10
0000_01
0100_10
0101_10

[127] = response bit 1 = response, 0= request
Only set on PIO rd cpl’s, this tells the SIU which queue to
enter the DMA write data or PIO rd cpl data.

[126] Posted bit, 1=dma write

[125]=read bit 1 = DMA read request
0 = DMA write request, interrupt mondo request, write
response

[124] = write bytemask active Ignored by SIU if response bit is set or if read bit is set
1 = use byte enables
0 = all bytes active

[123] = l2 bit 1 = to l2
set for DMA write request, DMA read request

[122] = NCU bit 1 = to NCU
set for Interrupt mondo request, PIO read response

[121:85] reserved Must be 0

[84:83] address_par[1:0] Address parity, ap[0] for even bits of pa, ap[1] for odd bits

[82] timeouterror 1 = this packet had timed out, PIO completions only

[81] UnmappedAddresseError 1 = this packet’s address mapped to a nonexistent, reserved,
or erroneous address
PIO completions only

[80] UncorrectableError 1 = data payload has a detected uncorrectable error
This bit is always 0
8-52 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

8.17.1.8 DSN-SII Header RAS

The header from DSN to SII will incorporate ecc and parity on all significant bits
because the SII inserts the header into the same fifo ram which holds the data. RAS
guidelines call for protection on all significant rams, therefore the DSN will generate
these ras bits before sending to the SII.

The header is to be divided into 3 fields, ctag, address and command/status. Each
group will have its own protection, ecc on the ctag and parity on the other 2.

The ctag ecc will use a SECDCD code with 6 extra check bits. The check bits are an
xor of a series of bits generated as follows:

chk[0] = ^{di[15],di[13],di[11],di[10],di[8],di[6],di[4],di[3],di[1],di[0]};

chk[1] = ^{di[13],di[12],di[10],di[9],di[6],di[5],di[3],di[2],di[0]};

chk[2] = ^{di[15],di[14],di[10],di[9],di[8],di[7],di[3],di[2],di[1]};

chk[3] = ^{di[10],di[9],di[8],di[7],di[6],di[5],di[4]};

chk[4] = ^{di[15],di[14],di[13],di[12],di[11]};

chk[5] = ^{di[15],di[14],di[13],di[12],di[11],di[10],di[9],di[8],

di[7],di[6],di[5],di[4],di[3],di[2],di[1],di[0],

chk[0],chk[1],chk[2],chk[3],chk[4]};

[79:64] dmc_tag[15:0] for PIO read completions this is PIOID
Bits [11:8] will be the credit id returned on PIO rd
completions, bits [6:0] will be the thread ID.

For DMA’s this will be the dmc_tag value from the DMU
interface

[63] reserved Must be 0

[62] cmd_par Odd Parity on bits {[127:122]}

[61:56] Ctagecc[5:0] SECDED ecc on bits[79:64]

[55:40] Reserved Must be 0

[39:6] PA[39:6] Valid for DMA requests only

[5:0] PA[5:0] 0’s Always cache line aligned

TABLE 8-40 DSN to SII Header Bit Definitions (Continued)

Header cycle
dsn_siu_data
[msb:lsb] Name Description
Chapter 8 Data Management Unit (DMU) 8-53

where di[15:0] = dmc_tag[15:0];

chk[5:0] will be placed on header bits [61:56];

Odd parity will be used for the address and control/status. Header bit [84:83] will
hold odd parity for the address (header bits [42:6]), where [84] is for the odd address
bits, [83] for even. And header bit [62] will hold odd parity for header bits {[127:122]}
8-54 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

8.17.1.9 DSN-SII Interface Timing Diagrams

FIGURE 8-6 Ingress Interface Timing Diagram
Chapter 8 Data Management Unit (DMU) 8-55

FIGURE 8-7 Egress Interface Timing Diagram

Only DMA rd cpl’s and wrack’s

8.17.2 DSN-NCU Interface

8.17.2.1 DSN-NCU Interface Description

The DSN-NCU interface will be used for all PIO read/write command requests,
interrupt ack/nack, DMU MMU snoop invalidate vectors and CSR read/writes, but
the PIO rd completions will return through the SIU block. It will have the following
features:

1. The NCU will send a PIO read or write request along with a transaction credit id
and the thread id for read return.
8-56 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

2. The NCU will only request 8 bytes or less for writes and up to 16 bytes for reads.
The DSN will need to extract this information from the header and PA and
construct the rest of the 16 bytemasks to the DMU. And on PIO writes, the DSN
will need to replicate the 8 bytes sent by the NCU on the 16 byte SIU bus and set
the bytemask correctly. The DMU does not allow 8 byte requests to cross 8 byte
boundaries.

3. The DMU will store the thread id sent by the NCU in a ram structure indexed by
the transaction credit id. On read completions the DMU will then return the
thread id back to the SIU along with the data and the transaction credit id, the
SIU must pass this along to the NCU when it returns the PIO read data to the
NCU.

4. A PIO wrack from DSN to NCU will inform the NCU which write transaction
credit id it may remove from its local PIO 16 entry scoreboard.

5. Interrupt egress traffic (ACK/NACK) will originate in the NCU and directly
interface to the DSN. Since the data into the DMU is multiplexed onto 1 bus for
dma read return data and mondo acks the DSN will have to account for
simultaneous dma read return and mondo acks. The DMU will only have 4
outstanding mondo interrupts and returning dma read returns have been
stretched to include an extra cycle at the beginning for a header multiplexed onto
the data bus. The DSN will exploit this and queue up mondo acks if they collide
with returning dma reads, and multiplex the mondo acks into this DMU dead
cycle created by the new interface. A fifo of 4 entries should be sufficient since the
DMU can only have 4 outstanding mondo interrupts, and cannot issue another
until an ack is returned.

6. The NCU block will also be used to invalidate entries in the DMU MMU. The
existing interface was used to snoop the jbus, but for OpenSPARCT2 the NCU
will have a CSR writable register which when written to by SW, will trigger
sending the value as a PA to be invalidated. The DMU MMU will take this value,
match it against its current PA entries, and invalidate any line which matches. To
save pins, the invalidate address will be multiplexed onto the NCU 64 bit data
bus and a separate valid sign for invalidates will be used to distinguishing PIO
commands from MMU invalidate commands.

7. DMU CSR read/writes will be interfaced through the DSN.
Chapter 8 Data Management Unit (DMU) 8-57

8.17.2.2 DSN-NCU Interface Pin List

TABLE 8-41 DSN to NCU Interface Pin List

Signal name direction Description

DMU PIO commands

ncu_dmu_pio_hdr_vld input NCU to DMU pio_data header is valid

ncu_dmu_mmu_addr_vld input NCU to DMU pio_data mmu invalidate vector is valid

ncu_dmu pio_data[63:0] input NCU to DMU pio_data bus

DMU to NCU PIO write completions

dmu_ncu_wrack_vld output Release credit id valid bit

dmu_ncu_wrack_tag[3:0] output 4-bit release credit id

dmu_ncu_wrack_par output Odd parity on dmu_ncu_wrack_tag[3:0]

DMU Mondo ack’s

ncu_dmu_mondo_ack input Mondo Interrupt ack

ncu_dmu_mondo_nack input Mondo Interrupt nack

ncu_dmu_mondo_id[5:0] input [5:2] = cl_tag[3:0], [1:0] = mdo_tag[1:0]

ncu_dmu_mondo_id_par input Odd parity ^ncu_dmu_mondo_id[5:0]

This Signals are not needed, tie off between DSN/DMU blocks

d2j_tsb_base[42:13] n. a.

d2j_tsb_enable n. a.

d2j_tsb_size[3:0] n. a.

DSN to NCU error reporting Signals

dmu_ncu_d_pe output Indicates parity error on DMA rd data

dmu_ncu_siicr_pe output Indicates parity error on dma write credit ack

dmu_ncu_ctag_ue output Indicates ue error on dma read return ctag

dmu_ncu_ctag_ce output Indicates ce error on dma read return ctag

dmu_ncu_ncucr_pe output Indicates parity error on mondo ack

dmu_ncu_ie output Indicates parity error on DMC internal

Note: the error reporting Signals to the ncu are single pulse per error.

NCU to DSN error injections Signals

ncu_dmu_d_pei input Force DMA read return pe

ncu_dmu_siicr_pei input Force DMA write credit return pe

ncu_dmu_ctag_uei input Force DMA read return header ctag ue
8-58 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

8.17.2.3 NCU-DSN Egress PIO Commands

Note – PIO blk operations are not supported. The NCU will implement a CSR
register which when written to will force a snoop invalidate to the DMU MMU. The
Signals will go through the DSN block simply to be renamed.

ncu_dmu_ctag_cei input Force DMA read return header ctag ce

ncu_dmu_ncucr_pei input Force NCU mondo ack pe

ncu_dmu_iei input Force pe on DMC/MMU rams (deviostb & tdb

Note: the error injection Signals are levels, thus will force errors on all transactions until undriven

TABLE 8-42 NCU to DSN PIO Command Bit Definitions

Transaction type cmd address bytemask ctag

Bit width
66

4
[65:62]

36
[61:26]

16
[25:10]

10
[10:0]

PIO Wr Blk Mem -64 4’b0000 A[35:0] rsv jbc_tag[9:0]

PIO Wr Blk Mem-32 4’b0001 A[35:0] rsv jbc_tag[9:0]

PIO Wr 16b Mem-64 4’b0100 A[35:0] bmsk jbc_tag[10:0]

PIO Wr 16b Mem-32 4’b0101 bmsk jbc_tag[10:0]

PIO Wr 16b IO 4’b0110 A[35:0] bmsk jbc_tag[10:0]

PIO Wr 16b Config 4’b0111 A[35:0] bmsk jbc_tag[10:0]

PIO Rd Blk Mem-64 4’b1000 A[35:0] rsv jbc_tag[9:0]

PIO Rd Blk Mem-32 4’b1001 A[35:0] rsv jbc_tag[9:0]

PIO Rd 16b Mem-64 4’b1100 A[35:0] bmsk jbc_tag[10:0]

PIO Rd 16b Mem-32 4’b1101 A[35:0] bmsk jbc_tag[10:0]

PIO Rd 16b IO 4’b1110 A[35:0] bmsk jbc_tag[10:0]

PIO Rd 16b Config 4’b1111 A[35:0] bmsk jbc_tag[10:0]

TABLE 8-41 DSN to NCU Interface Pin List (Continued)

Signal name direction Description
Chapter 8 Data Management Unit (DMU) 8-59

Note – Only 7 bits are used for the thread id, the full 8 bits of thread id are not sent
by the NCU to the DSN for PIO’s, only cores can sent nc PIO’s, bit thread_id[6]==1
implies jtag access.

8.17.2.4 Bit Mapping from NCU Header to DMC for PIO rd/wrts
j2d_p_addr[35:0]= ncu_dmu_pio_data[35:0]
j2d_p_cmd[3]= ncu_dmu_pio_data[60]
j2d_p_cmd[2]= 1’b1
j2d_p_cmd[1]= !ncu_dmu_pio_data[37] && ncu_dmu_pio_data[36] ||

 !ncu_dmu_pio_data[37] && !ncu_dmu_pio_data[36]
j2d_p_cmd[0]= ncu_dmu_pio_data[37] && !ncu_dmu_pio_data[36] ||

 !ncu_dmu_pio_data[37] && ncu_dmu_pio_data[36]
j2d_p_ctag[10:0]= {ncu_dmu_pio_data[59:56],ncu_dmu_pio_data[46:40]}
j2d_p_bmsk[15:0]= if ncu_dmu_pio_data[60] == 0 {// writes

if ncu_dmu_pio_data[3] == 1 then
{8’b0,ncu_dmu_pio_data[55:48]}

 else if ncu_dmu_pio_data[3] == 0 then
{ncu_dmu_pio_data[55:48],8’b0}
}

else ncu_dmu_pio_data[60] == 1 {// reads
if ncu_dmu_pio_data[3] == 1 && ncu_dmu_pio_data[50] = 0 then

{8’b0,bytemask}
else if ncu_dmu_pio_data[3] == 0 && ncu_dmu_pio_data[50] == 0 then

{bytemask,8’b0}
else if ncu_dmu_pio_data[50] == 1 then// 16 byte pio reads

 16’b1;
}

where bytemask is a string of 1’s equal to the byte count in
ncu_dmu_pio_data[50:48] starting at the address specified in
ncu_dmu_pio_data[35:0].

TABLE 8-43 jbc_tag[10:0] Descriptions

Field Bits Description

PIO transaction tag

jbc_tag[10:7] jbc_trans_#[3:0] Pio transaction number

jbc_tag[6:0] thread_id[6:0] Thread id used by NCU to return PIO read data to the
requesting thread. thread_id[6] indicates a jtag operation.
thread_id[5:0] is the cpu/thread id if thread_id[6]==0
8-60 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

Note – The bmsk for reads is used by the DSN to determine how to align the
returning PIO read data, on writes only 8 byte writes are allowed.

Note – j2d_p_xx(cmd’s only, not data) are delayed by 1 clock from
ncu_dmu_piodata[63:0]
Chapter 8 Data Management Unit (DMU) 8-61

8.17.2.5 NCU-DSN Timing Diagram

FIGURE 8-8 NCU-DSN Timing Diagram
8-62 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

8.17.2.6 NCU to DSN Command Header Info

8.17.2.7 NCU to DSN Header for MMU Invalidates

When the NCU sends an IOMMU invalidate the ncu_dmu_data[63:0] contains the
physical address to invalidate. The wires [39:6] will directly connect to
j2d_mmu_addr[39:6].

TABLE 8-44 NCU to DSN Command Header Bit Definitions

Header cycle
ncu_dmupio_data
[msb:lsb] Name Description

[63:61] reserved Must be zero

[60] PIO read 1 = PIO reads
0 = PIO write

[59:56] Credit id Credit id issues with the PIO command, returned
dmu_ncu_wrack_tag[3:0] for PIO writes, and in
the SIU header for rd completions

[55:48] Byte count/Byte mask[7:0]
data is big endian, but bmsk[0] is
for bits[7:0]
even though data byte 0 is
data[127:120]

This field is identical to size’ field from pcs packet
For PIO read case:
8’bxxxx_x000: 1 Byte
8’bxxxx_x001: 2 Byte
8’bxxxx_x010: 4 Byte
8’bxxxx_x011: 8 Byte
8’bxxxx_x100: 16 Byte
For PIO write case the 8bit mask indicates which
of the 8B of store data should be updated.

[47:40] NCU PIO ID {1’b0,cpu_thrid[6:0]}

[39:38] reserved Must be 0

[37:36] Command Mapping 11 = Memory space 64
10 = Memory space 32
01 = IO space(pa[28]==1’b1)
00 = Configuration space (pa[28]==1’b0)

[35:0] PA[35:0] 36 bit PA address from CPU, note this is a full
byte address
Chapter 8 Data Management Unit (DMU) 8-63

.

8.17.3 DSN-DMU Interface
The DSN-DMU interface is left as is, pin list below, and the DSN block adapts the
new SIU and NCU interfaces to this existing set of Signals.

TABLE 8-45 NCU to DSN Header Bit Definitions

Header cycle
ncu_dmupio_data
[msb:lsb] Name Description

[63:40] N/A

[39:6] PA[39:6] 39 bit PA address from NCU CSR
write

[5:0] N/A Assumed 0

TABLE 8-46 DSN-DMC Interface Pins

Signal name direction Description

Command Port

d2j_cmd[3:0] input Dma/int request or pio rd completion command

d2j_addr[36:0] input Address of dma/int request

d2j_ctag[15:0] input Transaction tag for dma/int request or pio rd completion

d2j_cmd_vld input Valid signal for d2j_(cmd,addr,ctag)

Data Port

d2j_data[127:0] input Data for dma wr/int request or pio rd completion

d2j_bmsk[15:0] input Bytemask for dma wr/int request

d2j_data_par[4:0] input Parity for dma wr/int request or pio rd completion data/bmsk

d2j_data_vld input Valid signal for d2j_(data,bmsk,data_par)

CTM: DMA Wrack Port

j2d_d_wrack_tag[3:0] input Transaction tag for dma wrack

j2d_d_wrack_vld input Valid signal for j2d_d_wrack_tag

CTM: PIO Wrack Port

d2j_p_wrack_tag[3:0] output Transaction tag for PIO wrack
8-64 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

d2j_p_wrack_vld output Valid signal for d2j_p_wrack_tag

CRM Command Completion Port

j2d_di_cmd[1:0] output Dma/int response cmd

j2d_di_ctag[15:0] output Transaction tag for dma/int response

j2d_di_cmd_vld output Valid signal for j2d_di_(cmd,ctag)

CRM Command Request Port

j2d_p_cmd[3:0] output Pio req cmd

j2d_p_addr[35:0] output Address of pio req

j2d_p_bmsk[15:0] output Bytemask for pio req

j2d_p_ctag[10:0] output Transaction tag for pio req

j2d_p_cmd_vld output Valid signal for j2d_p_(cmd,addr,bmsk,ctag)

CRM Data Completion Port

j2d_d_data[127:0] output Dma rd response data

j2d_d_data_par[3:0] output Parity for dma rd response data

j2d_d_data_err output Status of dma rd response data

j2d_d_data_vld output Valid signal for j2d_d_(data,data_par,data_err)

CRM Data Request Port

j2d_p_data[127:0] output Pio wr data

j2d_p_data_par[3:0] output Parity for pio wr data

j2d_p_data_vld output Valid signal for j2d_d_(data,data_par)

Ring Interface (csr’s are accessed through the NCU to DSN ucb interface, the DSN converts the ucb protocol to
the ring protocol)

j2d_csr_ring_out[31:0] output Csr ring input from JBC

d2j_csr_ring_in[31:0] input Csr ring output to JBC

Interrupts (these will need to be tied off in the DMU, the NCU will handle these functions)

j2d_jbc_int_l output Jbu interrupt

j2d_i2c0_int_l output Internal interrupt

j2d_i2c1_int_l output Internal interrupt

j2d_jid_sel output

j2d_ext_int_l[19:0] output External interrupts from pins

Interrupts (interrupts are concentrated in the IMU and then sent out as data packets on the cmd interface.)

TABLE 8-46 DSN-DMC Interface Pins (Continued)

Signal name direction Description
Chapter 8 Data Management Unit (DMU) 8-65

8.18 Pin Mapping
This table shows the signal mapping between the DMU pin name and the new SIU
or NCU name.

Mondo and MSI interrupts are sent as data packets on the same wires as dma writes

MMU snoop interface (only needs to support CSR invalidates)

j2d_mmu_addr_vld ncu_dmu_mmu_addr_vld

d2j_tsb_base[42:13] n. a.

d2j_tsb_enable n. a.

d2j_tsb_size[3: 0]

TABLE 8-47 Pin Mappings from Existing DMC to DSN

DMU name SIU/NCU name Description

Command Port

d2j_cmd[3:0] dmu_sii_data[127:0] These DMU Signals are placed in a header when
d2j_cmd_vld is asserted.

d2j_addr[36:0]

d2j_ctag[15:0]

d2j_cmd_vld dmu_sii_hdr_vld

Data Port

d2j_data[127:0] dmu_sii_data[127:0]

d2j_bmsk[15:0] dmu_sii_be[15:0]

dmu_sii_be_parity

d2j_data_par[4:0] dmu_sii_parity[7:0] Newly constructed and interleaved

d2j_data_vld dmu_sii_hdr_vld

CTM: DMA Wrack Port

j2d_d_wrack_tag[3:0]

j2d_d_wrack_vld

CRM Command Completion Port

TABLE 8-46 DSN-DMC Interface Pins (Continued)

Signal name direction Description
8-66 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

8.19 RAS
The DSN will follow the SOC RAS ERROR Reporting Specification.

Most of the functionality required for this specification will be implemented in the
DSN block. DMC internal errors such as parity on the internal rams will be reported
through the existing DMC mondo interrupt mechanism. Also note that the parity is
generated on an interleaved basis, i.e. p0 = parity on d0, d2,d4... p1 = parity on
d1,d3,d5....

8.19.1 DSN/SII-SIO RAS Interface
The RAS features for this interface include:

1. The DMA write and PIO rd return fifo’s have 1 parity bit per 32 data bits, and the
SOC RAS spec requires 2 parity bits per 32. Thus parity will be checked on this
bus, errors signaled and new 16 bit parity regenerated before sending the data to
the SII. Any parity errors discovered at the DMC-DSN interface on data from the
diu rams will be signaled by re-generating correct 32 bit parity and then flipping
parity bit 1. The SII will then discover this and signal an error to the NCU.

j2d_di_cmd[1:0] Derived from sio_dmu_data[127:0] header when
sio_dmu_hdr_vld is asserted.

j2d_di_ctag[15:0]

j2d_di_cmd_vld

CRM Data Completion Port

j2d_d_data[127:0] sio_dmu_data[127:0]

j2d_d_data_par[3:0] sio_dmu_parity[1:0]

j2d_d_data_err Returned in the header

j2d_d_data_vld

CRM Data Request Port

j2d_p_data[127:0] ncu_dmu_pio_data[63
:0]

DSN must gather 64 bit data from the NCU and translate
into 128 bit data for the DMU.

j2d_p_data_par[3:0] Will the NCU provide parity?

j2d_p_data_vld

TABLE 8-47 Pin Mappings from Existing DMC to DSN (Continued)

DMU name SIU/NCU name Description
Chapter 8 Data Management Unit (DMU) 8-67

2. DMA read return data will have 2 parity bits per 32 bits of data, so parity will be
checked in the DSN, errors signaled and 1 parity bit per 32 bits will be
regenerated. The dmu_sii_be[15:0] will have a separate parity bit.

3. ECC will be generated on the CTAG to the SIO, and parity on the address in the
header.

4. Parity will be checked on the returning DMA write credit.

5. ECC will be checked on the CTAG DMA read return. If a ue is discovered on the
ctag and bit 81 of the siu to dmu hdr is set, this error will not be signaled to the
ncu on dmu_ncu_ctag_ue because a previous block has already signaled a ue for
this condition.

6. Dedicated error and force error wires from the NCU will be added

7. Any ue on returning credit_id’s will cause the DSN to block the return of that
particular transaction back to the DMU, i.e. Dma write credit return, interrupt
credit return, or dma read return header UE or ctag ue. This may cause the DMU
to hang and should be considered a fatal error. SW will then have to sort out any
fixes. This will mean these credits which have ue’s will not get removed from the
scoreboard. SW can read the syndrome register in the NCU but it may not
accurately reflect the bad credit_id, since it may have been the corrupted data
which caused the error. SW can also read the scoreboard registers in the DMC.

8.19.2 DSN/NCU RAS Interface
The RAS features for this interface include:

1. Interrupt response parity will be checked. If an error is encountered, the return
from DSN to DMU for this interrupt response will be dropped.

2. Dedicated error and force error wires from the NCU will be added

8.19.3 DMC Internal RAS
Internal ram parity errors, those on the devtsb or tdb rams will be signaled to the
NCU as mondo interrupts with an internal csr register logging which error occurred.
8-68 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

8.19.4 RAS Interface Signals
These are Signals between DSN and NCU/SII/SIO, in addition there are RAS bits in
the header from DSN to SII and returning completion headers, and in the header
from NCU to DSN. The Signals are listed here for the convenience of the reader, they
are also listed previously in the section where there are used.

TABLE 8-48 RAS Signals

Signal name direction Description

DSN to SII RAS Signals

dmu_sii_parity[7:0] output 2 odd parity bits per 32 bits calculated as follows:
dmu_sii_parity[0] on dmu_sii_data[0,2,4..30]
dmu_sii_parity[1] on dmu_sii_data[1.3.5..31]
dmu_sii_parity[2] on dmu_sii_data[32,34,36...62]
dmu_sii_parity[3] on dmu_sii_data[33,35,37...63]
dmu_sii_parity[4] on dmu_sii_data[64....94]
dmu_sii_parity[5] on dmu_sii_data[65...95]
dmu_sii_parity[6] on dmu_sii_data[96...126]
dmu_sii_parity[7] on dmu_sii_data[97....127]

dmu_sii_be_parity output dmu_sii_be_parity is on dmu_sii_be[15:0]

Note: d2j_data[127:0] parity errors will be signaled to the SII by flipping dmu_sii_parity[1]

SII to DSN RAS Signals

sii_dmu_wrack_par input Odd parity on sii_dmu_wrack_tag[3:0]

SIO to DSN RAS Signals

sio_dmu_parity[7:0] input 2 odd parity bits per 32 bits calculated as follows:
sio_dmu_parity[0] on sio_dmu_data[0,2,4..30]
sio_dmu_parity[1] on sio_dmu_data[1.3.5..31]
sio_dmu_parity[2] on sio_dmu_data[32,34,36...62]
sio_dmu_parity[3] on sio_dmu_data[33,35,37...63]
sio_dmu_parity[4] on sio_dmu_data[64...94]
sio_dmu_parity[5] on sio_dmu_data[65....95]
sio_dmu_parity[6] on sio_dmu_data[96....126]
sio_dmu_parity[7] on sio_dmu_data[97....127]

Note: any detected parity errors will be signaled to DMC by asserting j2d_d_data_err synchronous with
j2d_d_data

NCU to DSN RAS Signals

ncu_dmu_mondo_id_par input Odd parity on ncu_dmu_mondo_id[5:0]

dmu_ncu_wrack_par output Odd parity on dmu_ncu_wrack_tag[3:0]
Chapter 8 Data Management Unit (DMU) 8-69

The ncu_dmu_iei bit is used for parity errors on the rams within the
dmu_dmc/dmu_mmu block. These are the devtsb and tdb rams. If this bit is
asserted a parity error is forced when a csr write occurs to these rams. Then when
the entry within these rams is accessed a parity error will be generated when the
ram is read. This allows the test to more easily control what and when to cause a
parity error. The tsb ram is programmed using the MMU TTE CACHE DATA
REGISTER (0x648000-0x6448ff8), the devtsb ram is programmed using the MMU
DEV2IOTSB Registers (0x649000-0x6449078).

DSN to NCU error reporting Signals

dmu_ncu_d_pe output Indicates parity error on DMA rd data

dmu_ncu_siicr_pe output Indicates parity error on dma write credit ack

dmu_ncu_ctag_ue output Indicates ue on dma read return ctag, signaled only if
ncu_dmu_ctag_uei is asserted, or if a ue was discovered on
the ctag bits and bit 81 of the siu to dmu header was 0. only
asserted during valid transactions.

dmu_ncu_ctag_ce output Indicates ce on dma read return ctag

dmu_ncu_ncucr_pe output Indicates parity error on mondo ack

dmu_ncu_ie output dmc internal error (not used in N2)

NCU to DSN parity error injection Signals

ncu_dmu_d_pei input Force DMA read return pe

ncu_dmu_siicr_pei input Force DMA write credit return pe

ncu_dmu_ctag_uei input Force DMA read return header ctag ue

ncu_dmu_ctag_cei input Force DMA read return header ctag ce

ncu_dmu_ncucr_pei input Force DMA read return header ctag ce

ncu_dmu_iei input Force pe on DMC internal, forces parity errors on the devtsb
and tdb rams in DMU/IOMMU. The error reporting is done
with mondo 62 and status bits within the DMU.

TABLE 8-48 RAS Signals (Continued)

Signal name direction Description
8-70 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

8.19.5 Error Cases

TABLE 8-49 DSN Error Cases

Event Detector Information Capture Reporting Mechanism Impact

DMA write data parity
error

None in DMU Generate bad parity on
DMU->SII data, SII
reports DMA write errors,
logs address

DMA write is squashed with bad
ecc on data

PIO rd return/Interrupt
parity error

None in DMU Generate bad parity on
DMU->SII data, SII passes
to NCU which logs, sends
back to core

PIO loads get precise trap in core,
interrupts are logged in NCU

ECC error on CTAG from
DMU to SII

None in DMU SII checks DMA and logs,
passes to NCU for PIO
read and interrupts which
logs.

Single bit ecc errors are corrected,
double bit errors cause writes to be
squashed.

Parity on address in
header from DMU to SII

None in DMU SII reports, destination is
guessed and packet is
passed on in error.

DMA writes are squashed by
clearing byte enables in SII

Parity on cmd field of
DSN->SII header

None in DMU SII reports, destination is
guessed and packet is
passed on in error.

SII squashes any writes

DMU->SII TO
PIO rd cpl only

None in DMU SII Sends to NCU PIO rd cpl has timed out NCU
handles

DMU->SII UnMapped
PIO rd cpl only

None in DMU SII Sends to NCU PIO rd cpl with address errors are
reported back to the NCU here,
NCU interfaces with cores to
handle.

DMA read data return
parity error, pe detected
locally, bad parity was
forced by l2$.

Poison bit sent to
ILU

Single error bit to NCU,
which logs, optional
interrupt, poisoned data is
detected at endpoint
which reports back to
initiating thread.

Parity is regenerated correctly,
poison bit forwarded to ILU

DMA write credit return
parity error

None in DMU DSN Signals NCU with
error bit. DSN drops this
ack back to DMC

One less credit id to use in DMC,
no corruption but possible DMU
hang.
Chapter 8 Data Management Unit (DMU) 8-71

8.19.6 IOMMU RAS

Note – To force a parity error out of the devtsb or tdb ram, use the NCU force error
bit described above.

8.19.7 Why is there no Syndrome Register in DSN?
Consider these cases:

1. DMA write data parity error.

ECC error in header
CTAG from SIO to DMU
on DMA rd return

None in DMU 2 error bits sent to NCU
for logging and optional
interrupt Packet is never
returned, endpoint detects
this and notifies the
thread.

Note that if an ecc ue is detected
locally and bit 81 of the siu to dmu
header is set the error from dmu to
ncu (dmu_ncu_ctag_ue) will not
be set.

Parity on PIO write credit
return to NCU

None in DMU NCU checks and logs On error the credits are not
released within the NCU.

Parity error on MONDO
ACK from NCU

None in DMU Single error bit to NCU
which logs, optional
interrupt. DSN drops
credit return to IMU

One less interrupt credit in IMU,
interrupts slow down.

TABLE 8-50 IOMMU Error Cases

Event Detector Information Capture Reporting Mechanism Impact

Parity on devtsb ram read Single error bit, with
secondary

Error bit in DMU status
register, with optional
interrupt if enabled.

Ingress transaction is
nullified

Parity error on tdb ram Single error bit, with
secondary

Error bit in DMU status
register with optional
interrupt if enabled.

Ingress transaction is
nullified

Error on tablewalk return. Multiple error bits, with
secondary

Error bits in MMU Error
register.

Ingress transaction is
nullified

TABLE 8-49 DSN Error Cases (Continued)

Event Detector Information Capture Reporting Mechanism Impact
8-72 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

i. SII logs address, write completes to l2$ with byte enables off, SW can figure
out what device was doing the write from SII address syndrome.

2. PIO rd cpl and interrupt data parity error.

i. rd cpl, data is passed back to core and load buffer and it would log the
address for reads (precise trap).

ii. For interrupts the NCU logs

3. DMA rd data return

i. DMU poisons the data, and the endpoint which gets the data should report
this to the thread it is working for. nothing is hung or dropped. endpoint reports.

4. header address, cmd and ctag ecc ue’s,

i. On ingress NCU will log

ii. On egress (DMA rd cpl’s) the DSN drops this cacheline and does not return
the credit id and data to the DMC. Since the DMU orders the DRC’s it is possible
multiple transactions will accumulate and thus lock up the DMU, thus these errors
are fatal from the DMU perspective.

5. Interrupt mondo ack parity error

i. The DSN drops this mondo ack, the interrupt id never gets returned to the
IMU so it cannot be reused and we have 1 less(4 total) id to process interrupts. sw
knows from the NCU interrupt the DMU has 1 less interrupt credit

6. dma write credit ack,

i. The DSN drops this ack back to DMC and the DMC has 1 less credit id to use,
but should not cause any error corruption since the DMA write itself has already
gone before.

7. pio write credit ack

i. The NCU drops it, and does not reuse that credit it, so it will have 1 less credit
id to work with, should not cause any corruption

For the IOMMU ram parity errors the address is logged in the MMU translation
fault register.

8.20 Resets
The DSN block will need reset to clear the CSR logic, headers, valid bits and the
interrupt fifo pointers on POR and WMR.
Chapter 8 Data Management Unit (DMU) 8-73

Refer to the individual CSR definitions in the OpenSPARC T2 Programmer’s Reference
Manual for information on any particular CSR bit as to POR or WMR reset.

8.21 CSR’s
The DSN block will not have any internal control/status registers, but will include a
ccc controller for the DMU csr ring. The DSN will incorporate the ucb logic common
to the NIU (with slight modifications). The ccc logic from the jbc will then be
interfaced to the ucb logic, and the DMU csr ring will be generated out to the DMU.

The NCU will decode all CSR accesses from the cores and only send transactions to
the DSN which fall within the DMU/PEC CSR ring. The offsets for these registers
will remain the same. The decode for fast/med/slow will also move to the DSN
block.

Refer to the PCI-ex Programmer’s Reference Manual for register definitions and
addresses.

The ucb interface accepts CSR requests, buffers them and presents these requests in
order to the CCC interface. The CCC interface will have only 1 outstanding CSR
transaction on the DMU/PEC CSR ring at any given time. Writes complete without
response, CSR reads will always respond, either with data or error packet.

There will be no JTAG interface to the DSN CSR block, JTAG access will be provided
in the NCU block.

Note – The buf_id_in[1:0] = 2’b00 for cpu access, buf_id_in[1:0]= 2’b01 for JTAG
access.

The structure of the CSR ring in the DMU is:

8.21.1 CSR Address Decoding
The DMU address decoding will be in 3 steps.

1. First the NCU will decode pa[39:32] == 0x88 as a CSR access intended for the
DMU blocks and only send these CSR accesses to the DMU/DSN.

2. Then the DSN block will decode pa[19:16] as follows for the ring:

3. Then as the packet flows around the ring, each DCC will sample pa[26:0] to
determine if a particular packet is meant for itself and respond.
8-74 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

Note – See the OpenSPARC T2 Programmer’s Reference Manual for a description of
each register and its address.
Chapter 8 Data Management Unit (DMU) 8-75

8.21.2 CSR Related Pins

8.21.3 CSR Block Diagram

TABLE 8-51 CSR Related Pins

Signal name direction Description

Ucb interface downstread

ncu_dsn_vld input ncu_dsn_data[31:0] is valid,

ncu_dsn_data[31:0] input Csr hdr/data

dsn_ncu_stall output Dsn csr buffers are full, 1=0 stop sending to NCU

Ucb interface upstread

dsn_ncu_vld output Valid on csr read return

dsn_ncu_data[31:0] output Csr read return data from DMU/PEU

ncu_dsn_stall input NCU stalls DMU/PEU csr read return data when asserted

CSR ring to DMU/PEU

j2d_csr_ring_out[31:0] output Csr ring to DMU

d2j_csr_ring_in[31:0] input CSR ring return from DMU
8-76 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 8-9 CSR Block Diagram

8.22 Transaction Ordering
This section describes the PIO and CSR ordering within the DSN and DMU blocks.
The ordering between PIO’s/CSR’s and DMA read/writes is not defined except that
an outstanding PIO read will "pull" in all outstanding DMA writes.

It appears that the cores/crossbar/NCU follow TSO for all loads and stores for a
particular thread up until the point at which an entry is dequeued from the main fifo
in the NCU. There is no ordering between threads.

The DMU has two interfaces from the NCU block after its main ld/st fifo:

1. PIO reads and writes

2. CSR reads and writes
Chapter 8 Data Management Unit (DMU) 8-77

The PIO and CSR interfaces are independent to the DSN/DMU blocks. But, since the
core logic load unit only supports one outstanding load per thread, PIO and CSR
loads are by definition ordered within a thread. However, the cores support multiple
outstanding stores. CSR stores are all placed in a fifo prior to being dispatched onto
the CSR ring and the CSR ring only supports 1 outstanding transaction at a time
thus all CSR stores will be ordered with respect to each other, but not PIO stores or
loads.

The only exception is the MMU PA invalidates which are PIO stores directly from a
decode in the NCU, these do not go through the CSR ring. The MMU PA invalidates
will have a deterministic pipeline through the DSN/DMU. Thus SW may determine
ordering of invalidates and other PIO/CSR’s.

Also note, that a CSR read from a particular CSR ring will guarantee that all
previous CSR writes to that particular ring will have completed.

8.23 DEBUG Features
This will consist of 3 new features:

1. Quiescing of the DMU/SII,SIO interfaces based on a request initiated from
debug.v.

2. Implement debug busses A,B for DMU and send out to debug.v. The existing
Signals used in the DMC debug busses will continue to be used and new Signals
from DSN will be sent to the DMC block and muxed out. New DSN Signals are
listed below.

3. On any PCI_EX error, qualify with Debug_Trig_en (new csr bit in DMU) and send
out to debug.v.

Refer to the OpenSPARC T2 Programmer’s Reference Manual register ERR NONFATAL
Mapping register address 0x630008 bit 62.

8.23.1 Quiescing DMU/SII/SIO Interface
It is assumed that the NCU will be drained before the DMU is signaled to quiesce.
Then the debug.v block will send a signal to the DMU to quiesce. To manage this
the DSN block will keep a 4 bit counter to track the number of outstanding DMA
reads and writes, and a 2 bit counter to track the number of outstanding mondo
interrupts. The DSN will signal the CLU block to stop sending transactions to the
DSN. The DSN will then monitor the responses from the SII, SIO and NCU blocks,
8-78 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

i.e. Wait for all write acks, mondo acks and DMA read responses to complete, by
checking the outstanding transaction counters. It will then signal the debug.v block
that the interface is quiescent by asserting the signal dmu_dbg1_stall_ack.

8.23.2 Debug Busses
The DMU has existing A and B debug busses. These are 8 bit busses which are
muxed together in the DMU CRU block. Additionally new Signals will be driven
from the DSN block and muxed into the same outputs using spare decodes.

See the OpenSPARC T2 Programmer’s Reference Manual DMU registers DMC debug
select definitions(OpenSPARC T2 Programmer’s Reference Manual registers DMC
Debug Select Register for Ports A and B addresses 0x653000 and 0x653008) and the
list of debug Signals in the OpenSPARC T2 Programmer’s Reference Manual.

In addition the DMU will implement a test feature enabling a training sequence. The
debug busses A and B will be forced to output a pattern of alternating 3 1’s and 1 0
when the debug select busses are set to 0101.

8.23.3 All PCI-Ex Error Output
Within the DMU/IMU block a new signal will be created by "or’ing" mondo 62 and
63, "and’ing" with Debug_trig_en and sending out to the debug.v block a signal
which indicates an error within the DMU, called dmu_dbg_err_event.
Chapter 8 Data Management Unit (DMU) 8-79

8.23.4 Debug Interface Signals

The debug ports are simply mux’ed versions of internal DMU/DSN Signals, which
are then flopped and driven out to the dbg block.

The signal dbg_dmu_stall is asserted for 1 cycle by the dbg block, when the DMU is
quiescent, it will assert dmu_dbg_stall_done for 1 cycle. At some later time the dbg
block will assert the signal dbg_dmu_resume for 1 cycle to inform the DMU to
resume normal operation.

TABLE 8-52 Debug Ports

Signal name direction Description

Debug Signals to dbg.v block

dmu_mio_debug_bus_a[7:0] output DMU debug bus A

dmu_mio_debug_bus_b[7:0] output DMU debug bus B

dmu_dbg1_stall_ack output Ack from DMU indicating DMU -> SII interface has
quiesced.

dmu_dbg1_err_event output An error event occurred in DMU

Debug Signals from dbg.v block

dbg1_dmu_stall input Request to stall/quiesce DMU -> SII interface

dbg1_dmu_resume input Request to resume packets on DMU -> SII interface
8-80 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

8.23.5 DSN Debug Signals

TABLE 8-53 DSN Debug Signals

Signal name Bit number Description

Debug Signals for dbg a[7:0] sub_sel[01]

ncu_dmu_vld 7 Ncu request CSR access

dmu_ncu_stall 6 Dmu stalls ncu csr read req

read_pending 5 Internal dsn csr read pending

write_pending 4 Internal dsn csr write pending

dmu_ncu_stall_a1 3 Internal dsn csr stall at head of queue

rd_nack_vld 2 Dsn to ncu csr read nack

dmu_ncu_vld 1 Dsn to ncu csr read return

ncu_dmu_stall 0 ncu_to dsn stall returning csr read data

Debug Signals for dbg b[7:0] sub_sel[01]

arb_vld 7 Internal dsn csr pending to csr ring

req_vld 6 Csr ring req return, starts timer

acc_vio 5 Csr access violation (address)

rsp_vld 4 Csr read return

timeout 3 Csr read timeout

Cmnd[2] 2 Csr ring data0 cmd

Cmnd[1] 1 Csr ring data0

Cmnd[0] 0 Csr ring data0

Debug Signals for dbg a[7:0] sub_sel[02]

dmu_sii_hdr_vld 7 dmu_header to sii, dma req, or pio cpl

dmu_sii_reqbypass 6 Asserted for pio rd cpl’s

dmu_sii_datareq 5 Valid during hdr, 0=dma 1=write

dmu_sii_datareq16 4 0=write_64, 1=write_16byte

dsn_sii_hdr[126] 3 See dsn spec for values

dsn_sii_hdr[124] 2 See dsn spec for values

dsn_sii_hdr[123] 1 See dsn spec for values

dsn_sii_hdr[122] 0 See dsn spec for values

Debug Signals for dbg b[7:0] sub_sel[02]
Chapter 8 Data Management Unit (DMU) 8-81

sio_dmu_hdr_vld 7 Sio dma rd return

sii_dmu_wrack_vld 6 Dma write ack, credit_id returned

ncu_dmu_mondo_ack 5 Mondo ack

ncu_dmu_mondo_ack 4 Mondo nack

ncu_dmu_pio_hdr_vld 3 Ncu pio req

pio_read 2 Ncu pio req is a read

dmu_ncu_wrack_vld 1 dmu_returns pio write credit id

1’b0 0 spare

Debug Signals for dbg a[7:0] sub_sel[00],[03]-[3f] = 8’b0

Debug Signals for dbg b[7:0] sub_sel[00],[03]-[3f] = 8’b0

TABLE 8-53 DSN Debug Signals (Continued)

Signal name Bit number Description
8-82 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

CHAPTER 9

Miscellaneous I/O (MIO)
Specification

This chapter contains the following sections:

■ Section 9.1, “Overview” on page 9-1

■ Section 9.2, “Debug Port ” on page 9-17

■ Section 9.3, “MIO RTL Hierarchy” on page 9-21

9.1 Overview
This document describes OpenSPARC T2 MIO (Miscellaneous I/O) block which
holds majority of non-Serdes I/O's of the chip. The I/O's in MIO block fall broadly
under the functional categories of clock, reset, test (scan and ramtest),ssi interface,
process control (PCM) and efuse program enable. Most of the I/O's in MIO are on
Boundary Scan chain under control of TCU. All the functional flops in MIO are
connected on regular scan chain with scanin,scanout and flush reset capabilities
under the control of TCU.

9.1.1 MIO Interface with System and Rest of
OpenSPARC T2
MIO block interfaces with the system on one side and OpenSPARC T2 clusters on
the other. MIO interfaces with the following clusters of OpenSPARC T2 : db0, db1,
tcu, efu, fsr, psr, esr, ccu, ncu, rst.
9-1

The I/O's in MIO fall under the broad categories of clock, reset, test (scan and
ramtest),ssi interface, PLL test , process control (PCM) , efuse program enable,
Power Throttle and debug. The following table shows all the I/O's in MIO along
with the I/O type, direction, destination/src clusters in OpenSPARC T2 along with
signal names and functional category of the I/O's.

TABLE 9-1 MIO Pinlist

Pin Name I/O
Type

Direction Function Share
d

Description &
Frequency

Src/Dest OpenSPARC T2
Block & Signal name(s)

XAUI0_LINK_LE
D

cmos
1.1v

output 10G Enet
Status

No link status led,
port 0.
0 Hz : A level
Signal

Mac
xaui_link_led_0

XAUI0_ACT_LE
D

cmos
1.1v

output 10G Enet
Status

No activity led, port 0
5 Hz
core_clk/2to26

Mac
xaui_act_led_0

XAUI1_LINK_LE
D

cmos
1.1v

output 10G Enet
Status

No link status led,
port 1.
0 Hz : A level
Signal

Mac
xaui_link_led_1

XAUI1_ACT_LE
D

cmos
1.1v

output 10G Enet
Status

No activity led, port 1
5 Hz
core_clk/2to26

Mac
xaui_act_led_1

XAUI_MDC cmos
1.1v

output 10GEnet
Clock Signal

No Clock Signal
2.5 Mhz

Mac
mdc

XAUI_MDIO Open
drain
1.1 v

Bidi 10G Enet
OD Tristate
Config signal

No OD Tristate signal
2.5 Mhz Data Rate

Mac
mdoe, mdi
Requires external pull-up
resister.
Mdoe connects to
pulldown enable of the
output driver.
Input of the output
buffer grounded.
Mdi connected to output
of input buffer .

TCK cmos
1.1v

Input Test No JTAG Test Clock
200 mhz

Tcu
mio_tcu_tck

TDI cmos
1.1v

Input Test No JTAG Test Data In
200 mhz

Tcu
mio_tcu_tdi

TDO cmos
1.1v

Output Test No JTAG Test Data Out
200 mhz

Tcu
tcu_mio_tdo
9-2 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

TMS cmos
1.1v

Input Test No JTAG Test Mode
Select
200 mhz

Tcu
mio_tcu_tms

TRST_L cmos
1.1v

Input Test No JTAG Test Reset 200
mhz

Tcu mio_tcu_trst_l

STCIQ cmos
1.1v

Output Serdes Test No SERDES STCI Scan
Chain Data Out
200 mhz

Tcu tcu_mio_stciq

STCID cmos
1.1v

Input Serdes Test No SERDES STCI Scan
Chain Data In
200 mhz

Tcu mio_tcu_stcid

STCICFG[1:0] cmos
1.1v

Input Serdes Test No SERDES STCI Scan
Configuration
200 mhz

Tcu mio_tcu_stcicfg

STCICLK cmos
1.1v

Input Serdes Test No SERDES
ATPG/STCI Scan
Clock
200 mhz

Tcu mio_tcu_stciclk

TESTCLKT cmos
1.1v

Input Serdes Test No SERDES Bypass
Clock for Transmit
200 mhz

FSR[7:0],ESR,PSR
mio_fsr_testclkt[7:0]mio_
psr_testclkt
mio_esr_testclkt

TESTCLKR cmos
1.1v

Input Serdes Test No SERDES Bypass
Clock for Receive
200 mhz

FSR[7:0],ESR,PSR
mio_fsr_testclkr[7:0]mio_
psr_testclkr
mio_esr_testclkr

TESTMODE cmos
1.1v

Input Test No Puts OpenSPARC
T2 in ATPG Scan/
Manufacturing Test
Mode
200 mhz

TCU
mio_tcu_testmode

PLL_TESTMODE cmos
1.1v

Input PLL test No Puts OpenSPARC
T2 in PLL
Testmode
200 Mhz

CCU
mio_pll_testmode

DIVIDER_BYPAS
S

cmos
1.1v

Input Test No Bypasses Clock
Tree Dividers
200 mhz

TCU
mio_tcu_divider_bypass

TABLE 9-1 MIO Pinlist (Continued)
Chapter 9 Miscellaneous I/O (MIO) Specification 9-3

PLL_CMP_BYPA
SS

cmos
1.1v

Input Test No CMP Clock PLL
Bypass
200 mhz

TCU
mio_tcu_pll_cmp_bypass

PLL_DR_BYPAS
S

cmos
1.1v

Input Test No DR Clock PLL
Bypass
200 mhz

TCU
mio_tcu_pll_dr_bypass

IMP_MON_PU cmos
1.1v

Output Debug No Imped. Monitor for
pull-up Drivers.

Within MIO

IMP_MON_PD cmos
1.1v

Output Debug No Imped. Monitor for
pull-down Drivers.

Within MIO

TRIGIN cmos
1.1v

Input Debug No Stop clock based on
external event
(asynchronous, to
be synchronized in
TCU)

TCU
mio_tcu_trigin

TRIGOUT cmos
1.1v

Output Debug No Dbg Event Signal
To Logic Analyzer

700 Mhz

TCU
tcu_mio_trigout

PMI[1:0] cmos
1.1v

Input PCM No process control
monitor input
Level Signal

PCM
mio_pcm_pmi[1:0]

PMO cmos
1.1v

Output PCM No process control
monitor output
Level Signal

PCM
pcm_mio_pmo

PGRM_EN cmos
1.1v

Input Efuse No Efuse Program
enable
Level Signal

EFU
mio_efu_prgm_en

PB_RST_L cmos
1.1v

Input Reset No Like OpenSPARC
J_RST_L
Level Signal

RST
mio_rst_pb_rst_l

BUTTON_XIR_L cmos
1.1v

Input Reset No Externally Initiated
Reset
Level Signal

RST
mio_rst_button_xir_l

PEX_RESET_L cmos
1.1v

Output Reset No Reset to External
PCI Express switch
and devies
Level Signal

RST
rst_mio_pex_reset_l

PWRON_RST_L cmos
1.1v

Input Reset No Power On Reset
Level Signal

RST
mio_rst_pwron_rst_l

TABLE 9-1 MIO Pinlist (Continued)
9-4 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FATAL_ERROR cmos
1.1v

Output Reset No Fatal Error has
ocurred in
OpenSPARC T2
Duration of
warm_reset @
sys_clk

RST
rst_mio_fatal_error

VREG_SELBG_L cmos
1.1v

Input PLL Control .
When
selected
makes PLL
use BandGap
Voltage
Source

No BandGap Select
Static(on or off)

CCU
mio_ccu_vreg_selbg_l

SSI_MOSI cmos
1.1v

Output SSI Boot No SSI Master Out,
Slave In
50 Mhz

NCU
ncu_mio_ssi_mosi

SSI_MISO cmos
1.1v

Input SSI Boot No SSI Master In, Slave
Out
50 Mhz

NCU
mio_ncu_ssi_miso

SSI_SCK cmos
1.1v

Output SSI Boot No SSI Clock
50 Mhz

NCU
ncu_mio_ssi_sck

EXT_INT_L cmos
1.1v

Input SSI Boot No External Interrupt
Pin
50 Mhz

NCU
mio_ncu_ext_int_l

BURNIN cmos
1.1v

Input PCM No Sets Burnin Mode
for PCM Modules
Level Signal

PCM
mio_pcm_burnin

PLL_CHAR_OU
T[1:0]

cmos
1.1v

Output PLL Test No PLL Char Out bus CCU
ccu_mio_pll_char_out[1:0
]

PWR_THRTTL_0
[2:0]

cmos
1.1v

Input Power
Throttle

No Power Throttle for
Sparcs : 0,1,5,4
4 Hz (50 mhz clk
from SP)

SPC's :
mio_spc_pwr_throttle_0[
2:0]

TABLE 9-1 MIO Pinlist (Continued)
Chapter 9 Miscellaneous I/O (MIO) Specification 9-5

TABLE 9-2 shows the sharing of pins between debug and other functionality . The
sharing scheme is further explained in detail in section 5.2 of the document.

PWR_THRTTL_1
[2::0]

cmos
1.1v

Input Power
Throttle

No Power Throttle for
Sparcs : 2,3,7,6
4 Hz (50 mhz clk
from SP)

SPC's :
mio_spc_pwr_throttle_1[
2:0]

DBG_CK0 cmos
1.1v

Output Debug No Debug Port Output
Clock
350 Mhz

Within MIO

DBG_DQ[165:0] cmos
1.1v

Bidi Debug Yes* OpenSPARC T2
Debug Port
700 Mhz

DBG1
dbg1_mio_dbg_dq

TABLE 9-2 Sharing of Debug Pins with Other Pins

Pin Name Shared With Pin :/Pin Description Select & Drive Enable Src/Dest OpenSPARC T2 Block &
Signal name(s)

165:161 RST_STATE[4:0] : Output
Reset State from RST block.

Drive En :
dbg1_mio_drv_en_op_o
nly

DBG1
dbg1_mio_sel_soc_obs_mode

160 Not Shared

159 SCAN_OUT31 : Output
SERDES ATPG Scan Chain Data
Out

Sel : mio_tcu_testmode
Drive En :

dbg1_mio_drv_en_muxt
est_op

TCU
tcu_mio_scan_out31

158 SCAN_IN31 : Input
SERDES ATPG Scan Chain Data In

Drive En :
dbg1_mio_drv_en_muxt
est_inp

TCU
mio_tcu_scan_in31

157 NIU_DBG_DAT[31] :Output
PLL_CHAR_IN :
Input
Niu Debug port bit 31.
PLL Char In

Sel :
dbg1_mio_sel_niu_debu
g_mode

Drive En :
dbg1_mio_drv_en_muxt
estpll_inp

NIU
niu_mio_debug_data[31]
CCU :
mio_ccu_pll_char_in

TABLE 9-1 MIO Pinlist (Continued)
9-6 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

156:149

148:147

146:103

102:91

90:85

Shared with both output and input
pins.
Output Pins :
NIU_DBG_DAT[30:23]
Input Pins:
PLL_DIV2[5:0]
PLL_TRST_L
PLL_CLAMP_FLTR
Shared between output pins only
NIU_DBG_DAT[22:21]
Shared between output and input
pins .
Output pins :
NIU_DBG_DAT[20:0]
NIU_DBG_CLK[1:0]
DMU_DBG_BUS_A[7:0]
DMU_DBG_BUS_B[7:0]
PEU_DBG_BUS_A[7:3]
Input Pins :
PLL_DIV4[6:0]
PLL_EXT_DR_CLK
PLL_EXT_CMP_CLK
AC_TESTMODE
AC_TESTRIG
ACLK
BCLK
SCAN_IN[30:0]

Shared between output pins
only
PEU_DBG_BUS_A[2:0]
PEU_DBG_BUS_B[7:0]
PEU_DBG_CLK

Not Shared

Drive en =
dbg1_mio_drv_en_muxt
estpll_inp for 156:149
and 146: 103.

102:85, 148:147 have
dbg1_mio_drv_en_op_o
nly

Sel :
156: 124 -
dbg1_mio_sel_niu_debu
g_mode

123:91 -
dbg1_mio_sel_pcix_deb
ug_mode

Pin descriptions :
Outputs :
NIU Debug Signals
[30:0]
NIU Debug Clocks[1:0]
Debug Bus A from
DMU[7:0]
Debug Bus B from
DMU[7:0]
Debug Bus A from
PEU[7:0]
Debug Bus B from
PEU[7:0]
PEU Clock sent out on
Debug Port
Inputs :

Input for PLL feedback
Divider
Async Reset in
Testmode for PLL
VCO runs at low freq
PLL Div 4
External DR clk in PLL
bypass
External CMP clk in

PLL Bypass

NIU :
niu_mio_debug_data[30:0]
niu_mio_debug_clock[1:0]
DMU
:dbg0_mio_debug_bus_a[7:
0]dbg0_mio_debug_bus_b
[7:0] PEU
:peu_mio_debug_bus_a[7:
0]peu_mio_debug_bus_b[
7:0]peu_mio_debug_clk
CCU :
mio_ccu_pll_div2[5:0]

mio_ccu_pll_trst_l
mio_ccu_clamp_fltr
mio_ccu_pll_div4[6:0]mio_ext_dr_
clk mio_ext_cmp_clk

TCU
:mio_tcu_io_ac_testmode
mio_tcu_io_ac_testtrig
mio_tcu_io_aclk
mio_tcu_io_bclk
mio_tcu_io_scan_in[30:0]

TABLE 9-2 Sharing of Debug Pins with Other Pins (Continued)
Chapter 9 Miscellaneous I/O (MIO) Specification 9-7
Transition Test Mode
Triggers Transition

Capture
Master Scan Clock
Slave Scan Clock
Scan in Data [30:0]

TABLE 9-3 shows the functional categories and frequencies of the pins that are
shared with the Debug Pins.

84

83

82:77

76:75

74

Input : PEU_CLK_EXT
Scan Test Captures @ PEU

Not shared

Input : NIU_CLK_EXT[5:0] .Scan
Test Captures @ NIU
Not Shared

Input : SCAN_EN

dbg1_mio_drv_en_muxt
est_inp

dbg1_mio_drv_en_op_o
nly

dbg1_mio_drv_en_muxt
est_inp

dbg1_mio_drv_en_op_o
nly

dbg1_mio_drv_en_muxt
est_inp

TCU :
mio_tcu_peu_clk_ext

mio_tcu_niu_clk_ext[5:0]

mio_tcu_io_scan_en

73:43 Outputs :
SCAN_OUT[30:0]
Scan Out Data

Sel :
mio_tcu_testmode
Drive_en :
dbg1_mio_drv_en_muxt
est_op

TCU :
tcu_mio_pins_scan_out[30:0]

42:0 Outputs :
DMO_SYNC
DMO_DATA[39:0]
Ram Test (Membist) Output
MBIST_DONE
Membist Status
MBIST_FAIL
Membist Fail

Sel :
tcu_mio_jtag_membist_
mode

Drive En :
dbg1_mio_drv_en_mux
bist_op

TCU :
tcu_mio_dmo_sync
tcu_mio_dmo_data[39:0]
tcu_mio_mbist_done
tcu_mio_mbist_fail

TABLE 9-3 Shared Pins Functionality and Frequencies

Pin Name Functionality Data Change rate

RST_STATE[4:0] Debug System Clock (in Rst block)

SCAN_OUT31 Serdes Test 200 Mhz

SCAN_IN31 Serdes Test 200 Mhz

NIU_DBG_DAT[31:0] Debug As specified by
NIU_DBG_CLK[1:0]

TABLE 9-2 Sharing of Debug Pins with Other Pins (Continued)
9-8 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

NIU_DBG_CLK[1:0] Debug Upto 2 clks :
350 Mhz nominal, any of MAC
clocks

DMU_DBG_BUS_A[7:0] Debug 350 Mhz nominal

DMU_DBG_BUS_B[7:0] Debug 350 Mhz nominal

PEU_DBG_BUS_A[7:0] Debug 250 Mhz

PEU_DBG_BUS_B[7:0] Debug 250 Mhz

PEU_DBG_CLK Debug 250 mhz PEU clock

PLL_CHAR_IN PLL Test and Characterization
(CCU)

100 Mhz

PLL_DIV2[5:0] PLL Test and Characterization
(CCU)

100 Mhz

PLL_TRST_L PLL Test and Characterization
(CCU)

100 Mhz

PLL_CLAMP_FLTR PLL Test and Characterization
(CCU)

100 Mhz

PLL_DIV4[6:0] PLL Test and Characterization
(CCU)

100 Mhz

PLL_EXT_DR_CLK PLL Test and Characterization
(CCU)

100 Mhz

PLL_EXT_CMP_CLK PLL Test and Characterization
(CCU)

100 Mhz

AC_TESTMODE Test 200 Mhz

AC_TESTRIG Test 200 Mhz

ACLK Test 200 Mhz

BCLK Test 200 Mhz

SCAN_IN[30:0] Test 200 Mhz

PEU_CLK_EXT Test 200 Mhz

NIU_CLK_EXT[5:0] Test 200 Mhz

SCAN_EN Test 200 Mhz

SCAN_OUT[30:0] Test 200 Mhz

DMO_SYNC DMO cmp_clk/1, 2, 4, 8, or 16
(Programmed in TCU)

TABLE 9-3 Shared Pins Functionality and Frequencies
Chapter 9 Miscellaneous I/O (MIO) Specification 9-9

The sharing scheme is further explained in detail in section 5.2 of the document.

9.1.2 Internal Pullups/Pulldowns in MIO for Inputs
The following table shows the inputs in MIO that have pullups/pulldowns on them

DMO_DATA[39:0] DMO cmp_clk/1, 2, 4, 8, or 16
(Programmed in TCU)

MBIST_DONE Ramtest (Membist) cmp_clk/1, 2, 4, 8, or 16
(Programmed in TCU)

MBIST_FAIL Ramtest (Membist) cmp_clk/1, 2, 4, 8, or 16
(Programmed in TCU)

Inputs with Pullups/Pulldowns in MIO.

Pin Name Pullup/
Pulldown

Boundary Scan Shared/Dedicated

TESTMODE Pulldown Yes Dedicated

STCID Pulldown Yes Dedicated

STCICFG[1:0] Pulldown Yes Dedicated

STCICLK Pulldown Yes Dedicated

TESTCLKT Pulldown Yes Dedicated

TESTCLKR Pulldown Yes Dedicated

PLL_TESTMODE Pulldown Yes Dedicated

PLL_CHAR_IN Pulldown Yes Shared

PLL_CLAMP_FLTR Pulldown Yes Shared

PLL_DIV4[6:0] Pulldown Yes Shared

PLL_DIV2[5:0] Pullup Yes Shared

PLL_TRST_L Pullup Yes Shared

TDI Pullup No Dedicated

TMS Pullup No Dedicated

TRST_L Pullup No Dedicated

TABLE 9-3 Shared Pins Functionality and Frequencies
9-10 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

9.1.3 MIO Floorplan in OpenSPARC T2
MIO floorplan is still in the works in the context of OpenSPARC T2 . The floorplan
will be captured when it becomes final.

9.1.4 MIO Clocking
MIO would be clocked off of cmp clock with io2x sync enables and with iol2clk .
Both cmp clock ,iol2clk and io2x sync enables would be generated from cluster
headers in MIO out of gclk and ccu_cmp_io2x_sync enable input signals from global
clock tree CCU repectively . The signals that would get flopped in MIO fall under
the following 3 categories :

Debug port signals from db1 module (166 wires @ cmp_clk launched off of io2x
sync enables in db1)

Ramtest signals from tcu module (41 wires @ cmp clk /10 launched off of io2x sync
enables in tcu).

Debug signals from DMU (16 wires @ iol2clk from db0 module)

Each I/O cell in MIO that is bi-directional or output only will contain two flops
both clocked by the cmp_clk generated by MIO's cluster header (s) : one to latch the
debug port signal on the io2x sync enable , the other to latch the ramtest signal on
the io2x sync enable. Since the ramtest pins are shared with the debug pins, only one
of these two flops will drive the output driver of the I/O cell at any time depending
on whether the debug port has been enabled or testmode has been enabled (debug
mode and testmode are mutually exclusive).

Note that there is a 3rd input to the driver which is a feedthrough path from certain
OpenSPARC T2 clusters like NCU and TCU where the signal gets driven straight
out of the source block in OpenSPARC T2 without any flop in MIO. W.r.t DMU , this
3rd leg also gets used after the DMU debug wires are retimed in MIO.

Thus each MIO output only or bi-di I/O cell will have a 3:1 mux before the
functional input to the driver , with two legs of the mux coming from flops (debug
and ramtest paths) and the 3rd leg coming as a feedthrough from some source block
in OpenSPARC T2 or from retiming flops in MIO for DMU signals . This will be
further illustrated in the descriptions of the I/O cells in subsequent sections of this
document.

Since MIO contains 217 I/O cells which may be distributed over as much as 17
mm (depending on how the floorplan turns out to be), MIO will incorporate 4 cmp
cluster headers with each cmp cluster header driving cmp_clk and io2x sync_enables
to a group of I/O's . There will be 4 gclk inputs to MIO from the global clk tree
feeding these 4 cluster headers .Also the cmp_clk coming out from each cluster
Chapter 9 Miscellaneous I/O (MIO) Specification 9-11

header will be distributed to all the I/Os being served by that cluster header over
a clock distribution network with clock skews being maintained within a certain
value consistent with other clusters in OpenSPARC T2 .

FIGURE 9-1 IO2X Sync Enable Timing w.r.t l2clk

Each cmp cluster header incorporates two staging flops for the io2x sync enable .
In addition, the io2x sync enable generated from each cmp cluster header will be
flopped once in MIO before being distributed to all the I/O's in that group. This is
also consistent with the usage model of sync enables in OpenSPARC T2 . (Please
refer to OpenSPARC T2 CCU Spec). This staging will get done in the module called
mio_syncreg_ctl. There are 4 instances of this module, on e per cmp cluster header.

The following timing diagram shows io2x sync enables w.r.t l2clk (cmp_clk).

The following diagram shows the global clocking and sync enable distribution
(from CCU) to DB1/TCU and MIO blocks.
9-12 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 9-2 Global Clock and sync enable distribution to DB1/TCU and MIO

The following timing diagrams show the scheme of launch of data from DB1/TCU
off of cmp_clk with io2x sync enable and capture of same data in MIO I/O cell on
cmp_clk with io2x sync_en.
Chapter 9 Miscellaneous I/O (MIO) Specification 9-13

FIGURE 9-3 Data Transfer from DB1 to MIO

Note – The Membist data transfer mechanism from TCU to MIO is identical to the
one described above. The only difference is that since the membist data would be
changing at the rate of cmp_clk/10 = 1.4 Ghz/10 = 140 mhz in TCU, each Membist
data beat from TCU to MIO will be valid for a period of 5 cmp_io2x_sync_en pulses
(5x140 = 700 mhz).

In addition to the cmp_clk cluster headers , MIO also incorporates a iol2clk cluster
header by which iol2clk (350 mhz nominal) gets which also gets generated off of
gclk_2 connected to MIO . This clock is used to retime the 16 DMU debug wires in
MIO and is also directly fed as data input to the feedthrough leg of one of the I/Os
in MIO to generate the debug port reference clock (DBG_CK0).
9-14 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

The idea is that the Logic Analyzer should use this clock as the reference clock when
sampling the debug port signals. Eventhough the debug port signals are generated
off of cmp_clk in DB1 which is generated from the same gclk tree , due to skew
between the two gclks to MIO and DB1 and also skew across clock distributions in
MIO and DB1, these data signals would have a skew among each other and also w.r.t
DBG_CK0. Using training sequences on the debug port , the LA will be calibrated to
account for this skew . Please refer to section 4.1 for description of the training
sequnece . This deskewing in the LA has to be done only once and should hold
valid across PVT variations as the propagational variations of the debug port wires
across PVT and capacitive coupling related variations @ 700 mhz (nominal) is
largely mitigated due to retiming of the debug signals in each I/O.

9.1.5 DFT Support for MIO
MIO implements the following DFT support for its I/O's :

Boundary Scan : All I/O's im MIO other than TCK,TDI,TMS,TRST_L, TDO,
IMP_MON_PD, IMP_MON_PU,PMI, PMO,BURNIN,PGRM_EN implement
boundary scan. Boundary scan is controlled by TCU through the following signals
from TCU :

tcu_mio_bs_scan_in

tcu_mio_bs_highz_l

tcu_mio_bs_scan_en

tcu_mio_bs_clk

tcu_mio_bs_aclk

tcu_mio_bs_bclk

tcu_mio_bs_uclk

tcu_mio_bs_mode_ctl

All output only and bi-di I/O's of MIO that would be on Bscan chain would have
Bscan cell on data out and output enable paths (as all output only I/O's in MIO
would have tri-state control). Input only I/O's and bi-di I/O's that are on Bscan
chain would have Bscan cell on receiver data in path.

The Bscan scheme in the MIO I/O cells is captured in detail in the descriptions of
the MIO I/O cells in subsequent sections of this document. The Bscan cell is a
library cell (cl_sc1_bs_cell2_4x) composed of a Boundary Scan Flop and a Mux to
select the functional input vs Bscan flop output . Also incorporated in the Bscan
scheme is support for wrap-back testing of the output driver by feeding the receiver
output to the “d” input of the Bscan cell on the data out path.
Chapter 9 Miscellaneous I/O (MIO) Specification 9-15

The following figure shows the schematic for the cl_sc1_bs_cell2_4x cell which is
the Bscan cell being used in MIO.

FIGURE 9-4 MIO's Boundary Scan Cell (cl_sc1_bs_cell2_4x) Schematic

Note – For all the dedicated input pins in MIO with Bscan, the “mode” port of the
BS cell on the receiver is tied to 1'b1(enabling the “q” output of the cell to be only
driven by the pin and not by the Bscan cell on an update). Thus the Bscan cell can
perform a shift or capture , but can never do an update during Boundary Scan. Also,
for the inputs that are shared with the debug pins, TCU will drive the
tcu_mio_bs_moce_ctl as follows:

TESTMODE==1'b1 ==> TCU drives bs_mode_ctl to 1'b1

TESTMODE==1'b0 ==> bs_mode_ctl is under control of JTAG, so normalboundary scan
can occur

This way, when we are in TESTMODE, all of the shared pins will bypass the boundary scan
cells coming into the chip logic. This allows scan to operate correctly.When we are not in
TESTMODE, bs_mode_ctl will normally be 1'b1 anyway and so the mux will be bypassed.
Only if JTAG is programmed for a boundary scan test will bs_mode_ctl be 1'b0; TCU will
block the effectssince TESTMODE==0, and PLL should block its shared pins with
PLL_TESTMODE ==0.

Manufacturing/ATPG Scan :
9-16 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

All flops in MIO are on manufacturing scan chain and would support regular scan
features like scanin,scanout,scandump,flush reset under control of TCU through the
following signals from TCU :
tcu_aclk
tcu_bclk
 tcu_scan_en
 tcu_pce_ov
 scan_in
 scan_out
 tcu_mio_clk_stop

9.2 Debug Port
OpenSPARC T2 debug port width is defined by 166 signals for repeatability to
complement Checkpoint /Replay . When not being used to monitor the repeatability
signals (described in section 3.2.1.1) , the port would get used to monitor various
other signals in OpenSPARC T2 in 5 different modes : SOC Observability,Tester
charac/CPU debug , and core-soc debug.

These modes are programmable by SW by writing to the OpenSPARC T2 Debug
Port Configuration register. In all the above 5 modes other than the NIU debug
mode and PCI_EX debug modes, the debug port will be driven @ 2 x iol2clk
frequency (2 x 350 mhz = 700 mhz nominal), with iol2clk being sent out on
DBG_CK0 pin to the LA for sampling and aligning the data. In essence this is
equivalent to data being driven on both edges of iol2clk . Commercially available
LA's (like Tektroniks) do have the ability to support DDR signal sampling with the
Tektroniks LA currently being able to support a max of 900 mhz DDR (both edges of
450 mhz clk). OpenSPARC T2 's debug port would employ double pumping CMOS
signals @ 1.1 V and would not need to meet the timing and skew specs ascociated
with traditional Memory multi-drop DDR2 interfaces. Also the Tektroniks LA probes
would be connector less thereby reducing the load on the debug port drivers.

As mentioned before, the debug port pins would be shared with manufacturing
scan test and membist signals so that with the debug ports disabled , some of these
pins can be used for manufacturing scan and Membist of OpenSPARC T2 . The
muxing of the debug port signals with the manufacturing scan test and membist
signals would happen in the I/O cell itself in the mio.v block.

Upon chip reset , the debug port would come up disabled thereby saving power on
the I/O's. The debug port can be enabled by writing to the Debug_en bit of the
Debug Port Configuration Register (either by SW or by Jtag CREGs access) . The
effect of the write would take place immediately and not after the next warm reset.
Chapter 9 Miscellaneous I/O (MIO) Specification 9-17

The muxing of the debug signals in OpenSPARC T2 on the debug port and also
muxing of the debug port signals with the manufacturing scan test signals,membist
signals and other miscellaneous signals is shown in the figure below .

The I/O's in OpenSPARC T2 debug port can be thus broadly classified as falling
under 5 categories :

I/Os which are shared between debug port and DMO/membist signals that are
outputs. For this group of signals , the Drive_en to the I/O's would get generated as
:

assign dbg_mio_drv_en_muxbist_op = debug_en | tcu_dbg_jtag_membist_mode;

I/Os which are shared between debug port and Manufacturing Scan test signals
that are outputs. For this group of signals, the Drive_en to the I/O's would get
generated as follows :
assign dbg_mio_drv_en_muxtest_op = debug_en | mio_dbg_testmode;

I/O's which are shared between debug port and Manufacturing Scan test signals
that are inputs. For this group of signals, the Drive_en to the I/O's would get
generated as follows :
assign dbg_mio_drv_en_muxtest_inp = debug_en & ~mio_dbg_testmode;

I/O's which are shared between debug port and PLL test /char signals that are
inputs. For this group of signals, the Drive_en to the I/O's would get generated as
follows :
assign dbg_mio_drv_en_muxtestpll_inp = debug_en & ~mio_pll_testmode;

I/O's which are always driven as outputs in the debug mode . For this group of
signals, the Drive_en to the I/O's would get generated as follows :
Assign dbg_mio_drv_en_op_only = debug_en.

Where “debug_en” is “Debug_En” bit in Debug Port Config register .
9-18 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 9-5 OpenSPARC T2 Debug Port Layout across DBG0,DBG1 and MIO

The pin sharing scheme in MIO is further explained in detail in section 5.2 of the
document.
Chapter 9 Miscellaneous I/O (MIO) Specification 9-19

9.2.1 DTM Support in MIO
MIO I/O cells (n2_mio_cell_out_bscan,n2_mio_cell_bi_bscan,
n2_mio_cell_bi_pd_bscan, n2_mio_cell_bi_pu_bscan) contains a 2:1 mux before the
A flop to support DTM capability in OpenSPARC T2 . Under control of CCU, the
ccu_mio_serdes_dtm signal would be asserted to configure MIO in two different
DTM modes . Also CCU would be driving the cmp_io2x_sync_en to MIO with
cmp_dr_sync_enable timing in these two modes.

DTM mode support on OpenSPARC T2 for MIO and DB1 modules is described in
detail in the OpenSPARC T2 Debug Spec version 0.6 or later.

9.2.2 Timing Spec for Debug Port Signals for Reliable
LA Sampling
For the Tektronix P6860 LA , the 166 pin debug port of OpenSPARC T2 would be
connected to (166/16) = 11 pods (where each pod has 32 data connections and 2
clock connections). With the data being driven @ 700 mhz on both edges of a 350
mhz clock, the LA would be configured in a half channel mode with 11 pods
providing a total of 332 memory locations storing data over every 350 mhz clock.
166 of these memory locations would be written on +ve edge of 350 mhz clock, and
the other 166 on the negative edge of the clock on every cycle.

Minimum time for which data should be valid for (eye width) to be sampled reliably
by the 8 Ghz internal clock of the LA is 625 psec (325 setup, 300 hold) which is a
period of five 8 Ghz clocks (5 x 125 = 625 psec).

Data sampling window w.r.t 350 mhz external clk is pretty wide from -16 nsec to +
8.75 nsec. i.e signal to signal skew is 24.75 nsec max.At the beginning, the skew of
each bit can be manually cancelled out before being displayed on the analyzer. This
is the calibration process and would be typically done only once at the beginning
on a bit by bot basis based on atraining sequenc being sent out on the debug port.
The training sequence would be a repetitive pattern of 3 one's, followed by 1 zero :
this assymetrical pattern would ease the alignment and deskewing of the data bits in
the LA in case the skew for some bits is as large as one cycle .

Not e that once a calibration is done, the maximum cycle to cycle PVT skew that
the LA can tolerate before it stops reliably sampling data across different PVT
corners is measured as : clock period for data change rate – minimum eye width (625
psec). So for the 700 mhz data rate, the max PVT skew that the clock and data need
to maintian through the chip,package and board is 1.4ns – 0.625 ns = 0.775 nsec. This
jitter would cover PVT variations and bit to bit capacitive coupling effect related
variations through the package and board. To reduce the PVT skew component
within the chip , the 700 mhz debug signals would get retimed in the i/o cell
(mio.v) as shown in Illustration 6.
9-20 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

9.3 MIO RTL Hierarchy
The MIO block (mio.v) would consist of the following design sub-blocks :

1 io cluster header (module name : clkgen_mio_io, instance name :
mio_clk_header_iol2clk). This would generate iol2clk in MIO which would be fed as
data input to I/O which drives the DBG_CK0 pin.

4 cmp cluster headers(module name : clkgen_mio_cmp, instance names :
mio_clk_header_l2clk_0,mio_clk_header_l2clk_1,mio_clk_header_l2clk_2,
mio_clk_header_l2clk_3) . Each cluster header provides the cmp_clk for a group of
I/O's in MIO and staged version of ccu_cmp_io2x_sync_en from CCU to that I/O
group. This sync_en(cmp_io2x_sync_en_out) gets further flopped in the
mio_syncreg_ctl module to generate the final sync enable to the group of I/O's.

Sync Enable Staging Module (module name : mio_syncreg_ctl, instance names :
io2xsyncen_reg0,io2xsyncen_reg1,io2xsyncen_reg2,io2xsyncen_reg3). This module
contains a staging flop for the io2x sync enable generated from the corresponding
cmp cluster header.

MIO glue logic (module name : mio_muxsel_ctl, instance name : muxsel). This is a
very small module in MIO which would contain small amount of glue logic like
invertors to generate mux selects to different MIO I/O groups . It would also contain
retiming flops for the 16 DMU debug wires coming from db0 module.

Process Monitor Control Pins : PMI[1:0] and PMO. These do not have any drivers or
receivers but are modelled as “assign” statements in rtl.

MIO I/O cells. There are 9 different flavors of I/O cells. Thee total number of
instantiations of I/O cells equals 214. These 5 flavors of I/O cells are as follows :

Output Only (No Bscan) . Module name : n2_mio_cell_out

Pins driven : TDO,IMP_MON_PU,IMP_MON_PD

Input Only (No Bscan) . Module name : n2_mio_cell_in

Pins driven : TCK,PGRM_EN,BURNIN

Output Only (With Bscan) . Module name : n2_mio_cell_out_bscan

Pins Driven :
XAUI1_ACT_LED,XAUI1_LINK_LED,XAUI0_ACT_LED,XAUI0_LINK_LED,STCIQ,
DBG_CK0,DBG_DQ[165:158],DBG_DQ[148:147],DBG_DQ[102:85],
DBG_DQ[71:0],TRIGOUT,PEX_RESET_L,
SSI_MOSI,SSI_SCK,FATAL_ERROR,XAUI_MDC, PLL_CHAR_OUT[1:0]

Input Only (with Bscan) . Module name : n2_mio_cell_in_bscan
Chapter 9 Miscellaneous I/O (MIO) Specification 9-21

Pins driven : DIVIDER_BYPASS, PLL_CMP_BYPASS,PLL_DR_BYPASS, TRIGIN,
PB_RST_L, BUTTON_XIR_L, PWRON_RST_L,
SSI_MISO,SSI_EXT_INT_L,VREG_SELBG_L,PWR_THRTTL_0[2:0],PWR_THRTTL_1[
2:0]

Bidi (with Bscan). Module name : n2_mio_cell_bi_bscan

Pins Driven : DBG_DQ[139:103],DBG_DQ[84:72],XAUI_MDIO

Input Only (No Bscan) with Pullup . Module Name : n2_mio_cell_in_pu

Pins Driven : TDI,TMS,TRST_L

Input Only (with Bscan) with pulldown . Module name : n2_mio_cell_in_pd_bscan

Pins Driven :
PLL_TESTMODE,TESTMODE,STCID,STCICFG[1:0],STCICLK,TESTCLKT,TESTCLK
R

Bidi (with Bscan) with Pullup . Module Name : n2_mio_cell_bi_pu_bscan

Pins Driven : PLL_DIV2[5:0](shared with DBG_DQ[156:151]),PLL_TRST_L(shared
with DBG_DQ[150])

Bidi (with Bscan) with pulldown . Module Name : n2_mio_cell_bi_pd_bscan

Pins Driven : PLL_CHAR_IN(shared with
DBG_DQ[157]),PLL_CLAMP_FLTR(shared with
DBG_DQ[149]),PLL_DIV4[6:0](shared with DBG_DQ[146:140])

XAUI_MDIO pin hookup is shown in the mio.sv rtl snippet below :

n2_mio_cell_bi_bscan cell_211 (

.data_to_core (mdi),

.bs_scan_in (1'b0),

.bs_scan_out (),

.pad (XAUI_MDIO),

.data_oe (mdoe),

.ain_mux_data (1'b0),

.bin_mux_data (1'b0),

.cin_mux_data (1'b0),

.ain_mux_sel (1'b0),

.bin_mux_sel (1'b0),
9-22 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

CHAPTER 10

Debug

This chapter contains the following sections:

■ Section 10.1, “Overview” on page 10-1

■ Section 10.2, “OpenSPARC T2 Debug Features” on page 10-2

■ Section 10.4, “Core Interface with the TCU” on page 10-43

■ Section 10.5, “Debug Block Interface Signals” on page 10-51

■ Section 10.6, “Debug Blocks (dbg0.v and dbg1.v)” on page 10-61

10.1 Overview
This document describes OpenSPARC T2 HW features for post silicon debugability
which involves debugging any issues that interfere with early bringup as well as
debugging the difficult, complex bugs that eluded pre-silicon verification, and are
unexpected or unusual corner cases. The overall goal of implementing these features
is to make silicon debug more efficient, shortening the time to root cause complex
bugs and thereby reducing time to remove and replace.

10.1.1 Additional Relevant Documents
OpenSPARC T2 Programmer’s Reference Manual Hardware Debug Chapter

OpenSPARC T2 Programmer’s Reference Manual Error Handling Chapter

OpenSPARC T2 Programmer’s Reference Manual Clocks,Reset,RED State Chapter

OpenSPARC T2 TCU Specification
10-1

10.2 OpenSPARC T2 Debug Features

10.2.1 Observability

10.2.1.1 CLK/PLL Observability

OpenSPARC T2 will provide clk/pll observability on pll_char_out[1:0] pins
connected to pll_charc block in PLL. There will be two pairs of pll_char_out[1:0] pins
coming out of OpenSPARC T2 : one for CMP PLL, and the other for MCU/DRAM
PLL. In normal mode when the PLL's are not being characterized, these pins will be
driven to 2'b0. The following tables show how the pll_char_out[1:0] pins will be
driven for the respective PLL's.

TABLE 10-1 CMP PLL pll_char_out[1:0]

of pll_char_in pulses
= x

pll char decode pll_char_out[1] pll_char_out[0]

x< 64

x mod 64 = 0 0xxx000 fvco/4 = 350MHz pll_lock

x mod 64 = 1 0xxx001 fvco/4 = 350MHz fvco/4 = 350MHz

x mod 64 = 2 0xxx010 raw_clk fb_clk

x mod 64 = 3 0xxx011 fb_clk raw_clk

x mod 64 = 4 0xxx100 ref fb

x mod 64 = 5 0xxx101 fb ref

x mod 64 = 6 0xxx110 up dn

x mod 64 = 7 0xxx111 dn up

x > or = 64

64 - 95 10xxxxx fl1clk/4 = 350MHz fl1clk/4 = 350MHz

96 - 255 11xxxxx fvco/4 = 350MHz fvco/4 = 350MHz
10-2 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

10.2.1.2 Debug Port

OpenSPARC T2 will have a 166 pins wide debug port which will be used as an
observability vehicle to promote repeatability ,tester characterization, chip hang
debug and general CPU and SOC debug. The debug port can be enabled through
SW CSR access and Joint Test Action Group (JTAG) CREG access . The debug port
can be configured into any one of 5 observability modes based on CSR bits
(Dbg_conf[2:0]bits in OpenSPARC T2 Debug Port Configuration register : appendix
10.3.1) which are accessible by SW and also JTAG through CREG access . The
following are the different observability modes of the debug port :

000 : SOC observability mode, OpenSPARC T2 Reset State (Reset State Machine
Output), MCU, SII->L2,L2->SIO signals to help debug chip hangs (sent out on 159
pins)

001 : Tester charac/cpu debug mode ,{cpu_id,thread_id} on per L2 bank basis and
cpu instruction commit status on per CPU basis, sent out on 160 pins

010 : Repeatability mode , SII and NCU inputs from DMU and NIU on debug port
double pumped on 166 pins

011 : Core & SOC Debug , SII and NCU inputs from DMU and cpu instruction
commit status on per CPU basis .

100 – 111 : Reserved for future use

TABLE 10-2 MCU/DRAM PLL pll_char_out[1:0]

of pll_char_in pulses
= x

pll char decode pll_char_out[1] pll_char_out[0]

x< 64

x mod 64 = 0 0xxx000 Fvco/5 = 333 MHz pll_lock

x mod 64 = 1 0xxx001 Fvco/5 = 333 MHz Fvco/5 = 333 MHz

x mod 64 = 2 0xxx010 raw_clk fb_clk

x mod 64 = 3 0xxx011 fb_clk raw_clk

x mod 64 = 4 0xxx100 ref fb

x mod 64 = 5 0xxx101 fb ref

x mod 64 = 6 0xxx110 up dn

x mod 64 = 7 0xxx111 dn up

x > or = 64

64 - 95 10xxxxx Fl1clk/5 = 333 MHz Fl1clk/5 = 333 MHz

96 - 255 11xxxxx Fvco/5 = 333 MHz Fvco/5 = 333 MHz
Chapter 10 Debug 10-3

These modes will be described in detail in the following sub-sections

Repeatability Mode

In this mode , a total of 353 signals (in iol2clk clk domain : cmpclk/4 or 350 MHz
nominal) will be routed to debug.v (from NIU and DMU)From debug.v, 166 wires
will get driven @ 700 MHz to the debug pins. These signals capture both inbound
DMA and PIO returns from NIU and PCI_EX blocks in OpenSPARC T2 to SII and
NCU and will be used as bus trace for checkpoint/replay scheme in OpenSPARC
T2.These 353 signals and rate conversion to debug port frequency are shown below.

dmu_ncu_wrack_vld;

dmu_ncu_wrack_tag[3:0];

dmu_ncu_stall;

// total 6 bits @ 350 MHz = 3 pins @ 700 MHz (DDR)

dmu_ncu_vld;

dmu_ncu_data[31:0];

// 33 bits get driven over 4 clocks. 8 clocks minimum before next set of 4 clks

// so total of 132 bits to be emptied over 12 350 MHz clks, i.e. 66 bits DDR over

// 12 clocks , i.e. 6 pins @ 700 MHz (DDR)

niu_ncu_stall;

niu_ncu_vld;

niu_ncu_data[31:0];

// 34 bits @ 350 MHz == 17 pins @ 700 MHz (DDR)

dmu_sii_hdr_vld;

dmu_sii_reqbypass;

dmu_sii_datareq;

dmu_sii_datareq16;

dmu_sii_data [127:0];

dmu_sii_be[15:0];

// 148 bits @ 350 MHz = 74 pins @ 700 MHz (DDR)

niu_sii_hdr_vld;

niu_sii_reqbypass;
10-4 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

niu_sii_datareq;

niu_sii_data [127:0];

niu_sio_dq;

// 132 bits @ 350 MHz = 66 pins @ 700 MHz (DDR)

total = 66 + 74 + 17 + 3 + 6 = 166 pins @ 700 MHz (DDR)

Note – {dmu_ncu_vld,dmu_ncu_data[31:0]} take 5 iol2clk cycles to be seen on the
debug port at the output of the chip from the time they are driven from dmu to ncu.

All other signals in the repeatability list take 3 iol2clk cycles to be seen on the debug
port output at the output of the chip from the time they are driven to SII and NCU.

Tester Characterization / CPU Debug mode

The signals that will be observed on the debug port in this mode will be used for
general CPU debug and tester characterization of multi-threaded diags and also for
CPU speed binning on the tester. Each CPU will have 4 signals driven to debug.v
and each L2 bank will have 6 signals driven to debug.v. All these signals will be at
CMP clk frequency i.e. 1.4 GHz nominal. Since there are 8 cores and 8 L2 banks , this
will lead to a total of (4+ 6) x 8 = 80 signals @ 1.4 GHz driven to debug.v. Since the
debug port will drive the signals out @ 700 MHz, debug.v block will sample 2
consecutive cycles of these 80 bit wires and drive out 160 signals @ 700 MHz to the
debug pins for LA sampling.

For each CPU, these 4 wires are chosen as follows :

There are 2 pipes / core and 2 thread groups per core. Since each core has 2 thread
grps, we can have on 2 bits per thread grp/core : (i.e. total of 4 bits /core) :

00 : instruction non committed

01 : Control Transfer instruction committed in pipe

10 : Integer or FPU instruction committed in pipe

11 : Ld/Store instruction committed in pipe

i.e. we will see every instruction committed per cycle in each thread group . We
don't want to know which thread that instruction belongs to though ..

For each L2 bank , the 6 wires are VCID[5:0] {CPU_ID[2:0],Thread_ID[2:0]} of each
crossbar packet to that bank on every cycle.
Chapter 10 Debug 10-5

The combination of these two groups of signals will be adequate to keep track of
execution of instructions in both single and multi-threaded diags on the tester and
also could be useful for CPU speed binning on the tester .

SOC Observability Mode

This mode will be used to capture a variety of critical SOC signals which will be
helpful to debug chip hangs and also general debug of PCI_EX logic in OpenSPARC
T2. The following is the breakup of the signals in this mode :

5 bit encoded state for Reset State Machine (has 20 states) from rst.sv to mio.sv to
monitor reset state on the tester and LA . Sent out at sys_clk frequency from Reset
block in OpenSPARC T2 (feedthrough in MIO) on 5 pins.

Each MCU will send the following NEW signals to debug.v which will be useful to
debug MCU hangs/scheduler issues or MCU error handling issues on both
FBDIMM channel errors and ECC errors.

These signals will all be synchronized by MCU to the iol2clk domain (350 MHz
nominal) and sent to debug.v. This leads to a total of 21 wires / per MCU. Since
there are 4 MCU's , this will lead to a total of 84 wires to debug.v from all MCU's
together.

mcu_dbg_rd_req_in_0
[3:0]

Read Request from L2 bank 0 to MCU (id + valid)

mcu_dbg_rd_req_in_1
[3:0]

Read Request from L2 bank 1 to MCU (id + valid)

mcu_dbg_rd_request_out[4
:0]

Read ack from MCU to L2 bank 0 or 1 (id + valid +
dest_L2_bank)

mcu_dbg_wr_req_in_0 Write req valid from L2 bank 0

mcu_dbg_wr_req_in_1 Write req valid from L2 bank 1

mcu_dbg_wr_req_out[1:0] 0,1,2,3 Writes completed at DRAM indication

(MCU dispatches up to a max of 3 writes on any cycle
on 2 FBDIMM channels : then samples information coming
FBDIMM channels to see if there were any errors , if
no errors reported, MCU interprets as all writes
completed)

mcu_dbg_mecc_err MCU has detected an mecc error on a L2 read or scrub

mcu_dbg_secc_err MCU has detected a secc error on a L2 read or scrub

mcu_dbg_fbd_err MCU has detected a FBDIMM channel error

mcu_dbg_err_mode FBDIMM interface logic has gone into error handling
mode . This bit stays on until error handling
complete.
10-6 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

Debug.v will drive this information out on 84/2 = 42 pins of the debug port at 700
MHz.

SII and SIO will send the following signals to debug.v which will be useful to debug
L2 hang cases (SII sent DMA request to L2, L2 never sends an ack or data return
back) :

sii_dbg_l2t[0-7]_req[1:0] : Req type encoded on 2 bits from sii to each l2t bank

(00 : no request, 01 : RDD, 10 : WRI, 11 : WR8)

l2t[0-7]_dbg_sii_iq_dequeue : L2 dequeue from IQ

l2t[0-7]_dbg_sii_wib_dequeue : L2 dequeue from IOWB

l2b[0-7]_dbg_sio_ctag_vld : response valid from L2 to SIO

l2b[0-7]_dbg_sio_ack_type : Read or Wr ack from L2 to SIO

l2b[0-7]_dbg_sio_ack_test : Ack to DMU or NIU

Which leads to a total of (7x8) = 56 wires for all L2 banks together @ 1.4 GHz to
debug.v. debug.v will drive this information out on 56x2 = 112 pins of the debug
port @ 700 MHz.

Thus total number of debug pins that will be used up in the SOC observability mode
will be (42 + 112) = 154.

10.2.2 Repeatability
In order to effectively run processor tests in the post-silicon phase with or without
the presence of I/O and debug them, we need to have a high level of repeatability
within OpenSPARC T2's synchronous clock domains . These include the CPU clock
domain (cmp clk domain:1.4 GHz nominal covers SPARCs, crossbar, L2's, portions of
SII,SIO,NCU), the DRAM domain(266/333/400 MHz covers MCU logic before
SerDes), and the I/O clock domain (350 MHz nominal covers rest of SII, SIO,NCU).

This will allow us to run a group of tests many times, with slightly different starting
parameters (e.g. SPARC threads starting at slightly different times, or with different
cache initialization) that shouldn’t affect the outcome, looking for failing corner
cases. When a failing case is found, the test and the particular seed parameters will
be used to simulate the test in the pre-silicon environment, to see what caused the
failure.

Not only that in case there are failures in some systems in the lab after days and
weeks of system stress testing , this approach of recreating the failing condition in
the chip RTL can reduce weeks of effort to root cause the problem which in past Sun
chips has invariably resulted in pushout of RR schedules.
Chapter 10 Debug 10-7

The overall approach involves very close interaction between some Debug Software
(part of Hypervisor SW) and OpenSPARC T2 chip hardware. This is commonly
known as checkpoint/replay mechanism where the debug software will periodically
put the synchronous portion of the chip (as described before) into an idle state (idle
all threads other than one, and also stall I/O into the synchronous domain) at what
are called checkpoints. Once the synchronous portion of the chip is put into this idle
state, the debug SW will dump all SW visible state of the machine to memory, and
then initiate a “debug reset” of OpenSPARC T2 .

The debug software will initiate by writing a 1 to the DBR_GEN bit in RESET_GEN
register. The RESET_GEN and RESET_SOURCE registers are shown in Appendix
10.3.2 and 10.3.3.

The Debug Reset is a flavor of Warm Reset in OpenSPARC T2 which is identical to
the functionality of Warm Reset.

This Debug_Reset will put a majority of the synchronous domain of the
OpenSPARC T2 chip into known state (all SW invisible state and some of the SW
visible state also). So before invoking this reset, SW should dump the SW visible
state that loses value over debug_reset to memory , and retrieve it back from
memory after the reset.

Note – OpenSPARC T2, like previous Sun processors , keeps a fair amount of
architected state unchanged for warm reset. Also contents of arrays (TLB’s , L1/L2
caches etc) are unchanged . Please refer to Appendix 10.2 for a list of OpenSPARC T2
SW visible state that will be lost over Debug Reset and will need to be retrieved after
debug_reset.

The duration of the debug reset is small enough (in the range of 40 microsecs), so
that to address the data integrity in DRAM during the debug reset OpenSPARC T2
will either (1) address it through self refresh during the debug reset or (2) auto-
refresh in small intervals before going to debug reset and then doing some in small
intervals after coming out of debug reset. (this way we can compensate for missing
about 6 or 7 refreshes over the 40 microsec).
10-8 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

Note – Self refresh will take additional time for link re-initialization which is :
200 mcu clks (end of self refresh -> dll lock on sdram) == 600 nsec at 333 MHz
+
12 microsecs (to re-initialize fbdimm channel : included in this is 100 nsec time for
bitlock of serdes
After debug_reset, the reset vector will be fetched from memory from a different
location (0x000000020) than a regular reset . This is because the boot code for a
debug_reset will be different than a regular reset. The boot code will do several
things at the beginning including program the Memory refresh registers, re-instate
the SW visible state to the state before reset for those states that lose value over
debug reset), remove the stall of inbound I/O to the synchronous domain of the chip
from NIU and PCI_EX, before enabling all threads to start executing.

In normal operation POR and warm reset both trap to the RSTVaddr | 0x20
(0xFFFFFFFFF0000020) which maps to ROM. To enhance repeatibility, OpenSPARC
T2 will have the capability of directing POR ,WMR or DBR to RAM. In order to POR
or WMR or DBR from RAM at location ,(0x000000020), hyperprivileged software can
set the ASI_WMR_VEC_MASK register.

The idea is that by capturing the SW visible state of OpenSPARC T2 (in the
synchronous domain of the chip) on the last checkpoint prior to the failure and by
initializing the synchronous portion of OpenSPARC T2 to known state , we can
create a commong starting point between silicon and the synchronous portion of the
chip rtl. Then by running the same code sequence on the sparcs from the last
checkpoint to the failure point and capturing the I/O traffic to the SII,NCU inputs
(synchronous I/O interface of OpenSPARC T2: debug port mode 000) from DMU
,NIU on the debug port lossless and feeding it back to the same nodes in the rtl, we
can create the event sequence in rtl leading to the failure .

Note – For Checkpoint/Replay, we do not need to observe the FBDIMM interface
on the debug port . This is because once the links are trained data will always come
back to the MCU data return fifo in a fixed latency from the time of issue of the
request. After training , MCU logic will record this latency (in terms of MCU clocks
) in MCU Channel Read Latency Register (shown in Appendix 10.3.5). So the debug
software can probe this value and feed that same latency to the equivalent point in
the rtl and thereby achieve cycle accurateness w.r.t silicon without having to probe
the fbdimm interface.

Thus this checkpoint/replay approach is intrusive on the state of the machine in the
context of the tests,applications running on the chip in that it periodically halts all
threads and I/O and takes the machine to reset state. This might change the timing
of events to cause the bug to manifest itself later in time than usual, but eventually it
will with millions of cycles of instructions executed in between checkpoints.And
when it does , it can be recreated in rtl .
Chapter 10 Debug 10-9

10.2.2.1 FBDIMM Link training after Debug Reset

Since debug reset will reset MCU , the FBDIMM links will have to be re-trained
after reset deassertion and this will change the FBDIMM data round trip latency for
subsequent requests till the next debug reset. Debug software can either live with
this by reading the MCU Channel Read Latency Register after every debug reset or
MCU needs to keep sending sync pulses during the debug reset.

To support the latter, MCU will keep a small amount of logic running during
warm/debug reset while the rest of it gets reset through flush mechanism. This logic
will comprise of (i)logic to keep the links enabled and generate sync pulses in a fixed
repetitive manner under SW control and (ii) logic to keep incrementing the read
pointers of the northbound MCU fifo's and 2 synchronizers per fifo (this way during
debug/warm reset , the read and the write pointers constantly increment and are
always offset by 2 : delay through the 2 synchronizers).All this logic will be
physically implemented in a control block in MCU , whose clock tree will be
synthesized and skew matched with the rest of MCU fed by the MCU clk grid.

Also TCU would send a separate stop signal to this block in MCU .This Stop would
be asserted by TCU only during PWR_ON reset and during scandump. It will NOT
be asserted during Warm /Debug Reset. Also all the flops in this block would be on
the regular MCU scan chain but would be warm reset protected, so that during
warm reset : (i) the functional clock would keep on running (as Stop is not asserted)
(ii) while the flush happens , the flops in this block would not be affected as they are
warm reset protected.The A clk going to this block for Scan would be the same as
the aclk_wmr going to the rest of MCU. The B clock would be the same as the B clk
going to the rest of MCU. Thus only during PWR_ON and scan dump would the
flops in this block be flushed and scanned respectively.

Also MCU would support 2 new CSR bits for SW to control this feature . These 2
CSR bits are located in DRAM Debug Trigger Enable register . The 2 bits are as
follows :

1. KP_LNK_UP.

When written to 1'b1 :

(i) Keeps the Southbound Links enabled during the duration of the Debug reset
to send out the sync pulses.

(ii) selects the output of the sync pulse gen logic in the new MCU control module
to generate sync pulses.

When written to 1'b0 :

(i) selects the output of the regular sync pulse gen logic in MCU

(ii) clears the counter for the regular sync pulse gen logic in MCU. (According to
Aaron, the number of zeroes can be upto 42 (max) before he sends a 1 out. So he
is going to start with a 1 itself when he switches over, which should be ok for the
10-10 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

AMB .He may be sending back to back 1's also , which is ok. Only requirement is
to have two 1's not be separated by more than 42 zereos.As long as the
diffference is less than 42 (even 0) , it should be ok)

(iii) takes MCU fbdimm interface state machine to L0 state, where it is ready to
dispatch new read/write requests to the DIMMs.

2. MASK_ERR .

When written to 1'b1 :

(i) makes MCU mask all the errors it normally detects on LFSR mismatches on
ALERT frame patterns coming in from AMB.

Cleared by MCU Hardware 4K cycles after reset when the LFSR's are re-aligned
by MCU.

Note – Both of KP_LNK_UP and MASK_ERR bits are protected on warm reset.

SW-HW interaction to achieve determinism on FMDIMM interface after debug reset:

1. After making sure no pending transactions in MCU , SW sets KP_LNK_UP and
MASK_ERR right before initiating debug reset.

2. Debug reset happens . Whole of MCU gets reset other than the control logic
module which has its clock running keeping the sync pulses going and the fifo
read pointer incrementing every cycle

3. Debug Reset finishes. MCU fbdimm interface State machine comes up in
DISABLED state. Sync acks keep coming but since MASK_ERR bit is set,no errors
are flagged. MCU logic counts 4K cycles after reset and realigns the LFSR's and
clears the MASK_ERR bit.

4. After a certain time T1 (but always fixed from the deassertion of debug reset) ,
SW writes a 0 to KP_LNK_UP bit. This clears the sync pulse gen counter, takes
the FBDIMM interface state machine to L0 state , and selects the sync pulse gen
counter output to generate the sync pulses.

5. After a time T2 from the point where SW wrote KP_LNK_UP with 0, the first
fetch is issued on the southbound link. T2 should be the same all the time.

FBDIMM Interface behavior on Warm reset

The FBDIMM links would be re-trained after every warm reset. The behavior of
MCU during and after warm reset is as follows :

1. Warm reset gets triggered due to PB_RST_L assertion or fatal error in
OpenSPARC T2 or SW writing a CSR bit in Reset_Gen register. KP_LINK_UP and
MASK_ERR = 1'b0 before OpenSPARC T2 goes into warm reset.
Chapter 10 Debug 10-11

2. Warm reset happens. Since KP_LNK_UP = 0, the Southbound Links are shut down
by MCU sometime during the duration of the warm reset. Clocks keep running to
the control module in MCU while rest of MCU gets reset through flush.

3. Warm reset finishes. The MCU state machine comes up in Disabled state and SW
puts it into link training state.

4. Link re-training happens.

10.2.2.2 I/O Quiescing in OpenSPARC T2 During Checkpoint

An inherent requirement for checkpoint/replay in OpenSPARC T2 is to stall I/O to
the synchrnous domain of the chip (SII and NCU inputs) from NIU and PCI_EX
blocks. This is part of the effort to get the chip to a quiescent state on every
checkpoint before dumping SW visible state and asserting debug reset to get the
synchronous portion of the chip to a known state.

This I/O quiescing will get implemented in OpenSPARC T2 under SW control by
having debug.v module contain a couple of CSR bits (NIU_STALL and
DMU_STALL) in OpenSPARC T2 I/O Quiesce Control Reg which SW can set to 1's
by writing a 1 to them. Once these bits are set, debug.v will assert a couple of signals
called dbg_niu_stall and dbg_dmu_stall to NIU and DMU respectively . On seeing
the assertion of these two signals , NIU and DMU should suspend all transactions to
SII and NCU at any convenient point (for NIU can be at a packet boundary ,
whatever is easy to implement and creates least corner cases) and send back
niu_dbg_stall_ack and dmu_dbg_stall_ack to debug.v after they have received all
pending acks and data returns back from SIU and NCU. At the point at which these
two acks are sent to debug.v, the NIU->SII,NCU and DMU->SII,NCU interfaces will
be considered as having quiesced. This applies to interrupts also. Neither DMU nor
NIU should send any interrupt requests to NCU or SII after having sent the acks.
On sampling “niu_dbg_stall_ack and dmu_dbg_stall_ack” signals, debug.v will set
“NIU_STALL_DONE” and “DMU_STALL_DONE” bits in the 2 I/O Quiesce
Control Reg. The debug software which will have been polling these status bits will
then see that both bits are set and will proceed to dump SW visible state of machine
to memory and then initiate a debug reset.

Note that even during the time this interface is quiesced , the Xaui and PCI_EX
interface Serdes links are active and running.

After debug reset, the reset code will clear the NIU_STALL and DMU_STALL csr
bits in debug.v which will cause debug.v to assert a couple of signals to NIU and
DMU called dbg_niu_resume and dbg_dmu_resume. On receiving these “resume”
signals, NIU and DMU will unquiesce their respective interfaces with SII and NCU
and continue issuing transactions to SII and NCU.
10-12 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

10.2.3 Debug Events
OpenSPARC T2 will implement several debug events in SPARC Cores and SOC to
aid debug. The purpose of these debug events is to comunicate with the external
Logic Analyzer to start or stop taking LA traces on the debug port (in any one of the
4 modes) based on these events or to stop clocks in the chip and have the service
processor initiate a full scan dump. These events are generally address matches in
sparc and L2 (which are typically repeaatable by running the same code sequence)
or occurrence of error events in different blocks in OpenSPARC T2.

10.2.3.1 Debug Events in SPARC Cores

Following are the different debug events in Core , under enable/disable control of
SW :

Instruction Breakpoint Match (on a group of 4 threads basis : if hpstate.ibe =1 and a
thread executes an instruction that matches the contents of any enabled fields of
ASI_INST_MASK_REG)

Instruction VA Match (on a per thread basis , if ifetch VA matches against content of
ASI_WATCHPOINT_REG , with “match on Instruction VA” enabled in
ASI_LSU_CONTROL_REG)

Data Access VA Match (on a per thread basis , if data access VA matches against
content of ASI_WATCHPOINT_REG , with “match on Data VA” enabled in
ASI_LSU_CONTROL_REG).

Data access PA match (on a per thread basis , if data access PA matches against data
PA watchpoint address stored in ASI_WATCHPOINT_REG , with “match on Data
PA” enabled in ASI_LSU_CONTROL_REG).

Taken Control Transfer Instruction (if pstate.tct =1 and a control transfer instruction
has been executed like conditional branch,jmps,retry,done)

Precise Error Event (recorded in I-SFSR or D-SFSR)

Disrupting Error Event (recorded in DESR)

Deferred Error Event (recorde in DFESR)

Performance Monitor Event (Counter wrap condition)

Each core will contain DECR register (Debug Event Control Register) which will
give SW the ability (on a per CPU debug event basis) to do either one of the
following :

Do nothing . Debug Event Disabled

Soft Stop, scan, resume (under control of TCU and CCU)
Chapter 10 Debug 10-13

Hard stop , scan (under control of TCU and CCU)

Pulse TRIGOUT pin to trigger LA or Jtag Scan

Note – Soft-stop waits for OpenSPARC T2 core processor activity to quiesce, puts
the processor or domain interfaces in an error-free but unresponsive state, then stops
the clocks. Clocks turn off at the same cycle to all latches, flops and arrays within the
stop domain. The quiescent conditions are domain-specific.

For the OpenSPARC T2 core, a typical sequence of activity is the following. The TCU
activates a soft-stop request signal to the processor core. In response the processor
stops executing instructions and waits for all activity to complete. Then it
deactivates any non-TCU external core interfaces (such as the L2 interface). The
processor then informs the TCU that it has achieved a soft-stop condition. The TCU
then stops the processor's clocks. The main advantage of soft-stop over hard-stop is
that it minimizes the likelihood that the system or chip hangs as a result of the
processor terminating an in-flight command. So in case we want to resume execution
in cores, soft stop should be used and not hard stop. TCU can initiate soft stop to
cores on a per core basis (separate scan enables from TCU). No soft stop will be
initiated to the SOC and L2 because we need to keep memory refresh running for
DRAM and the PCI_EX and XAUI serdes links running.

However during the period when the clock is stopped after a soft stop, the core will
be missing invalidations coming across the crossbar to it from the L2 cache due to
memory operations initiated either by another core or I/O. This will result in the
core losing coherence with memory so soft stop can be used with restart if there is
no I/O activity in the system and the code running on the cores is partitioned in a
way that there is no sharing across the L1's of different cores or if all cores are soft
stopped in unison.

10.2.3.2 Debug Events in SOC

Similar to the SPARC cores. SOC portion of OpenSPARC T2 will have its own set of
debug events and DECR register located in the Debug block (debug.v) in SOC. The
following are the list of debug events in SOC :

■ L2 PA Match in Bank 7

■ L2 PA Match in Bank 6

■ L2 PA Match in Bank 5

■ L2 PA Match in Bank 4

■ L2 PA Match in Bank 3

■ L2 PA Match in Bank 2

■ L2 PA Match in Bank 1
10-14 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

■ L2 PA Match in Bank 0

■ L2 Error (an error has occurred in any of 8 L2 banks)

■ MCU Error (An error has occurred in any of 4 MCU's)

■ SOC Error (An error has occurred in any of SII,SIO,DMU,PEU,NCU)

The Debug Block (debug.v) will contain the SOC_DECR register (SOC Debug Event
Control Register) which will give SW the ability to configure the debug event to do
either one of the following :

■ Do nothing . Debug Event Disabled

■ hard stop , scan (under control of TCU and CCU)

■ Pulse TRIGOUT pin to trigger LA or JTAG Scan

Note – There will not be any soft stop initiated to the SOC and L2 because we need
to keep memory refresh running for DRAM and the PCI_EX and XAUI SerDes links
running : so cannot stop certain logic sections in MCU,PEU and NIU/MAC from
running.

Note that each L2 bank will support a pair of registers to detect PA and VCID
match. These two registers are called L2 Match Mask Register and L2 Compare
Register and will be located within each L2 (l2t.sv) bank. The condition for
asserting a debug event based on these two registers will be as follows :

If ((DATA & MASK == COMPARE) && Valid_data) then assert debug event.

For each of the error related debug events in MCU,L2,NCU,DMC there will be a
similar DEBUG_TRIG_EN CSR bit located in those modules to cover the SOC errors
. Each of those blocks will assert a wire to debug block (debug.v) when they
encounter any error if the corresponding DEBUG_TRIG_EN bit is set to 1.

The debug block will accept those inputs and either initiate a hard stop request or
issue a LA trigger request to TCU.

10.2.4 JTAG Access
OpenSPARC T2 provides several debug capabilities through its JTAG interface. It
implements a JTAG block in its TCU (Test Control Unit) block which will be used to
access not only standard JTAG services but also provides specific debug features.
The JTAG architecture is designed to be compliant with IEEE 1149.1 standard. The
system usage model of this JTAG access capability will be to have a Service
Processor or external JTAG agent connected to OpenSPARC T2 , under whose
control the following Debug Features will be possible in OpenSPARC T2 :
Chapter 10 Debug 10-15

JTAG scan out : this can be done in system , but is destructive. The whole chip will
be scanned out to get a scan dump. Very useful for debugging chip hang cases.

JTAG Shadow Scan : allows for inspection of specific registers while part is running
in system , and is non-destructive. This feature is accessible through private JTAG
instructions .

JTAG Boundary Scan : done in the system. Can either monitor I/O signals non-
intrusively , or can over-write signals to test interconnects between components on
the board. This feature is accessible through private JTAG instructions .

JTAG CREG/UCB : this allows for read or write of specific registers while part is
running in system. Reads are non-destructive. This allows instructions to be sent to
the NCU which then intermixes the transaction with normal requests from the
CPU's. The NCU can then take the results and pass them back to the TCU which can
then send the data serially out on TDO. This feature is accessible through private
JTAG instructions but relies on the NCU to be working in the chip.

Clock Stretch : This feature is accessible through private JTAG instructions. A 32 bit
counter called Reset Counter in TCU will be programmed through SW or JTAG with
the required number of CMP clks in between the first and second warm reset . The
counter will start counting down after the de-assertion of the second warm reset .
When it reaches zero, TCU will initiate clock stretch. There will be a 2 bit DECR in
TCU which SW/JTAG will program for Clock Stretch for this to happen. The
programming of this register can happen around the same time that the Reset
Counter is getting programmed (anytime between first and second warm reset). The
DECR will support 4 encodings : Do Nothing,Hard Stop,Pulse Trigout and Clock
Stretch.

Clock Stop : This feature is also accessible through a private JTAG instructions. With
this feature the chip can be frozen (no clocks running) so the contents are left
unchanged, viewable via scan. Two types of clock stop are supported : hard stop and
soft stop. Soft stop is supported only for cores, while hard stop is supported both for
the cores and OpenSPARC T2 as a whole.

Under control of JTAG, TCU can directly initiate Hard stop of OpenSPARC T2 after
the Reset Counter has expired if TCU DECR was programmed for Hard Stop .
Alternatively TCU can also directly request a hard stop if the TRIGIN pin is asserted
in the system.

TCU can also be made to put individual cores in hard stop or soft stop mode
through dedicated instructions from JTAG specifying hard or soft stop
(TAP_CLOCK_HSTOP and TAP_CLOCK_SSTOP).

Hard and Soft Stop will be described in more detail later in the “Clock stop” section
and also in “OpenSPARC T2 Core Debug Features “ section.
10-16 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

The purpose of hard stop is to stop as fast as possible, though due to di/dt concerns
clocks in different clock domains will be stopped in a staggered fashion. After a
hard stop the chip will probably need a reset before it can be started again. A hard
stop can be used on the entire chip or for individual SPARC cores .

The second method of stop, called “soft stop”, is applicable only to SPARC cores; it
will let the core(s) settle into a quiescent state before stopping clocks. This allows the
cores to be scanned out non-destructively for examination then started up again
from the point code execution left off. During the period when the core clock is
stopped after a soft stop L1 cache invalidations from other cores or the I/O
subsystem will be dropped, leading to a loss of data integrity unless all cores are soft
stopped simultaneously and I/O operations are quiesced.

Single Stepping,Disable Overlap,Cycle Step, Run N Instructions : These are core
specific execution sequences useful for debug and are available through JTAG
interface for stand alone SPARCdebug. More details are in the OpenSPARC T2 Core
Debug Features section.

10.2.4.1 JTAG Scan out

There are two types of scan, manufacturing scan and in system scan. Manufacturing
scan is totally controlled by the pins, while the in system scan is done through the
JTAG controller.

In system scan is done through JTAG instructions. The scan chains are configured
into a single long chain and placed between TDI and TDO. The chains used to
construct the long chain will be configurable.

10.2.4.2 JTAG Shadow Scan

Shadow scan for the cores and L2 will be controlled via JTAG. The core shadow scan
architecture is shown below; the header is a conceptual view of both the cluster and
flop headers combined. Each core shadow scan will be contained in a separate scan
chain, with its own clock headers and controls coming from the TCU. The following
Core and L2 State flops have been identified for Shadow Scan for OpenSPARC T2 :

■ PC[47:2] : 46 bits (OpenSPARC T2 does not implement VA[63:48])

■ PSTATE & HPSTATE: 11 bits

■ TL(Trap Level) : 3 bits

■ TT (Trap Type) : 9 bits

■ TPC (Trap PC)[47:2] : 46 bits

■ TL_for_TT : 3 bits

■ L2 Error Status register
Chapter 10 Debug 10-17

■ L2 FE/UE/CE Error Address Register

■ L2 Notdata Error register

FIGURE 10-1 Core Shadow Scan Architecture

OpenSPARC T2 core will have TT, TPC, and a synchronized TL capture (TL_for_TT)
to the core shadow scan with the following limitations:

TT, TPC, and TL_for_TT will update ONLY when a trap occurs. (The normal TL
field will update for every change in the actual TL register.)

Software writes to TL and done/retry will NOT affect the shadow scan captured
values of TT, TPC, and TL_for_TT. So, if the processor traps from TL==0 to TL==1
to TL==2 and then uses done and/or retry to get back to TL==0, shadow scan will
10-18 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

still reflect TT[2], TPC[2], and TL_for_TT will still be 2. Similarly, if the processor
traps out to TL==2 and then software writes TL to 1 or 0, shadow scan will still
show TT[2], TPC[2], and TL_for_TT will still be 2.

If multiple traps occur while the shadow scan is being scanned, the TT, TPC,and
TL_for_TT updates due to all traps but the last trap will be lost.

The signals shscan_se, shscan_ce and shscan_stop are sourced from the TCK clock
domain in JTAG; typically this requires synchronization using a megacell with
metastability-hardened flops in a 2-flop sequence to achieve an acceptable MTBF.
Assuming l1clk is stopped low, controlling bclk inactive before transitioning se will
maintain the slave latch state that is captured with ce, although this allows the
master latch to be exposed to metastability. This can be tolerated (since scanning
with aclk will overwrite the master) so no special synchronization is required for se.
The ce and stop signals will be passed through a synchronizer.

During a shadow-scan operation, the PLL is running and JTAG is used to capture
the desired values into the shadow scan register. Then, JTAG turns on the stop signal
into the header which drives the l1clk low, puts soclk inactive (high) and then
transition se to the active state (high). The contents are then scanned-out via TDO.
The core shadow scan can only be read, although any value may be scanned into it.
Because TCK is specified to be at a much slower frequency than cpu_clk, the 2 cycles
required for synchronization will not cause any overlapping.

All 8 core shadow scans are scanned serially as one chain, with core 0 closest to TDI
and core 7 closest to TDO. Any core marked unavailable in the CMP core_available
register will not be included when scanned via TDI to TDO. The shadow scan chain
for a given core is placed in that cores second scan chain during ATPG test mode.

JTAG instructions to support Core Shadow Scan:

■ TAP_SPCTHR0_SHSCAN Thread 0 contents for all available cores

■ TAP_SPCTHR1_SHSCAN Thread 1 contents for all available cores

■ TAP_SPCTHR2_SHSCAN Thread 2 contents for all available cores

■ TAP_SPCTHR3_SHSCAN Thread 3 contents for all available cores

■ TAP_SPCTHR4_SHSCAN Thread 4 contents for all available cores

■ TAP_SPCTHR5_SHSCAN Thread 5 contents for all available cores

■ TAP_SPCTHR6_SHSCAN Thread 6 contents for all available cores

■ TAP_SPCTHR7_SHSCAN Thread 7 contents for all available cores

10.2.4.3 JTAG Boundary Scan

The boundary scan will allow through the use of JTAG instructions the testing of the
I/O cells. The interface will provide the following instructions: Sample/Preload,
Extest, HighZ, and Clamp. The boundary scan cells have also been designed such
Chapter 10 Debug 10-19

that they will be included as part of the scan chain. Separate clock headers will be
used for boundary scan cells in order to scan enable the flops without disturbing
output of original flops.

Note – The BS_aclk is a pulse, width is to be determined, that is triggered by the
rising edge of TCK. The BS_bclk is a pulse that is triggered by the negative edge of
TCK.

10.2.4.4 JTAG CREG/UCB Access

The UCB interface is implemented inside the TCU and allows access via JTAG to IO
mapped registers. A register's address and data in the case of writes are loaded via
JTAG into holding registers in the TCU. The TCU then uses its UCB interface to
communicate to the NCU which puts the new transaction (packet) into the data flow.
The interface allows both reading and writing.

Note that in OpenSPARC T2 there is no way to access any SPARC CSR or L2 CSR
through this NCU UCB interface. OpenSPARC T1 could access L2 CSR's and some
SPARC CSRs by routing the packet through the crossbar to the lowest-numbered
available SPARC physical core as specified by the CORE_AVAIL register, which then
forwarded the packet to the L2 . This mechanism is not supported in OpenSPARC
T2.

So with this NCU UCB protocol all the SOC CSRs (NCU,MCU,PCI_EX and NIU) are
accessible from JTAG.

For a WRITE, a 40-bit address and 64 bits of data must be provided by JTAG to the
UCB. For a READ, a 40-bit address is needed, with the data received from the NCU
captured into a register in the TCU. To implement a READ, a sentinel bit is used
since the exact timing of the read return is not deterministic. The system is only
allowed to have 1 read outstanding at one time. There is no protection built in
against this, adherence is left to the user. The buffer ID programmed through the
JTAG data coming in needs to be set to 2'b01. This tells the NCU that the data is
returned to the TCU.

For details on the JTAG CREG/UCB Access please refer to the OpenSPARC T2 TCU
Specification.

Note – The UCB interfaces of NCU should not hang w.r.t any access to
MCU,PCI_EX or NIU, i.e. JTAG CREG accesses should be able to make forward
progress.
10-20 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

MCU will never hang on on-chip CSR accesses. Also, off chip PIO accesses MCU will
send backs nacks on illegal addresses and also for channel errors. Even in error
mode, MCU will wait to send out the off chip PIO's after recovering from the error.
In case of a fatal error, it will send back a Nack to the PIO access and not wait for the
error recovery. Architecturally there are no cases where MCU will not send back
response to NCU for CSR/PIO accesses.

10.2.4.5 Clock Stretch

This feature is accessible through private JTAG instructions. A 32 bit counter called
Reset Counter in TCU will be programmed through SW or JTAG with the required
number of CMP clks in between the first and second warm reset . The counter will
start counting down after the desertion of the second warm reset . When it reaches
zero, TCU will initiate clock stretch. There will be a 2 bit DECR in TCU which
SW/JTAG will program for Clock Stretch for this to happen. The programming of
this register can happen around the same time that the Reset Counter is getting
programmed (anytime between first and second warm reset). The TCU DECR will
support 4 encodings : Do Nothing,Hard Stop,Pulse Trigout and Clock Stretch.

10.2.4.6 Clock Stop

Clock stop is the ability to stop the part after a given event. The part may or may not
be in a state where it can continue operation. After the stop data can then be scanned
out for debug. This allows the user to determine the state of the chip at meaningful
times.

There are 2 types of clock stop a hard stop, and a soft stop. The purpose of the hard
stop is to stop as fast as possible, but because of di/dt concerns this will mean that
there will be some delay because the chip will stop in a staggered fashion. Because
of the immediate stop the chip is now in a state that it cannot be restarted in system.
It must be started from a reset again.

The 2nd method, soft stop, only applies to the cores and upon receiving a request
the TCU will wait for the requesting core to settle into a quiescent state (via the
core_running register) before stopping the clock to that core. This allows the core
the possibility to start up again given the right system circumstances. Because of
constraints such as keeping DRAM refresh running and XAUI and PCI_EX SerDes
interfaces running on the chip , this is too hard to implement in OpenSPARC T2.
Instead only the SPARC cores will have the ability for soft stop.

Soft stop should only be used on all cores at once if one wishes to start the cores
after a soft stop.

Hard stop will be supported for both SPARC cores and OpenSPARC T2 chip as a
whole.
Chapter 10 Debug 10-21

To trigger a stop a debug register must first be set. Examples of these debug registers
are instruction address breakpoint register, data address breakpoint register,
architectural event(errors, performance register), and possibly others. These registers
will then have fields that say what action should be taken if this event is enabled
and occurs. The 2 different stops are 2 of the possible actions.

On OpenSPARC T2 the ability to stop clocks to various sections of the chip is
provided via the TCU. Clocks can be stopped via JTAG directly or as a result of a
debug event in SOC or Cores.

Under control of JTAG , TCU can directly initiate Hard stop of OpenSPARC T2 after
Reset Counter has expired and the TCU DECR was programmed for Hard Stop .
Alternatively , TCU can also request a direct hard stop if the TRIGIN pin was
asserted in the system.

TCU can also be made to directly put individual cores in hard stop or soft stop mode
through dedicated instructions from JTAG specifying hard or soft stop
(TAP_CLOCK_HSTOP and TAP_CLOCK_SSTOP).

Clocks for the chip can be stopped either in parallel or serially across clock
domains. After a clock stop, data can then be shifted out for debug via JTAG which
allows the user to determine the state of the chip.

Serial and Parallel Clock Stop Modes

Stopping all clock domains in parallel may not be advisable due to excessive current
fluctuations across the chip. Because of these di/dt concerns there is a serial clock
stop mode where the clocks are stopped over several predefined clock domains with
128 CPU clock cycles between each clock stop activation. Stopping the clocks in
such a staggered fashion with intervening delays is expected to lessen the di/dt
concern. In the serial mode, via JTAG or software the user can update a clock
domain register to specify which clock domain should be stopped first. Subsequent
domains will then be stopped in a predetermined order, but the order is fixed.

During a parallel clock stop, the clocks will all be stopped at the same CPU clock
cycle from the TCU. For both the serial and parallel clock stop methods, due to
varying division ratios between the CPU and other clock domains, the actual CPU
clock cycle at which a non CPU clock domain stops may vary between those
domains, although it should be repeatable. To specify a parallel stop, all bits in the
clock domain register should be set to 1, signifying they should all stop first. There
is currently no provision for mixing serial and parallel clock stop modes across the
clock domains.

Hard Stop

A hard clock stop request will result in the clocks being stopped without waiting for
the chip to quiesce. The clocks may be stopped either in serial or parallel mode and
will be stopped over all the chip

Soft Stop
10-22 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

A soft clock stop request will be handled as if it was a hard clock stop but will not be
serviced until the domain requesting the soft clock stop is quiesced. The cores are
the only domains that can request a soft clock stop, and only the clocks to the cores
will be stopped by any soft stop request .

Data integrity will be lost after a soft stop unless all cores are stopped in unison.

Clock Stop Domains

Clock domains are partitioned so that control is achieved and that there is some
commonality in the respective scan chains, and to minimize interactions because of
the staggered stop. The sequence of stopping the clocks serially will always be the
same given a specific start point and defaults to the order given in Table 4 . The user
can program the starting point, but then the domains will stop in the predetermined
order and wrap around until reaching the first domain stopped. For instance,
stopping with spc7 first will result in spc6 being stopped last.

An 8-bit counter provides a delay of 128 CPU clock cycles between generation of
successive clock stop signals from the TCU. This may be bypassed by setting all 18
bits in the clock domain register via JTAG, so that all clocks stop in parallel. The
general structure of the clock stop control logic in the TCU is shown in FIGURE 10-2.

FIGURE 10-2 .TCU Clock Stop Logic
Chapter 10 Debug 10-23

FIGURE 10-3 Clock Stop Sequencing through Clock Domains

All clock stop control logic in the TCU is in CMP clock domain. At this time the non-
CMP clock domain stop signals are synchronized before leaving TCU. If this
synchronization moves into the respective units, the outputs from TCU will be
relative to the global clock grid. Clocks are restarted by turning off clk_stop signals.
When started serially, the 128 CMP cycle delay is used again to reduce di/dt
concerns.

10.2.4.7 Single Stepping,Disable Overlap,Cycle Step, Run N
Instructions :

These are core specific execution sequences useful for debug and are available
through JTAG interface for stand alone SPARC debug. More details are in the
OpenSPARC T2 Core Debug Features section.

10.2.5 Fatal Error Indication on Pin
OpenSPARC T2 has a FATAL_ERROR pin that will get asserted when any of
OpenSPARC T2 logic blocks encounter a Fatal Error. This will notify the Service
Processor about OpenSPARC T2's error state. On a fatal error, OpenSPARC T2
asserts Warm Reset and also asserts PCI_EXPRESS_RESET_L pin to reset the
external PCI-Express devices. The sources of Fatal Error in OpenSPARC T2 are L2
cache (each L2 bank can detect its own VUAD Uncorrectable ECC and Directory
10-24 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

Parity fatal errors) and NCU (SOC errors in blocks like SII,SIO,DMU,NIU,MCU
which can be turned fatal by SW enabling fatal_error reporting for them in SOC
Fatal Error Enable Register at location 0x80-0000-0018).

10.2.6 TRIGIN and TRIGOUT pins
TRIGOUT and TRIGIN pins will be asserted and sampled by TCU.

TRIGIN when asserted from the system will require TCU to do a hard stop of
OpenSPARC T2 after it cycle counter expires , followed by a scan dump.

TRIGOUT will be asserted by TCU also after the cycle counter in TCU expires under
any of the following conditions :

TCU gets a Pulse Trigger Pin request from any of the cores or the debug block based
on some debug event having happened either in any of the cores or any SOC block.

TCU DECR has been programmed for Pulse Trigger and the Reset Counter has
expired. (In this case first the reset counter will expire , then the cycle counter will
count down to zero and then TRIGOUT will be asserted)

Debug SW (as part of Checkpoint/Replay) chooses to pulse the TRIGOUT pin after
taking a checkpoint to start taking LA traces from OpenSPARC T2's debug port. To
support this one , TCU will have a CSR bit that SW can write to pulse TRIGOUT.

10.2.7 DTM Support in DB1,MIO modules
DB1 and MIO modules would contain logic to support DTM capability in
OpenSPARC T2. Under control of CCU, the ccu_dbg1_serdes_dtm and
ccu_mio_serdes_dtm signals would be asserted to configure DB1 and MIO in two
different DTM modes.
Chapter 10 Debug 10-25

CCU is has a pair of CSR bits (serdes_dtm1, serdes_dtm2 in PLL_CTL reg) which
will control DTM mode 1 and 2 respectively as follows:

FIGURE 10-4 and FIGURE 10-5 show the paths through DB1 and MIO modules to get
the DTM mode signals out of the chip in DTM modes 1 and 2 respectively

TABLE 10-3 OpenSPARC T2 DTM Modes

Serdes_DTM
1

Serdes_DT
M2

ccu_mio_
serdes_dtm

ccu_dbg1_
serdes_dtm

Description/Comments

0 0 0 0 Normal Mode (DTM off)

1 0 1 1 DTM mode 1 (MCU ECC and PEU TX info sent
out at dr_clk frequency of ~100 mhz on debug
port). In MIO, the data is clocked at cmp_clk with
dr sync enables. Debug port to be configured in
any mode other than modes : 3'b000,3'b100,3'b101
On debug port :
87:0 : MCU CRC data
93:88 : Dont care
165:94 : PEU TX Data
ccu_serdes_dtm asserted to all other blocks in
OpenSPARC T2 by CCU.

0 1 0 0 DTM mode 2 (Debug port to be configured in any
of the 6 debug modes. Debug data sent out at
cmp_clk with dr sync enables in all modes other
than NIU debug mode and PEU debug signals in
PEU debug modes). So there would be data loss
but should be repeatable.
On debug port : Debug signals for the debug
mode chosen.
ccu_serdes_dtm asserted to all other blocks in
OpenSPARC T2 by CCU.

1 1 1 1 Invalid Programming by SW. HW treats it as DTM
mode 1.
10-26 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 10-4 DTM Mode 1 Configuration for db1,mio in OpenSPARC T2
Chapter 10 Debug 10-27

FIGURE 10-5 DTM Mode 2 Configuration for db1,mio in OpenSPARC T2
10-28 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

Note – For DTM mode 2 to be used effectively on the tester, the relationship
between cmp_clk and dr_sync_en from CCU has to be the same all the time after
every reset. This has to be guaranteed by CCU.

The DTM mode control CSR bits, the timing diagram of dr_sync_en w.r.t cmp_clk
and also the mechanism of OpenSPARC T2 entering DTM modes would all be
covered in the CCU MAS.

10.2.7.1 MCU DTM Mode Signals

The MCU's DTM debug information is 22 bits of CRC information from the
southbound (transmit) link. The MCU communicates with the AMBs with 120-bit
frames. Each frame consists of two sections, a 26-bit commandA section with 14-bit
CRC and a 72-bit commandBC/data section with 22-bit CRC. 14 bits of the
commandBC/data CRC is XORed with the 14-bit commandA CRC from the
preceding frame to reduce the total number of CRC bits to 22.

Each MCU has 2 southbound FBD channels, and each channel has 22 bits of CRC per
frame. The 22 bits from each channel are bitwise XORed to provide 22 bits total to
the debug port.

For details on the CRC algorithms, please refer to the FBDIMM Arch and Protocol
spec., section 5.4.

On debug port :

DBG_DQ[87:0] = {MCU3_CRC[21],MCU0_CRC[20:0],

MCU2_CRC[21],MCU1_CRC[20:0],

MCU1_CRC[21],MCU2_CRC[20:0],

MCU0_CRC[21],MCU3_CRC[20:0]}

10.3 OpenSPARC T2 Core Debug Features
This section describes the OpenSPARC T2 core debug features.

From a system and business perspective, the goal of these features is to minimize
time-to-revenue by providing means to speed silicon and system bringup and
debug. If a failure occurs at a customer site, these features can be used to capture
Chapter 10 Debug 10-29

and analyze the failure, so that customer downtime is minimized. From a chip and
core perspective, these features are simple, general, and powerful enough to enable
debug both in stand-alone test fixtures as well as in-situ systems.

The OpenSPARC T2 core is a full-scan design: every latch (in arrays) and register bit
is concatenated into a scan string. The core has 3 scan string inputs and outputs. The
length of each scan string is limited, but the scan strings can be connected by the
Test Control Unit (TCU) to form one long scan chain for each physical core.

The TCU can flush the scan strings by holding the scan clocks active and forcing a '0'
at the input of each string.

It can also serially scan data into or out of the long scan chain.

Data can be scanned out of the long scan chain non-destructively by logically
wrapping the scan chain output to the scan chain input: once the scan-out has been
completed, all latch and flop bits contain their pre-scan values.

Data can also be scanned into the long scan chain with any arbitrary subset of the
bits being altered with respect to their pre-scan value.

TCU will provide scan chain control on a per core basis (3 scan chains per core) for
non-destructive scan out after a core soft stop without disturbing other cores or the
rest of OpenSPARC T2. So whatever can be done on a long scan chain from the TCU
can be done on a per core basis over 3 scan chains also.

The flush and scan operations can be controlled externally to the OpenSPARC T2
chip via commands sent to the TCU's JTAG interface. Scan string data can be
observed or loaded via the JTAG interface. This allows an external agent (such as a
PC or workstation with a JTAG interface card) to observe and change any storage
location in the chip. By using several sequences of scan in and scan out commands
and appropriate clock control, any on-chip memory location (flops through scan
and arrays through Macrotest) can be read out non-destructively or changed.

Full-scan and flush capabilities gives OpenSPARC T2 core a solid foundation to
support more sophisticated debug features. These features complement and
augment traditional Sun debug features and do not preclude their use. For example,
OpenSPARC T2 core includes debug features such as instruction watchpoint virtual
address, data watchpoint virtual and physical address, instruction breakpoint, and
software traps on hardware-detected error conditions.

The features described in this chapter are more useful for hardware or system
designers debugging possible chip functional or circuit failures as opposed to
software designers debugging code errors.
10-30 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

10.3.1 Basic Features
The TCU has a JTAG interface. The TCU can be controlled via this interface. In
particular, an external agent connected to the JTAG port can issue commands to the
TCU and the TCU provides data in response.

The following basic features either currently exist (are defined architecturally), or
come as a side-effect of having full-scan :

1. 1. Existing architecturally visible debug capabilities. Existing means specified by
V9/JPS1 or other SPARC processors, such as Millenium or OpenSPARC T1. These
include instruction breakpoints, instruction watchpoint virtual address, data
watchpoint virtual and physical address, trap-on-taken-control transfer, and trap
on hardware-detected errors. These debug features are visible to and primarily
used by software and can be invoked by programs running on the chip. In
OpenSPARC T2, these debug features can be activated via scan also. However,
instead of causing a trap, one of these debug events either stops the clocks (soft or
hard stop, see below) or pulses an external pin. These features are described in
section below.

Since these features are shared with S/W, using them via scan may conflict with
programs running on the core.

2. Start and stop clocks to the core. Stopping OpenSPARC T2 core clocks is
performed via the TCU clock enable function in the core clock network.

3. Configure scan chains for non-destructive scan-out and scan-out those chains. The
data scanned out appears on the JTAG interface. When performing a non-
destructive scan, logic which may be affected by random scan values must be
conditioned. For example, the TCU gates off write-enable lines to non-scannable
arrays to prevent data corruption. If it is useful to scan a processor core
independent of other cores and the L2 interface, then that processor's interfaces
must be conditioned not to create phantom interface transactions while the
interface registers are being scanned.

4. Configure scan chains for scan-in. In conjunction with scan-out, this can be used
as a read-modify-write operation to update machine state. The data to be scanned
in is presented over the JTAG interface as part of the scan-in command. In the
past this approach has been used for speed path analysis on silicon or to validate
logic bug fixes in silicon even before change is made in RTL.

5. Ability to read and write any non-scannable array location in the OpenSPARC T2
core. This capability is provided as a macro of scan-out and scan-in commands
issued over the JTAG interface. The TCU translates these commands to sequences
of scan operations and core functional clock cycles to read or write OpenSPARC
T2 core array contents.

Ability to configure various debug features via JTAG scan or direct commands.
These features and commands are the subject of the next section.
Chapter 10 Debug 10-31

Shadow scan facility: The shadow scan facility allows an external agent to query
a subset of the state of the chip without requiring the chip clocks or domain
clocks to be stopped. Due to hardware cost only a small fraction of the on-chip
registers have shadow scan capability.

10.3.2 Enhanced Features
The following is a list of enhanced debug features. Each of these features is only
available via the JTAG interface. These features are not visible to or configurable by
software running on a core.

Hard-stop: Hard-stop is used as a noun and an adjective. As an adjective it describes
the stop type; namely the clocks are stopped immediately without regard to any chip
or system activity. The core comes to an immediate, synchronized stop (all
latches/flops/arrays see the clock stopped at the same cycle) when clocks are shut
off. As a noun hard stop is a command to immediately stop functional clocks to the
entire chip or perhaps an individual clock domain. It is issued as a command over
the JTAG interface to the TCU, which in turn disables the functional clocks. It is used
as a prelude to other commands, such as a scan-out. In general, hard-stop is not
recoverable. In particular, if a processor's clocks are stopped during an external bus
cycle or memory cycle, it won't respond to further requests. This can cause other
system errors. Usually hard-stop is used in a stand-alone debug environment or as a
last resort due to the core/chip not responding to a soft-stop. TCU will implement
hard stop to stop clocks to all blocks of OpenSPARC T2 (including SOC blocks).

Soft-stop: Soft-stop is used as a noun and an adjective. As a noun it refers to a soft-
stop command issued via JTAG to the TCU. As an adjective it describes a more
graceful stop than hard stop.

For the OpenSPARC T2 core a typical sequence of activity is the following. The TCU
activates a soft-stop request signal to the processor core. In response the processor
stops executing instructions and waits for all activity to complete. Then it
deactivates any non-TCU external core interfaces (such as the L2 interface). The
processor then informs the TCU that it has achieved a soft-stop condition. The TCU
then stops the processor's clocks.

Soft stop can also be initiated via soft stop requests from the core due to certain
events occurring. Soft-stop waits for OpenSPARC T2 core processor activity to
quiesce, puts the processor or domain interfaces in an error-free but unresponsive
state, then stops the clocks. Clocks turn off at the same cycle to all latches, flops and
arrays within the stop domain. The quiescent conditions are domain-specific.

Data integrity will be lost unless all cores are stopped in unison.
10-32 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

TCU will initiate soft stop only to cores on a per core basis (separate scan enables
from TCU) . There will not be any soft stop initiated to the SOC and L2 because we
need to keep memory refresh running for DRAM and the PCI_EX and XAUI SerDes
links running : so cannot stop certain logic sections in MCU,PEU and NIU/MAC
from running.

Stop-clocks on event: This feature allows triggers to be set up so that if one of them
is activated, the TCU stops the clocks to the core in as few cycles as possible. Each
processor core has an event list consisting of the overflow of a performance
monitoring counter, any core-specific error reflected in setting an ESR bit, or other
events. The event(s) to be enabled for stopping can be specified by setting a bit in a
core-specific control register during a scan-in operation. Each bit in the control
register is associated with a particular event. Multiple bits may be set at once. Each
cycle the contents of the control register are ANDed with the corresponding events
in that domain and the output is ORed together and fed to the TCU. The TCU
collects domain stop signal outputs. If any stop signal is asserted, it stops the
corresponding domain's clocks.

Cycle counter: This feature tunes when clocks are stopped/stretched or TRIGOUT
pin pulsed relative an event occurring. A decrementing counter is used in
conjunction with :

1. JTAG initiated hard-stop/ soft-stop,pulse TRIGOUT,clock-stretch request

2. TRIGIN initiated hard stop request and

3. a debug event based hard-stop,soft stop,pulse TRIGOUT request .

Once the debug event trigger or JTAG stop command or TRIGIN pin has been
activated, the counter starts decrementing and debug action is initiated when the
counter reaches 0.

W.r.t. clock stops, by programming this counter (32 bits wide) and knowing the
minimum round trip delay from core to TCU to core and then issuing a hard-stop or
soft-stop command through JTAG, one has control over when the clocks are stopped.
This is useful since once the clock-stop order has been received by the TCU, it takes
several cycles to stop the clocks to the domain. The counter allows an earlier
triggering event to be specified, delaying the clock stop to line up with the later
(desired) event. The counter enables fine-grain control to isolate a failing cycle. The
counter is located in the TCU.

Debug Event Counter : In addition to the cycle counter , TCU will support a 32 bit
event counter at address ahead of it, which is also SW/JTAG programmable to count
a specific debug event (decrement on every occurrence of the event) . When this
event counter decrements to zero, TCU will start decrementing the cycle counter ,
and when the cycle counter decrements to zero TCU will take the debug action (soft
stop,hard stop or TRIGOUT assertion). TCU will just OR the event sources and use
the result of the OR to decrement the event counter. when using this event counter,
SW/JTAG will make sure that only one debug event is enabled so that the event
Chapter 10 Debug 10-33

counter will decrement for only one event. The debug event counter works only in
conjunction with SOC and Core Debug Events , and NOT with TRIGIN pin or JTAG
initiated Debug actions associated with Reset Counter in TCU.

Usage model :

Assume only one event is enabled for debug as instruction breakpoint match in 1 of
8 cores, all other debug events are disabled in core and SOC DECR's. Assume the
debug action programmed for instruction breakpoint match is hard stop. So
depending on the value programmed in the event counter, TCU will keep sampling
hard stop requests from that core which has the instruction breakpoint debug event
enabled and keep decrementing the event counter every time it gets a hard stop
request.

When the counter decrements to zero, TCU starts decrementing the cycle counter
and when that decrements to zero, TCU asserts hard stop and shuts off the clock to
that core.

Hard stop and pulse TRIGOUT are the two debug actions with which this event
counter can be used. It wont work for soft stop request originating from the core as
the core quiesces before asserting soft stop request.

So SW/JTAG will make sure of the following when using this event counter
(normally it will always be programmed to zero, so that the TCU will simply ignore
it):

1. only one debug event enabled in OpenSPARC T2

2. debug action for that event programmed as hard stop or pulse TRIGOUT

3. TCU will not detect these two conditions, this is a requirement from SW/JTAG
programmer.

External pulse on triggered event: TRIGOUT pin asserts on the occurrence of a
configured event. Like the stop-clocks on event, an event (or set of events) may be
scanned in to an event control register. If the event occurs and this feature is
configured, an external, dedicated pin (TRIGOUT) is pulsed when the event occurs.
This pin is pulsed at some low frequency generated off of the core clk: can pulse at
core clk frequency. It gives an external indication that the event has occurred and
allows external logic to sync up or start capturing bus cycles for further debug or
analysis.

Single instruction step: This feature allows the debug agent to execute one processor
instruction among the available, enabled, and running threads, then report quiesce
state. Each physical OpenSPARC T2 core can be configured by JTAG to have a
single-instruction step feature through hyperprivileged ASI_OVERLAP_MODE reg
located at ASI 45, VA 0x10 . Typically this feature is used by the user issuing a
single-instruction step command via the JTAG interface. This feature allows
10-34 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

designers to debug possible instruction execution problems by checking that the
results of an instruction's execution match expected values (by non-destructive scan
out and comparing with expected values in simulation). In conjunction with external
frequency, temperature and voltage control, it can provide some evidence or
information to help figure out what the critical path is.

Run N instructions: This is a sequence of single instruction step commands, and will
be controlled by a sequence of JTAG single instruction step commands issued to
TCU from the service processor. The usage model is specified in section 5.3.6.

Disable overlap mode: This feature causes each of the available,enabled, and
running threads to execute one instruction and quiesce all activity before fetching
the next instruction (essentially pipelining is disabled).

Cycle step: This feature allows one to sequence the domain pipeline N cycles at a
time, where N can be 1 to the value of the cycle counter in TCU described above.
With N set to 1, it is typically used to non-destructively scan out the domain pipeline
for loading into a logic simulator and comparing the simulator values with the
hardware values. It can also be used to check for critical paths. The feature is
controlled by the TCU, which enables domain clocks for N cycles.

The usage model for cycle step is as follows :

1. User writes to a counter in TCU through JTAG interface, N number of cycles
which TCU will use to cycle step core(s).

2. User reads back counter making sure counter has been written correctly.

3. User issues a TAP_CLOCK_HSTOP to hard stop the core(s) that need to be cycle
stepped . TCU will stop clocks low for selected cores.

4. User issues a JTAG Command to do Cycle step .

5. TCU turns the clock on for the selected core(s) and starts decrementing counter.

6. TCU counter reaches zero.

7. TCU sets a bit in a register indicating Cycle Stepping done and stops the clocks to
the cycle stepped cores.

8. User reads this register and sees Cycle Stepping done.

9. User issues a TAP_Serial_scan instruction to the core(s) that were cycle stepped to
serially scan out the contents of the core non-destructively (by using the scan
loopback scheme)

10. If user wants to continue execution on the cycle stepped cores, it will issue a
TAP_CLOCK_START command to the core(s) that were cycle stepped.

11. TCU turns clocks on to the cores that were cycle stepped.

12. Cores resume execution
Chapter 10 Debug 10-35

Note that after hard stop of cores and cycle steps, restarting without a reset will not
produce correct behavior as during clock stop period , the core will be missing all
responses from the crossbar on prior accesses . So the use of cycle step is to mainly
to do some very focused logic debug and critical timing path analysis without any
ability to restart.

All the modes of operation defined in the ASI_OVERLAP_MODE reg have been
implemented in OpenSPARC T2 core.

10.3.3 Details of the OpenSPARC T2 Core Debug
Features
This section details the OpenSPARC T2 core debug features.

10.3.3.1 Instruction Breakpoints

Like OpenSPARC T1 the OpenSPARC T2 core provides an instruction breakpoint
capability. Each thread group has a hyperprivileged, read-write
ASI_INST_MASK_REG at ASI 0x42, VA 0x8. Threads 0, 1, 2, and 3 share one register,
and threads 4, 5, 6, and 7 share another register. The contents of this register are
described below. All bits are initialized to 0 at POR. Reserved bits read as zeroes and
are ignored on writes.

TABLE 10-4 ASI_INST_MASK_REG Contents

Bit Index Register Field Name Description

63:39 - Reserved

38 ENB31_30 Enable matching on bits 31:30 of the instruction

37 ENB29_25 Enable matching on bits 29:25 of the instruction

36 ENB24_19 Enable matching on bits 24:19 of the instruction

35 ENB18_14 Enable matching on bits 18:14 of the instruction

34 ENB13 Enable matching on bit 13 of the instruction

33 ENB12_5 Enable matching on bits 12:5 of the instruction

32 ENB4_0 Enable matching on bits 4:0 of the instruction

31:0 Instr The instruction pattern to match (opcode, reg address : whole instruction)
10-36 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

If HPSTATE.IBE is set to '1', instruction breakpoints are enabled. If a thread executes
an instruction which matches the contents of all enabled fields in the INST field of
the ASI_INST_MASK_REG, the thread takes an Instruction_Breakpoint trap. Non-
privileged accesses to this register cause a Privileged_Action trap; supervisor
accesses cause a Data_Access_Exception trap.

Additionally, if Core DECR is configured for ASI_VA_BREAKPOINT events , the
OpenSPARC T2 core will take a debug action as configured by that register.

Since this register is shared between software and scan, debug agents should take
care to ensure that only one agent (software : Software debugger/Emulator or
hardware : Service Processor) is configured to use this facility at a time.

10.3.3.2 Instruction and Data Address Watchpoints

Each thread has a hyperprivileged ASI_WATCHPOINT register located at ASI 0x58,
VA 0x38 which controls address watchpoint traps. The OpenSPARC T2 core can take
a Instruction_VA_Watchpoint trap when this register is configured for an instruction
fetch whose fetch address matches. The OpenSPARC T2 core takes a VA_watchpoint
trap when this register is configured for a data access, and the core executes a
memory reference instruction whose memory reference virtual address matches.
Each thread can be configured to match only on instruction virtual addresses or data
virtual address at one time.

Additionally, a physical address watchpoint for data accesses is implemented, the
data PA watchpoint address will be stored in ASI_WATCHPOINT register bits 39:3.
The contents of the ASI_WATCHPOINT register are described in TABLE 10-6i.

Reserved bits read as zeroes and are ignored on writes.

TABLE 10-5 ASI_WATCHPOINT Contents

Bit Index Register Field Name Description

63:48 - Reserved

47:40 VA_47_40 Virtual Address bits to match for Instruction or Data Virtual Address
comparison; ignored for data physical address comparisons

39:3 Addr_39:3 Virtual or Physical address bits 39:3 to match

2 VA_2 Instruction Virtual Address bit to match; ignored for Data comparisons

1:0 - Reserved
Chapter 10 Debug 10-37

Matching is controlled by the ASI_LSU_Control_Register as shown in TABLE 10-7.
Each virtual core has a hyperprivileged, read/write ASI_LSU_Control_Register
located at ASI 0x45, VA 0x0. Reserved bits read as zeroes and are ignored on writes.

Other details of masking are described in the OpenSPARC T2 PRM. Virtual address
matches are never enabled in hyperprivileged mode.

PSTATE.AM masks instruction and data virtual addresses (so that bits 47:32 of the
virtual address are '0') before being presented to the ASI_WATCHPOINT register for
comparison. Thus, bits 47:31 of the VA in the ASI_WATCHPOINT register must be
set to '0' to match instruction or data virtual addresses when PSTATE.AM is set to '1'.

Additionally, if Core DECR is configured for ASI_WATCHPOINT events the
OpenSPARC T2 core will take a debug action as configured by that register.

Since this register is shared between software and scan, debug agents should take
care to ensure that only one agent (software or hardware) is configured to use this
facility at a time.

TABLE 10-6 ASI_LSU_CONTROL_REG Contents

Bit Index Register Field Name Description

63:35 - Reserved

34:33 Mode 00 - Disabled
01 – Match on Instruction VA
10 – Match on Data PA
11 – Match on Data VA

32:25 ByteMask Byte mask to be used with data VA or PA; ignored for instruction virtual
address comparison

24 ReadEnable If 1, enable comparisons for Ifetch or Read accesses

23 WriteEnable If 1, enable comparisons for data writes

22:5 - Reserved

4 SpecEnable If 1, the OpenSPARC T2 core operates in speculative mode (predicts
branches not taken, predicts loads to hit in L1, predicts no FP exceptions)

3 DM If 1, DMMU is enabled

2 IM If 1, IMMU is enabled

1 DC If 1, Data Cache is enabled

0 IC If 1, Instruction Cache is enabled
10-38 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

10.3.3.3 Trap on Taken Control Transfer

If PSTATE.TCT is set to '1', the OpenSPARC T2 core will take a
Control_Transfer_Instruction_Trap each time it executes a taken control transfer
instruction. These include conditional branches, jumps, retry, and done instructions.
The trap occurs before the instruction has been executed (e.g., is precise). TPC
contains the VA of the CTI; TNPC contains the NPC of the CTI. PSTATE.TCT is
cleared if the trap is taken.

Additionally, if Core DECR is configured for TCT events the OpenSPARC T2 core
will take a debug action as configured by that register.

10.3.3.4 Single Instruction Step

The usage model of Single Instruction Step along with the low level hardware
protocols between TCU and OpenSPARC T2 core is described in section 5.3.6.

Each physical OpenSPARC T2 core can be configured to have a single-instruction
step feature through hyperprivileged ASI_OVERLAP_MODE reg located at ASI 45,
VA 0x10.This register is shown in Appendix 10.3.16. When single step is enabled (on
a per core basis), and when the user has issued a Single Step JTAG instruction to
TCU , the selected OpenSPARC T2 core(s) will execute one instruction among the
available, enabled, and running threads, then stop. The OpenSPARC T2 core will
not execute additional instructions until the TCU issues a “resume” command to the
core. After a sequence of single steps executed this way, the user might issue a hard
stop request to the core being single stepped (as all of the threads of the single
stepped core will have been parked at the end of the single steps), and when TCU
has turned the clock off to that core, will scan out the core through TAP_SERSCAN
instruction non-destructively (by looping back the scan out values) . Then the user
will restart the clocks of the core by issuing a TAP_CLOCK_START command .
After the clocks have started to run in the single stepped core, the user will issue a
JTAG command to Stop Single Step to TCU. TCU will disable the single step mode
to the core , unpark all the threads in the core and the core will resume operation
on all enabled threads.

Note that OpenSPARC T2 core executes instructions pick, decode, and execute one
instruction from each enabled and running thread in series.

Since the ASI_OVERLAP_MODE register is shared between software and scan,
debug agents should take care to ensure that only one agent (software : Software
debugger/Emulator or hardware : Service Processor) is configured to use this facility
at a time.
Chapter 10 Debug 10-39

10.3.3.5 Disable Overlap

Each physical OpenSPARC T2 core can be configured to have a disable overlap
feature through hyperprivileged ASI_OVERLAP_MODE reg located at ASI 45, VA
0x10.In this mode, each thread executing on that core will issue one instruction, wait
for the instruction to commit and any memory operations to be globally observed,
then fetch and execute the next instruction. This mode essentially disables pipelining
of all thread's operation. Usage model is same as single instruction step .

Since this ASI_OVERLAP_MODE register is shared between software and scan,
debug agents should take care to ensure that only one agent (software or hardware)
is configured to use this facility at a time.

10.3.3.6 Soft-Stop Request from TCU to Core

Soft stop is a debug feature controlled by the TCU via the tcu_core_running inputs
to the core. The TCU will transition tcu_core_running from 1 to 0 for all threads on a
physical core. Each thread will stop issuing instructions, wait for any outstanding
cache or TLB misses and operations to complete, and wait for all pending memory
accesses issued by the thread to be globally observed. Then each thread will
transition spc_core_running_status from 1 to 0. The TCU uses these signals to detect
that all threads have quiesced. The TCU will then stop the clocks for that core.

Once the TCU has stopped the core clocks, the core may be scanned without regard
to in-flight operations since all crossbar activity initiated by the core will have
stopped. However, the core will not respond to any crossbar requests initiated by
other agents while it is being scanned. Note that invalidation requests will not be
honored while the clocks are stopped or the core is being scanned. This means that
the core may become incoherent with the rest of the system unless all cores are
stopped in unison.

Following a scan operation, the TCU should restart functional clocks and transition
tcu_core_running for each thread from 0 to 1 to allow the core to resume instruction
execution.

10.3.3.7 Shadow Scan

OpenSPARC T2 core shadow scan provides access to the PC, HPSTATE,PSTATE ,TL
,TT,TPC, TL_for_TT registers for a given thread. Only one thread can be sampled at
a time. The TCU will issue a “shadow scan load” command to the OpenSPARC T2
core. Subsequently, OpenSPARC T2 core will decode the command, and load the
appropriate state into the shadow scan string. Then the TCU can scan out the
shadow scan string.

OpenSPARC T2 core will have TT, TPC, and a synchronized TL capture (TL_for_TT)
to the core shadow scan with the following limitations:
10-40 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

TT, TPC, and TL_for_TT will update ONLY when a trap occurs. (The normal TL
field will update for every change in the actual TL register.)

Software writes to TL and done/retry will NOT affect the shadow scan captured
values of TT, TPC, and TL_for_TT. So, if the processor traps from TL==0 to TL==1
to TL==2 and then uses done and/or retry to get back to TL==0, shadow scan will
still reflect TT[2], TPC[2], and TL_for_TT will still be 2. Similarly, if the processor
traps out to TL==2 and then software writes TL to 1 or 0, shadow scan will still
show TT[2], TPC[2], and TL_for_TT will still be 2.

If multiple traps occur while the shadow scan is being scanned, the TT, TPC,and
TL_for_TT updates due to all traps but the last trap will be lost.

10.3.3.8 Debug Event Control Register

Each physical OpenSPARC T2 core has one hyperprivileged, read/write, Core
Debug Event Control Register located at ASI 0x45, VA 0x8, shared by all strands. The
DECR controls the stop type (hard or soft) or a trigger pin for an associated event if
that event occurs. This register is shown in Appendix 10.3.8.

TCU Action in Response to a soft-stop request asserted by the Core :

If the Core DECR bits for a particular event are configured for a soft-stop (set to
2'b01), and that event occurs, the following sequence of operations results. The
OpenSPARC T2 waits for all core activity to quiesce. This means that all in-flight
instructions completed (or took an exception), all memory references issued by the
core been globally observed, and all activity completed. Then, the OpenSPARC T2
core asserts a spc_softstop_request[7:0] to the TCU, and the TCU subsequently stops
the OpenSPARC T2 core's clocks after its cycle counter expires.

The cycle when the stop occurs is a function of the value of the TCU Cycle Counter
as well as the transmission delay from the core to the TCU and from the TCU to the
clock network in the core. If the TCU Cycle Counter is non-zero when the core
generates a soft-stop request, the TCU will decrement the Cycle Counter until it
reaches 0. When it reaches 0, the TCU will stop the processor core's clocks (note that
it may take several cycles before the processor clocks stop after the counter reaches 0
due to the propagation delay from the TCU to the core clock network).

TCU Action in response to a hard-stop request asserted by the core:

If the Core DECR bits for an event are set to 2'b10, and that event occurs, the
OpenSPARC T2 core requests the TCU to stop the clocks as soon as the TCU Cycle
Counter reaches 0. The core does not wait for internal core activity to quiesce before
raising the spc_hardstop_request[7:0] to the TCU.

TCU Action in response to a trigger request by the core :
Chapter 10 Debug 10-41

If the Core DECR bits for an event are set to 2'b11, and that event occurs, the
OpenSPARC T2 core will issue a request on spc_trigger_pulse [7:0] bus to pulse
TRIGOUT pin.

If routed to chip I/O, and synchronized to a reasonable lower frequency, the trigger
pin may be used to trigger an external agent to begin capturing bus activity or
issuing JTAG commands. The pulsing of the pin does not affect operation of the
OpenSPARC T2 core in any way. Currently the plan is to use TRIGOUT pin in
OpenSPARC T2 for this function.

10.4 Core Interface with the TCU
This section outlines the interface between the OpenSPARC T2 core and the TCU for
the purposes of describing debug functions. Illustration below shows a high-level
diagram of the relevant interface signals (per core).

10.4.1 Clock Interface
The TCU provides a clock stop signal to the flop headers in the core, and drives this
signal active when the core is unavailable. The core_enabled signal go to cluster
headers .
10-42 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 10-6 OpenSPARDC T2 Core to TCU Debug Interface

10.4.1.1 Tcu_spc_clk_stop

This signal is deasserted to allow the OpenSPARC T2 core's clocks to run. This is the
main signal the TCU uses to control the OpenSPARC T2 core's clocks. This signal can
be set to '1' at any time to cause stop the OpenSPARC T2 core's clocks.

10.4.1.2 Core_available & Core_enabled

Core_available is set via efuse at manufacturing time and determines whether the
physical core can be used in normal operation. It serves as a clock gate and if '0' will
result in the clk_stop being asserted to the core (this happens in the TCU).
Core_enabled is driven from the ASI_CMP_CORE_ENABLED register and is also
used as a clock gate via the cluster header .

10.4.1.3 Core_running[7:0] & Core_running_status[7:0]

The core_running[7:0] bus is an input from the NCU by which the TCU requests the
core to park/unpark threads . Parking does not involve stopping the clocks. But,
soft stopping requires that the threads be parked before clocks stop.
Chapter 10 Debug 10-43

10.4.1.4 Scan_enable

Besides configuring the scan chains for scanning, this signal also gates off
OpenSPARC T2 core's interface signals so that other SOC units do not respond to
spurious OpenSPARC T2 core interface activity during scanning. At least the
crossbar PCX interface is protected in this way by the tcu_clk_stop signal.

10.4.1.5 Spc_hardstop_request[7:0] & Spc_softstop_request[7:0]

These busses are outputs to the TCU, one bit per thread, which indicate that the core
has reached either a hard-stop or a soft-stop condition based on some debug event .
These busses are OR'ed inside TCU since stopping can only be done on an entire
SPC core. When the Spc_hardstop_request[7:0] or Spc_softstop_request[7:0] is
received, the TCU will begin decrementing the Cycle Counter ; when the Cycle
Counter reaches 0 the TCU will turn clock off to the requesting core by asserting the
tcu_spc_clk_stop signal.

OpenSPARC T2 core asserts core_running_status[7:0] to TCU when all aspects of the
instruction have completed (all memory operations globally observed, no pending
TLB/Icache misses) and the physical core is completely quiescent. For store
operations, the stop will not occur until the store has been globally observed by L2,
and the thread's store queue is empty.

10.4.2 Debug Event Interface
This group of core outputs are used to signal either an error or that a debug trigger
event has occurred.

10.4.2.1 spc_trigger_pulse[7:0]

This is a bus from the core to TCU covering the 8 threads. If the OpenSPARC T2 core
is configured to trigger on an event in the DECR, and the associated event occurs for
a thread , the corresponding signal transitions from a '0' to a '1'. It then transitions
back to '0', unless another enabled DECR trigger event occurred that cycle. The TCU
will pass this signal to a TRIGOUT pin as the OR of the (64) bits from all cores.

10.4.3 Scan Interface
Not all signals relevant to the scan interface are detailed here (e.g., not all the scan
clocks and controls are listed).
10-44 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

10.4.3.1 Scan_in

There are three scan chains in each core. All flops on this scan string are reset both at
POR and during warm reset unless protected via use of the
“warm_reset_flop_header”.

10.4.3.2 Scan_out

There are three external scan-out signals per core; each corresponds to a scan-in
signal. During JTAG access via scan an entire physical core may be scanned; in this
mode the TCU will concatenate the three scan chains in the core, in addition to any
JTAG private scan chains such as for shadow scan or memory BIST.

10.4.3.3 Shadow_scan_in

This is the scan-in for the shadow-scan string.

10.4.3.4 Shadow_scan_cntrl[n:0]

This is the control for a shadow scan operation which identifies which thread's state
will be sampled to the shadow scan string . The clock will be at JTAG frequency but
synchronized to the CPU block by the TCU.

When the TCU wants to do a shadow scan on a particular core, it asserts a
tcu_shscan_pce_ov capture signal to that core. At some time later, OpenSPARC T2
core will capture the state requested by the TCU on the internal shadow scan flops.
At that point the TCU can scan out the state by accessing the shadow scan scan
string. The shadow scan flops are normal flops dedicated to shadow scan and are
free-running. When TCU wants to sample, it stops the functional clocks for these
flops and scans them.

The signals included in this bus are:

tcu_shscanid[2:0] : selects one of 8 threads

tcu_shscan_pce_ov : provides a capture signal to the shadow scan reg.

tcu_shscan_clk_stop : stops the clock to the shadow scan register to allow it to be
scanned via JTAG

tcu_shscan_aclk & tcu_shscan_bclk : shift clocks to perform the scan operation

tcu_shscan_scan_en : a separate scan_enable for the shadow scan register
Chapter 10 Debug 10-45

10.4.3.5 Shadow_scan_out

This is the scan-out of the core's shadow-scan string.

10.4.4 Single Step Mode Signals (and Single Step Usage
Model)
Each physical core can be placed in single step mode by the TCU via JTAG. JTAG
agent can enter into single step mode at any time without stopping core clocks, but
in order to enter into the single step mode at a precise point and have knowledge of
the state of the core at that point, the JTAG agent will typically initiate a soft stop
based on some specific core debug event (e.g. Instruction VA Watchpoint), in
response to which TCU will stop the clock so that JTAG agent can scan out the core
to determine state of the core before the single step sequence. After that , putting a
physical core in single step mode sequence is controlled by the JTAG agent as
follows :

User writes to ASI_overlap_register in TCU (reg R/W by JTAG and SW) to enable
single step for any particular core(s), through the JTAG interface to OpenSPARC T2.

User issues a JTAG command to do a Single Step (TAP_single_step)

TCU parks all threads to the core(s) enabled for single step by deasserting
core_running[7:0] to the core(s).

All threads indicate they are parked via core_running_status[7:0] to TCU.

TCU asserts tcu_ss_mode to the core(s).

TCU asserts core_running[7:0] for all enabled threads to the core . The thread or
threads will not unpark at this time because the single step mode control is asserted.
At this point the physical core is in single step mode.

TCU pulses tcu_ss_request for one CMP clk.

Each enabled thread gets unparked and will fetch/execute a single instruction (all
unparked threads single step in parallel) and will park again . The TLU will redirect
fetch for a single instruction for each unparked thread. These instructions will flow
through the pipe. When all threads have quiesced (execution and write back have
completed and the store buffers are empty) and parked , the core(s) will pulse
spc_ss_complete.

TCU sets a bit in a register visible to JTAG indicating Single Step done.

User reads this register through JTAG to know that Single Step done.

for a sequence of N single steps, execute steps 2:10 N-1 times
10-46 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

User issues a TAP_CLOCK_HSTOP to hard stop the core(s) that were single
stepped. Note that hard stop can be used because the cores that were being single
stepped have all threads parked/idle, so can be hard stopped.

User issues a TAP_Serial_scan instruction to the core(s) that were hard stopped to
serially scan out the contents of the core non-destructively (by using the scan
loopback scheme)

After examining the contents of the core regs this way, user issues a
TAP_CLOCK_START command to the core(s) that were hard stopped .

User writes to ASI_overlap_register to put the core(s) back to normal mode of
operation.

User reads the ASI_Overlap_register to know that core(s) have been put back to
normal mode.

User issues a TAP_STOP_SINGLE_STEP command to TCU to get the core(s) out of
single step mode.

TCU deasserts core_running[7:0] to the core(s)

Core(s) indicate all threads parked on core_running_status[7:0] to TCU

TCU deasserts tcu_ss_mode to the core(s) taking the core(s) out of single step mode

TCU unparks enabled threads by asserting respective bits in core_running[7:0] bus

Core resumes execution on all enabled threads in normal mode

Note that data integrity may be lost unless all cores are run in single step in unison.

10.4.5 Disable Overlap Mode Signals (and Usage Model)
JTAG agent can enter into disable overlap mode at any time without stopping core
clocks, but in order to enter into the disable overlap mode at a precise point and
have knowledge of the state of the core at that point, the JTAG agent will typically
initiate a soft stop based on some specific core debug event (e.g. Instruction VA
Watchpoint), in response to which TCU will stop the clock so that JTAG agent can
scan out the core to determine state of the core before the disable overlap sequence.
After that , putting a physical core in disable overlap mode sequence is controlled by
the JTAG agent as follows:

User writes to Asi_overlap_register in TCU (reg R/W by JTAG and SW) to enable
disable overlap for any particular core(s), through the JTAG interface to OpenSPARC
T2.
Chapter 10 Debug 10-47

User writes to Counter in TCU (could be same as the one to be used for cycle
stepping) to program a count of cycles that TCU is going to the run the cores in
disable overlap mode.

User issues a JTAG command to do a Disable Overlap (TAP_disable_overlap)

TCU parks all threads to the core(s) enabled for disable overlap by deasserting
core_running[7:0] to the core(s).

All threads indicate they are parked via core_running_status[7:0] to TCU

TCU asserts tcu_do_mode to the core(s).

TCU asserts core_running[7:0] to the core(s), unparking all the enabled threads in
the core(s)

Core(s) keep running in disable overlap mode. The TLU will redirect fetch of a
single instruction for each unparked thread. These instructions will flow through
the pipe. When a given thread has quiesced (execution and write back have
completed and the store buffers are empty), the TLU will redirect fetch of a single
instruction for that thread.

TCU counter decrements to zero indicating end of disable overlap.

TCU parks all threads by deasserting core_running[7:0] to the core(s)

Core(s) indicate all threads parked on core_running_status[7:0] to TCU

TCU sets a bit in a register visible to JTAG indicating Disable Overlap done.

User reads this register to know that Disable Overlap done.

User issues a TAP_CLOCK_HSTOP to hard stop the core(s) that were disable
overlapped. Note that hard stop can be used because the cores that were being
disable overlapped have all threads parked/idle, so can be hard stopped.

User issues a TAP_Serial_scan instruction to the core(s) that were hard stopped to
serially scan out the contents of the core non-destructively (by using the scan
loopback scheme)

after examining the contents of the core regs this way, user issues a
TAP_CLOCK_START command to the core(s) that were hard stopped .

TCU turns on the clocks to the core(s) that were hard stopped.

User writes to ASI_overlap_register to put the core(s) back to normal mode of
operation.

User reads the ASI_Overlap_register to know that core(s) have been put back to
normal mode.
10-48 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

User issues a TAP_STOP_DISABLE_OVERLAP command to TCU to get the core(s)
out of disable overlap mode.

TCU deasserts tcu_do_mode to the core(s) taking the core(s) out of disable overlap
mode

TCU unparks enabled threads by asserting respective bits in core_running[7:0] bus

Core resumes execution on all enabled threads in normal mode

Note that data integrity may be lost unless all cores are run in single step in unison.
Chapter 10 Debug 10-49

10.5 Debug Block Interface Signals
TABLE 10-7 Debug Block Interface Signal

Signal Name I/O Size
From/
To Clk Dmn Description

DMU

dmu_ncu_wrack_ vld I 1 DMU iol2clk CSR Wr Ack from DMU to NCU

dmu_ncu_wrack_tag[3:0] I 4 DMU iol2clk CSR Wr Tag [3:0] from DMU to
NCU

dmu_ncu_data[31:0] I 32 DMU iol2clk CSR read data from DMU to NCU

dmu_ncu_vld I 1 DMU iol2clk CSR Data return valid from DMU
to NCU

dmu_ncu_stall I 1 DMU iol2clk Stall asserted by DMU to NCU

dmu_sii_hdr_vld I 1 DMU iol2clk DMU requesting to send
DMA/Pio Read return/Interrupt
packet to SII

dmu_sii_reqbypass I 1 DMU iol2clk DMU requesting to send packet to
bypass queue of SII

dmu_sii_datareq I 1 DMU iol2clk DMU requesting to send packet
w/data to SII

dmu_sii_datareq16 I 1 DMU iol2clk DMU requesting to send packet
w/16B only

dmu_sii_data[127:0] I 128 DMU iol2clk Packet from DMU to SII

dmu_sii_be[15:0] I 16 DMU iol2clk Packet byte enables from DMU to
SII

dbg1_dmu_stall O 1 DMU iol2clk Request to stall / quiesce DMU ->
NCU and DMU -> SII interfaces

dmu_dbg1_stall_ack I 1 DMU iol2clk Ack from DMU indicating DMU -
> NCU and DMU -> SII interfaces
have quiesced

dbg1_dmu_resume O 1 DMU iol2clk Request to resume packets on
DMU -> NCU and DMU -> SII
interfaces

dmu_dbg0_debug_bus_a[7:0] I 8 DMU iol2clk Debug Bus A from DMU to DBG0

dmu_dbg0_debug_bus_b[7:0] I 8 DMU iol2clk Debug Bus B from DMU to DBG0

dmu_dbg1_err_event I 1 DMU iol2clk An error event occurred in DMU
10-50 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

PEU

peu_mio_debug_bus_a[7:0] I 8 PEU pcl2clk Debug Bus A from PEU to MIO

peu_mio_debug_bus_b[7:0] I 8 PEU pcl2clk Debug Bus B from PEU to MIO

peu_mio_debug_clk I 1 PEU Clock PEU clock to be sent out on
Debug port

NIU

niu_ncu_vld I 1 NIU iol2clk CSR Data return/Interrupt valid
from NIU to NCU

niu_ncu_data[31:0] I 32 NIU iol2clk CSR data/ Interrupt packet from
NIU to NCU

niu_ncu_stall I 1 NIU iol2clk Stall asserted by NIU to NCU

niu_sii_hdr_vld I 1 NIU iol2clk NIU requesting to send packet to
SII

niu_sii_reqbypass I 1 NIU iol2clk NIU requesting to send packet to
bypass queue of SII

niu_sii_datareq I 1 NIU iol2clk NIU requesting to send packet
w/data to SII

niu_sii_data[127:0] I 128 NIU iol2clk Packet from NIU to SII

niu_sio_dq I 1 NIU iol2clk flow control or credit return
signal from NIU to SIO

niu_mio_debug_clock[1:0] I 2 NIU Clock Up to two clocks that
niu_dbg_debug_data[31:0]
reference

niu_mio_debug_data[31:0] I 32 NIU different NIU debug port signals, coming
from upto 2 different NIU clk
domains

dbg1_niu_stall O 1 NIU iol2clk Request to stall / quiesce NIU ->
NCU and NIU -> SII interfaces

niu_dbg1_stall_ack I 1 NIU iol2clk Ack from NIU indicating NIU ->
NCU and NIU -> SII interfaces
have quiesced

dbg1_niu_resume O 1 NIU iol2clk Request to resume packets on
NIU -> NCU and NIU -> SII
interfaces

mio_niu_io2x_clk_ext O 1 NIU Clock Ext NIU clock to NIU from MIO

dbg1_niu_dbg_sel[4:0] O 5 NIU static NIU Debug port select from
DBG1

MCU 0

TABLE 10-7 Debug Block Interface Signal (Continued)
Chapter 10 Debug 10-51

mcu0_dbg1_rd_req_in_0[3:0] I 4 MCU 0 iol2clk Read Request from L2 bank 0 to
MCU 0 (id + valid)

mcu0_dbg1_rd_req_in_1[3:0] I 4 MCU 0 iol2clk Read Request from L2 bank 1 to
MCU 0 (id + valid)

mcu0_dbg1_rd_request_out[4:0] I 5 MCU 0 iol2clk Read ack from MCU to L2 bank 0
or 1 (id + valid + dest_L2_bank)

mcu0_dbg1_wr_req_in_0 I 1 MCU 0 iol2clk Write req valid from L2 bank 0

mcu0_dbg1_wr_req_in_1 I 1 MCU 0 iol2clk Write req valid from L2 bank 1

mcu0_dbg1_wr_req_out[1:0] I 2 MCU 0 iol2clk 0,1,2,3 Writes completed to
DRAM

mcu0_dbg1_mecc_err I 1 MCU 0 iol2clk MCU 0 has detected an mecc
error on a L2 read or scrub

mcu0_dbg1_secc_err I 1 MCU 0 iol2clk MCU 0 has detected a secc error
on a L2 read or scrub

mcu0_dbg1_fbd_err I 1 MCU 0 iol2clk MCU 0 has detected a fbdimm
channel error

mcu0_dbg1_err_mode I 1 MCU 0 iol2clk Fbdimm interface logic of MCU 0
has gone into error handling
mode. This bit stays on until error
handling complete.

mcu0_dbg1_err_event I 1 MCU 0 iol2clk An error event occurred in MCU
0

MCU 1

mcu1_dbg1_rd_req_in_0[3:0] I 4 MCU 1 iol2clk Read Request from L2 bank 0 to
MCU 1 (id + valid)

mcu1_dbg1_rd_req_in_1[3:0] I 4 MCU 1 iol2clk Read Request from L2 bank 1 to
MCU 1 (id + valid)

mcu1_dbg1_rd_request_out[4:0] I 5 MCU 1 iol2clk Read ack from MCU 1 to L2 bank
0 or 1 (id + valid + dest_L2_bank)

mcu1_dbg1_wr_req_in_0 I 1 MCU 1 iol2clk Write req valid from L2 bank 0

mcu1_dbg1_wr_req_in_1 I 1 MCU 1 iol2clk Write req valid from L2 bank 1

mcu1_dbg1_wr_req_out[1:0] I 2 MCU 1 iol2clk 0,1,2,3 Writes completed at
DRAM

mcu1_dbg1_mecc_err I 1 MCU 1 iol2clk MCU 1 has detected an mecc
error on a L2 read or scrub

mcu1_dbg1_secc_err I 1 MCU 1 iol2clk MCU 1 has detected a secc error
on a L2 read or scrub

TABLE 10-7 Debug Block Interface Signal (Continued)
10-52 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

mcu1_dbg1_fbd_err I 1 MCU 1 iol2clk MCU 1 has detected a fbdimm
channel error

mcu1_dbg1_err_mode I 1 MCU 1 iol2clk Fbdimm interface logic of MCU 1
has gone into error handling
mode. This bit stays on until error
handling complete.

mcu1_dbg1_err_event I 1 MCU 1 iol2clk An error event occurred in MCU
1

MCU 2

mcu2_dbg1_rd_req_in_0[3:0] I 4 MCU 2 iol2clk Read Request from L2 bank 0 to
MCU 2 (id + valid)

mcu2_dbg1_rd_req_in_1[3:0] I 4 MCU 2 iol2clk Read Request from L2 bank 1 to
MCU 2 (id + valid)

mcu2_dbg1_rd_request_out[4:0] I 5 MCU 2 iol2clk Read ack from MCU 2 to L2 bank
0 or 1 (id + valid + dest_L2_bank)

mcu2_dbg1_wr_req_in_0 I 1 MCU 2 iol2clk Write req valid from L2 bank 0

mcu2_dbg1_wr_req_in_1 I 1 MCU 2 iol2clk Write req valid from L2 bank 1

mcu2_dbg1_wr_req_out[1:0] I 2 MCU 2 iol2clk 0,1,2,3 Writes completed at
DRAM

mcu2_dbg1_mecc_err I 1 MCU 2 iol2clk MCU 2 has detected an mecc
error on a L2 read or scrub

mcu2_dbg1_secc_err I 1 MCU 2 iol2clk MCU 2 has detected a secc error
on a L2 read or scrub

mcu2_dbg1_fbd_err I 1 MCU 2 iol2clk MCU 2 has detected a fbdimm
channel error

mcu2_dbg1_err_mode I 1 MCU 2 iol2clk Fbdimm interface logic of MCU 2
has gone into error handling
mode. This bit stays on until error
handling complete.

mcu2_dbg1_err_event I 1 MCU 2 iol2clk An error event occurred in MCU
2

MCU 3

mcu3_dbg1_rd_req_in_0[3:0] I 4 MCU 3 iol2clk Read Request from L2 bank 0 to
MCU 3 (id + valid)

mcu3_dbg1_rd_req_in_1[3:0] I 4 MCU 3 iol2clk Read Request from L2 bank 1 to
MCU 3 (id + valid)

mcu3_dbg1_rd_request_out[4:0] I 5 MCU 3 iol2clk Read ack from MCU 3 to L2 bank
0 or 1 (id + valid + dest_L2_bank)

TABLE 10-7 Debug Block Interface Signal (Continued)
Chapter 10 Debug 10-53

mcu3_dbg1_wr_req_in_0 I 1 MCU 3 iol2clk Write req valid from L2 bank 0

mcu3_dbg1_wr_req_in_1 I 1 MCU 3 iol2clk Write req valid from L2 bank 1

mcu3_dbg1_wr_req_out[1:0] I 2 MCU 3 iol2clk 0,1,2,3 Writes completed at
DRAM

mcu3_dbg1_mecc_err I 1 MCU 3 iol2clk MCU 3 has detected an mecc
error on a L2 read or scrub

mcu3_dbg1_secc_err I 1 MCU 3 iol2clk MCU 3 has detected a secc error
on a L2 read or scrub

mcu3_dbg1_fbd_err I 1 MCU 3 iol2clk MCU 3 has detected a fbdimm
channel error

mcu3_dbg1_err_mode I 1 MCU 3 iol2clk Fbdimm interface logic of MCU 3
has gone into error handling
mode. This bit stays on until error
handling complete.

mcu3_dbg1_err_event I 1 MCU 3 iol2clk An error event occurred in MCU
3

SII

sii_dbg1_l2t0_req[1:0] I 2 SII l2clk Req type encoded on 2 bits from
sii to L2t 0
(00 : no request, 01 : RDD, 10 :
WRI, 11 : WR8)

sii_dbg1_l2t1_req[1:0] I 2 SII l2clk Req type encoded on 2 bits from
sii to L2t 1
(00 : no request, 01 : RDD, 10 :
WRI, 11 : WR8)

sii_dbg1_l2t2_req[1:0] I 2 SII l2clk Req type encoded on 2 bits from
sii to L2t 2
(00 : no request, 01 : RDD, 10 :
WRI, 11 : WR8)

sii_dbg1_l2t3_req[1:0] I 2 SII l2clk Req type encoded on 2 bits from
sii to L2t 3
(00 : no request, 01 : RDD, 10 :
WRI, 11 : WR8)

sii_dbg1_l2t4_req[1:0] I 2 SII l2clk Req type encoded on 2 bits from
sii to L2t 4
(00 : no request, 01 : RDD, 10 :
WRI, 11 : WR8)

TABLE 10-7 Debug Block Interface Signal (Continued)
10-54 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

sii_dbg1_l2t5_req[1:0] I 2 SII l2clk Req type encoded on 2 bits from
sii to L2t 5
(00 : no request, 01 : RDD, 10 :
WRI, 11 : WR8)

sii_dbg1_l2t6_req[1:0] I 2 SII l2clk Req type encoded on 2 bits from
sii to L2t 6
(00 : no request, 01 : RDD, 10 :
WRI, 11 : WR8)

sii_dbg1_l2t7_req[1:0] I 2 SII l2clk Req type encoded on 2 bits from
sii to L2t 7
(00 : no request, 01 : RDD, 10 :
WRI, 11 : WR8)

L2t [7:0]

l2t0_dbg1_sii_iq_dequeue I 1 L2t 0 l2clk L2t 0 dequeue from IQ

l2t1_dbg1_sii_iq_dequeue I 1 L2t 1 l2clk L2t 1 dequeue from IQ

l2t2_dbg1_sii_iq_dequeue I 1 L2t 2 l2clk L2t 2 dequeue from IQ

l2t3_dbg1_sii_iq_dequeue I 1 L2t 3 l2clk L2t 3 dequeue from IQ

l2t4_dbg1_sii_iq_dequeue I 1 L2t 4 l2clk L2t 4 dequeue from IQ

l2t5_dbg1_sii_iq_dequeue I 1 L2t 5 l2clk L2t 5 dequeue from IQ

l2t6_dbg1_sii_iq_dequeue I 1 L2t 6 l2clk L2t 6 dequeue from IQ

l2t7_dbg1_sii_iq_dequeue I 1 L2t 7 l2clk L2t 7 dequeue from IQ

l2t0_dbg1_sii_wib_dequeue I 1 L2t 0 l2clk L2t 0 dequeue from IOWB

l2t1_dbg1_sii_wib_dequeue I 1 L2t 1 l2clk L2t 1 dequeue from IOWB

l2t2_dbg1_sii_wib_dequeue I 1 L2t 2 l2clk L2t 2 dequeue from IOWB

l2t3_dbg1_sii_wib_dequeue I 1 L2t 3 l2clk L2t 3 dequeue from IOWB

l2t4_dbg1_sii_wib_dequeue I 1 L2t 4 l2clk L2t 4 dequeue from IOWB

l2t5_dbg1_sii_wib_dequeue I 1 L2t 5 l2clk L2t 5 dequeue from IOWB

l2t6_dbg1_sii_wib_dequeue I 1 L2t 6 l2clk L2t 6 dequeue from IOWB

l2t7_dbg1_sii_wib_dequeue I 1 L2t 7 l2clk L2t 7 dequeue from IOWB

l2t0_dbg1_err_event I 1 L2t 0 l2clk An Error event occurred in l2t 0

l2t1_dbg1_err_event I 1 L2t 1 l2clk An Error event occurred in l2t 1

l2t2_dbg1_err_event I 1 L2t 2 l2clk An Error event occurred in l2t 2

l2t3_dbg1_err_event I 1 L2t 3 l2clk An Error event occurred in l2t 3

l2t4_dbg1_err_event I 1 L2t 4 l2clk An Error event occurred in l2t 4

TABLE 10-7 Debug Block Interface Signal (Continued)
Chapter 10 Debug 10-55

l2t5_dbg1_err_event I 1 L2t 5 l2clk An Error event occurred in l2t 5

l2t6_dbg1_err_event I 1 L2t 6 l2clk An Error event occurred in l2t 6

l2t7_dbg1_err_event I 1 L2t 7 l2clk An Error event occurred in l2t 7

l2t0_dbg1_pa_match I 1 L2t 0 l2clk A PA match detected in l2t 0

l2t1_dbg1_pa_match I 1 L2t 1 l2clk A PA match detected in l2t 1

l2t2_dbg1_pa_match I 1 L2t 2 l2clk A PA match detected in l2t 2

l2t3_dbg1_pa_match I 1 L2t 3 l2clk A PA match detected in l2t 3

l2t4_dbg1_pa_match I 1 L2t 4 l2clk A PA match detected in l2t 4

l2t5_dbg1_pa_match I 1 L2t 5 l2clk A PA match detected in l2t 5

l2t6_dbg1_pa_match I 1 L2t 6 l2clk A PA match detected in l2t 6

l2t7_dbg1_pa_match I 1 L2t 7 l2clk A PA match detected in l2t 7

l2t0_dbg1_xbar_vcid[5:0] I 6 L2t 0 L2clk VCID[5:0] from Xbar to L2t 0

l2t1_dbg1_xbar_vcid[5:0] I 6 L2t 1 L2clk VCID[5:0] from Xbar to L2t 1

l2t2_dbg1_xbar_vcid[5:0] I 6 L2t 2 L2clk VCID[5:0] from Xbar to L2t 2

l2t3_dbg1_xbar_vcid[5:0] I 6 L2t 3 L2clk VCID[5:0] from Xbar to L2t 3

l2t4_dbg1_xbar_vcid[5:0] I 6 L2t 4 L2clk VCID[5:0] from Xbar to L2t 4

l2t5_dbg1_xbar_vcid[5:0] I 6 L2t 5 L2clk VCID[5:0] from Xbar to L2t 5

l2t6_dbg1_xbar_vcid[5:0] I 6 L2t 6 L2clk VCID[5:0] from Xbar to L2t 6

l2t7_dbg1_xbar_vcid[5:0] I 6 L2t 7 L2clk VCID[5:0] from Xbar to L2t 7

L2b[7:0]

l2b0_dbg1_sio_ctag_vld I 1 L2b 0 l2clk Ctag valid from L2b 0 to SIO

l2b1_dbg1_sio_ctag_vld I 1 L2b 1 l2clk Ctag valid from L2b 1 to SIO

l2b2_dbg1_sio_ctag_vld I 1 L2b 2 l2clk Ctag valid from L2b 2 to SIO

l2b3_dbg1_sio_ctag_vld I 1 L2b 3 l2clk Ctag valid from L2b 3 to SIO

l2b4_dbg1_sio_ctag_vld I 1 L2b 4 l2clk Ctag valid from L2b 4 to SIO

l2b5_dbg1_sio_ctag_vld I 1 L2b 5 l2clk Ctag valid from L2b 5 to SIO

l2b6_dbg1_sio_ctag_vld I 1 L2b 6 l2clk Ctag valid from L2b 6 to SIO

l2b7_dbg1_sio_ctag_vld I 1 L2b 7 l2clk Ctag valid from L2b 7 to SIO

l2b0_dbg1_sio_ack_type I 1 L2b 0 l2clk Read or Wr ack from L2b 0 to SIO

l2b1_dbg1_sio_ack_type I 1 L2b 1 l2clk Read or Wr ack from L2b 1 to SIO

l2b2_dbg1_sio_ack_type I 1 L2b 2 l2clk Read or Wr ack from L2b 2 to SIO

TABLE 10-7 Debug Block Interface Signal (Continued)
10-56 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

l2b3_dbg1_sio_ack_type I 1 L2b 3 l2clk Read or Wr ack from L2b 3 to SIO

l2b4_dbg1_sio_ack_type I 1 L2b 4 l2clk Read or Wr ack from L2b 4 to SIO

l2b5_dbg1_sio_ack_type I 1 L2b 5 l2clk Read or Wr ack from L2b 5 to SIO

l2b6_dbg1_sio_ack_type I 1 L2b 6 l2clk Read or Wr ack from L2b 6 to SIO

l2b7_dbg1_sio_ack_type I 1 L2b 7 l2clk Read or Wr ack from L2b 7 to SIO

l2b0_dbg1_sio_ack_dest I 1 L2b0 l2clk Read or Wr ack dest (NIU/DMU)
from L2b 0 to SIO

l2b1_dbg1_sio_ack_dest I 1 L2b1 l2clk Read or Wr ack dest (NIU/DMU)
from L2b 1 to SIO

l2b2_dbg1_sio_ack_dest I 1 L2b2 l2clk Read or Wr ack dest (NIU/DMU)
from L2b 2 to SIO

l2b3_dbg1_sio_ack_dest I 1 L2b3 l2clk Read or Wr ack dest (NIU/DMU)
from L2b 3 to SIO

l2b4_dbg1_sio_ack_dest I 1 L2b4 l2clk Read or Wr ack dest (NIU/DMU)
from L2b 4 to SIO

l2b5_dbg1_sio_ack_dest I 1 L2b5 l2clk Read or Wr ack dest (NIU/DMU)
from L2b 5 to SIO

l2b6_dbg1_sio_ack_dest I 1 L2b6 l2clk Read or Wr ack dest (NIU/DMU)
from L2b 6 to SIO

l2b7_dbg1_sio_ack_dest I 1 L2b7 l2clk Read or Wr ack dest (NIU/DMU)
from L2b 7 to SIO

TCU

tcu_mio_dmo_data[39:0] I 39 TCU L2clk
/1,2,4,8,16

DMO data from TCU to MIO

tcu_mio_dmo_sync I 1 TCU L2clk/1,2,
4,8,16

DMO Sync from TCU to MIO

tcu_mio_mbist_done I 1 TCU L2clk /10 Membist done from TCU to MIO

tcu_mio_mbist_fail I 1 TCU L2clk/ 10 Membist fail from TCU to MIO

tcu_mio_jtag_membist_ mode I 1 TCU Static Membist mode from TCU to MIO

tcu_mio_pins_scan_out[31:0] I 32 TCU 100 – 200
MHz
(tester)

Scan out pins during
manufacturing scan

mio_tcu_io_aclk O 1 TCU 100 – 200
MHz
(tester)

A clock during manufacturing
scan

TABLE 10-7 Debug Block Interface Signal (Continued)
Chapter 10 Debug 10-57

mio_tcu_io_bclk O 1 TCU 100 – 200
MHz
(tester)

B clock during manufacturing
scan

mio_tcu_io_scan_en O 1 TCU 100 – 200
MHz
(tester)

Scan Enduring manufacturing
scan

mio_tcu_io_ac_test_mode O 1 TCU static AC Testmode

mio_tcu_io_ac_testtrig O 1 TCU 100 – 200
MHz
(tester)

AC TestTrig

mio_tcu_io_scan_in[31:0] O 32 TCU 100 – 200
MHz
(tester)

Scan in pins during
manufacturing scan

dbg1_tcu_soc_hard_stop O 1 TCU Iol2clk Hard Stop request to TCU fron
SOC

dbg1_tcu_soc_asrt_trigout O 1 TCU Iol2clk Assert TRIGOUT request to TCU
from SOC

MIO

dbg1_mio_drv_imped[1:0] O 2 MIO Static MIO driver impedance control

dbg1_mio_imped_mon O 1 MIO Static Impedence monitoring on/off for
IMPED_MON_PU,
IMPED_MON_PD pins in
OpenSPARC T2.

mio_dbg1_testmode I 1 MIO static Dedicated test mode pin for
manufacturing scan

dbg1_mio_dbg_dq[165:0] O 166 MIO L2clk/2 OpenSPARC T2 Debug port
signals from dbg1

dbg_mio_dbg_ck0 O 1 MIO Clock OpenSPARC T2 debug port clock
, now generated in MIO

dbg1_mio_drv_en_op_only O 1 MIO Static Drive en to pins configured only
as debug port

dbg1_mio_drv_en_muxtest_ op O 1 MIO Static Drive en to pins configured both
as debug port and scan out[31:0]
pins

dbg1_mio_drv_en_muxbist_ op O 1 MIO Static Drive en to pins configured both
as debug port and mbist output
pins.

dbg1_mio_drv_en_muxtest_ inp O 1 MIO Static Drive en to pins configured as
debug port and testmode input
pins

TABLE 10-7 Debug Block Interface Signal (Continued)
10-58 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

dbg0_mio_debug_bus_a[7:0] O 8 MIO iol2clk Debug Bus A from DBG0 to MIO

dbg0_mio_debug_bus_b[7:0] MIO iol2clk Debug Bus B from DBG0 to MIO

CCU

mio_ccu_cmp_clk_ext O 1 CCU Clock Ext CMP Clk to CCU from MIO

mio_ccu_dr_clk_ext O 1 CCU Clock Ext MCU/DRAM clock to CCU
from MIO

mio_ccu_io_clk_ext[11:0] O 12 CCU Clock Ext IO clk to CCU from MIO

io_cmp_sync_en I 1 CCU Sync _ en I/O to cmp clk Sync en
consumed by both dbg0 and dbg1

cmp_io2x_sync_en I 1 CCU Sync _ en Cmp to io2x clk Sync En
consumed by dbg1 and MIO

Sparcs [7:0]

spc0_dbg1_instr_cmt_ grp0[1:0] I 2 SPC0 L2clk Instruction Commited in Thread
Group 0 for SPC 0

spc0_dbg1_instr_cmt_ grp1[1:0] I 2 SPC0 L2clk Instruction Commited in Thread
Group 1 for SPC 0

spc1_dbg1_instr_cmt_ grp0[1:0] I 2 SPC1 L2clk Instruction Commited in Thread
Group 0 for SPC 1

spc1_dbg1_instr_cmt_
grp1[1:0]

I 2 SPC1 L2clk Instruction Commited in Thread
Group 1 for SPC 1

spc2_dbg1_instr_cmt_ grp0[1:0] I 2 SPC2 L2clk Instruction Commited in Thread
Group 0 for SPC 2

spc2_dbg1_instr_cmt_ grp1[1:0] I 2 SPC2 L2clk Instruction Commited in Thread
Group 1 for SPC 2

spc3_dbg1_instr_cmt_ grp0[1:0] I 2 SPC3 L2clk Instruction Commited in Thread
Group 0 for SPC 3

spc3_dbg1_instr_cmt_ grp1[1:0] I 2 SPC3 L2clk Instruction Commited in Thread
Group 1 for SPC 3

spc4_dbg1_instr_cmt_ grp0[1:0] I 2 SPC4 L2clk Instruction Commited in Thread
Group 0 for SPC 4

spc4_dbg1_instr_cmt_ grp1[1:0] I 2 SPC4 L2clk Instruction Commited in Thread
Group 1 for SPC 4

spc5_dbg1_instr_cmt_ grp0[1:0] I 2 SPC5 L2clk Instruction Commited in Thread
Group 0 for SPC 5

spc5_dbg1_instr_cmt_ grp1[1:0] I 2 SPC5 L2clk Instruction Commited in Thread
Group 1 for SPC 5

TABLE 10-7 Debug Block Interface Signal (Continued)
Chapter 10 Debug 10-59

10.6 Debug Blocks (dbg0.v and dbg1.v)
To mitigate wiring congestion issues in OpenSPARC T2, the debug port logic,
checkpoint replay logic and SOC debug event logic will be distributed in two top
level modules called dbg0.v and dbg1.v. Dbg1 will be located closer to the middle
of the chip (close to EFU) as this module will receive signals from all different
modules on chip like spc0[7:0],l2t[7:0],l2b[7:0],mcu[3:0],tcu,ncu and sii. While dbg0
will be receiving the repeatability wires from DMU and NIU and will be located
closer to those modules. This will have a progressive muxing effect on the debug
port signals which will distribute the wires more uniformly over the chip mitigating
wiring congestion.

spc6_dbg1_instr_cmt_ grp0[1:0] I 2 SPC6 L2clk Instruction Commited in Thread
Group 0 for SPC 6

spc6_dbg1_instr_cmt_ grp1[1:0] I 2 SPC6 L2clk Instruction Commited in Thread
Group 1 for SPC 6

spc7_dbg1_instr_cmt_ grp0[1:0] I 2 SPC7 L2clk Instruction Commited in Thread
Group 0 for SPC 7

spc7_dbg1_instr_cmt_ grp1[1:0] I 2 SPC7 L2clk Instruction Commited in Thread
Group 1 for SPC 7

NCU

ncu_dbg1_error_event I 1 NCU Iol2clk An Error event occurred in NCU
(covers some errors in SOC blocks
like NIU,DMU,MCU,SII,SIO)

ncu_dbg1_stall I 1 NCU Iol2clk NCU back Pressure control signal
to Dbg

ncu_dbg1_vld I 1 NCU Iol2clk NCU to Dbg UCB data valid

ncu_dbg1_data[3:0] I 4 NCU Iol2clk NCU to Dbg UCB data bus

dbg_ncu1_stall O 1 NCU Iol2clk Dbg back pressure control signal
to NCU

dbg_ncu1_vld O 1 NCU Iol2clk Dbg to NCU UCB data valid

dbg_ncu1_data[3:0] O 1 NCU Iol2clk Dbg to NCU UCB data

RST

rst_mio_rst_state[4:0] I 5 RST Sys clk Reset State to MIO

TABLE 10-7 Debug Block Interface Signal (Continued)
10-60 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

Following are the functions performed by the dbg0.v block :

Converts signals coming from DMU and NIU for the repeatability mode to debug
port width of 166 wires @ 2xiol2clk (700 MHz nominal) . This is done through rate
conversion logic shown later in the document.

Drives the resultant 166 wide bus to dbg1.v

Following are the functions performed by the dbg1.v block :

Drives and samples several manufacturing test related signals when Debug Port is
disabled. Also drives MemBIST signals when debug port is disabled.

Responds to CSR read/write requests from NCU in accordance to UCB protocol .
For this purpose it supports a 4 bit UCB interface with NCU which is identical to
NCU's UCB interface with RST module.

Hosts I/O mapped CSR to control I/O quiescing of NIU and DMU interfaces to
complement Checkpoint/Replay debug feature for OpenSPARC T2. Communicates
with NIU and DMU to control quiescing of NIU->SII,SIO,NCU and DMU-
>SII,SIO,NCU interfaces for checkpoint/replay.

Hosts I/O mapped SOC DECR register to assert Hard Stop or pulse TRIGOUT
request to TCU based on various SOC debug events.

Hosts I/O mapped CSR to configure debug port in any one of 5 modes . Generates
mux select s to mio.sv to select between NIU debug mode, PCI_EX debug mode
and OpenSPARC T2 Repeatability/Tester Charac mode/SOC Obs mode.

Converts signals coming from rest of the chip for Tester charac/cpu debug mode of
debug port and SOC observability mode of debug port to debug port width of 166
wires @ 2xiol2clk (700 MHz nominal) . This is done through rate conversion logic
shown later in the document.

Muxes signals coming from dbg0.v (repeatability signals : 166 wires) with the tester
charac/CPU debug mode and SOC obs mode signals and drives the 166 wire
debug port bus to mio.sv at a data rate of 2xiol2clk (700 MHz nominal).
Chapter 10 Debug 10-61

FIGURE 10-7 DBG0 and DBG1 in OpenSPARC T2 Floorplan

10.6.1 OpenSPARC T2 Debug Port
10-62 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

OpenSPARC T2 debug port width is defined by 166 signals for repeatability to
complement Checkpoint /Replay . When not being used to monitor the repeatability
signals (described in section 3.2.1.1), the port will get used to monitor various other
signals in OpenSPARC T2 in 4 different modes : SOC Observability,Tester
charac/CPU debug , PCI_EX debug and NIU Debug.

These modes are programmable by SW by writing to the OpenSPARC T2 Debug Port
Configuration register. In all the above 5 modes other than the NIU debug mode and
PCI_EX debug modes, the debug port will be driven @ 2 x iol2clk frequency (2 x 350
MHz = 700 MHz nominal), with iol2clk being sent out on DBG_CK0 pin to the LA
for sampling and aligning the data. In essence this is equivalent to data being driven
on both edges of iol2clk . Commercially available LA's do have the ability to support
DDR signal sampling with the LA currently being able to support a max of 900 MHz
DDR (both edges of 450 MHz clk). OpenSPARC T2's debug port will employ double
pumping CMOS signals @ 1.1 V and will not need to meet the timing and skew
specs associated with traditional Memory multi-drop DDR2 interfaces. Also the LA
probes will be connector less thereby reducing the load on the debug port drivers.

As mentioned before, the debug port pins will be shared with manufacturing scan
test and memBIST signals so that with the debug ports disabled , some of these pins
can be used for manufacturing scan and MemBIST of OpenSPARC T2. The muxing
of the debug port signals with the manufacturing scan test and memBIST signals
will happen in the I/O cell itself in the mio.v block.

Upon chip reset , the debug port will come up disabled thereby saving power on the
I/O's. The debug port can be enabled by writing to the Debug_en bit of the Debug
Port Configuration Register (either by SW or by JTAG CREGs access) . The effect of
the write will take place immediately and not after the next warm reset.

The muxing of the debug signals in OpenSPARC T2 on the debug port and also
muxing of the debug port signals with the manufacturing scan test signals,memBIST
signals and other miscellaneous signals is shown in the figure below .

The I/O's in OpenSPARC T2 debug port can be thus broadly classified as falling
under 5 categories :

I/Os which are shared between debug port and memBIST signals that are outputs.
For this group of signals , the Drive_en to the I/O's will get generated as :

assign dbg_mio_drv_en_muxbist_op = debug_en | tcu_dbg_jtag_memBIST_mode;

I/Os which are shared between debug port and Manufacturing Scan test signals
that are outputs. For this group of signals, the Drive_en to the I/O's will get
generated as follows :

assign dbg_mio_drv_en_muxtest_op = debug_en | mio_dbg_testmode;

I/O's which are shared between debug port and Manufacturing Scan test signals
that are inputs. For this group of signals, the Drive_en to the I/O's will get
generated as follows :
Chapter 10 Debug 10-63

assign dbg_mio_drv_en_muxtest_inp = debug_en & ~mio_dbg_testmode;

I/O's which are always driven as outputs in the debug mode . For this group of
signals, the Drive_en to the I/O's will get generated as follows :

assign dbg_mio_drv_en_op_only = debug_en.

Where “debug_en” is “Debug_En” bit in Debug Port Config register.
10-64 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

Legend : 2x {bus} implies twice the data contained in {bus} gets driven out on debug port on
every io2xclk cycle x (bus} implies half the data contained in {bus} gets driven out on
Chapter 10 Debug 10-65

debug port on every io2xclk cycle, with the other half following in the next io2xclk cycle.
10-66 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

TABLE 10-8 Mapping

000 : SOC
Observability

165: 160
155:0

{rst_mio_rst_state[5:0],4'b0,
2x(sii_dbg1_l2t7_req[1:0],l2t7_dbg1_sii_iq_dequeue,l2t7_dbg1_sii_wib_dequeue,
l2b7_dbg1_sio_ctag_vld,l2b7_dbg1_sio_ack_type, l2b7_dbg1_sio_ack_dest,
sii_dbg1_l2t6_req[1:0],l2t6_dbg1_sii_iq_dequeue,l2t6_dbg1_sii_wib_dequeue,
l2b6_dbg1_sio_ctag_vld, l2b6_dbg1_sio_ack_type, l2b6_dbg1_sio_ack_dest,
sii_dbg1_l2t5_req[1:0],l2t5_dbg1_sii_iq_dequeue, l2t5_dbg1_sii_wib_dequeue,
l2b5_dbg1_sio_ctag_vld, l2b5_dbg1_sio_ack_type, l2b5_dbg1_sio_ack_dest,
sii_dbg1_l2t4_req[1:0],l2t4_dbg1_sii_iq_dequeue, 2t4_dbg1_sii_wib_dequeue,
l2b4_dbg1_sio_ctag_vld, l2b4_dbg1_sio_ack_type, l2b4_dbg1_sio_ack_dest,
sii_dbg1_l2t3_req[1:0],l2t3_dbg1_sii_iq_dequeue, l2t3_dbg1_sii_wib_dequeue,
dbg0_dbg1_l2b3_sio_ctag_vld, dbg0_dbg1_l2b3_sio_ack_type,
dbg0_dbg1_l2b3_sio_ack_dest,
sii_dbg1_l2t2_req[1:0],dbg0_dbg1_l2t2_sii_iq_dequeue,
dbg0_dbg1_l2t2_sii_wib_dequeue, dbg0_dbg1_l2b2_sio_ctag_vld,
dbg0_dbg1_l2b2_sio_ack_type, dbg0_dbg1_l2b2_sio_ack_dest,
sii_dbg1_l2t1_req[1:0],l2t1_dbg1_sii_iq_dequeue,l2t1_dbg1_sii_wib_dequeue,
dbg0_dbg1_l2b1_sio_ctag_vld,dbg0_dbg1_l2b1_sio_ack_type,
dbg0_dbg1_l2b1_sio_ack_dest, sii_dbg1_l2t0_req[1:0],
dbg0_dbg1_l2t0_sii_iq_dequeue, dbg0_dbg1_l2t0_sii_wib_dequeue,
dbg0_dbg1_l2b0_sio_ctag_vld, dbg0_dbg1_l2b0_sio_ack_type,
dbg0_dbg1_l2b0_sio_ack_dest),
2'b0,
(

mcu0_dbg1_rd_req_in_0[3:0],mcu0_dbg1_rd_req_in_1[3:0],mcu0_dbg1_rd_req_out[
4:0],
mcu0_dbg1_wr_req_in_0,mcu0_dbg1_wr_req_in_1,mcu0_dbg1_wr_req_out[1:0],mc
u0_dbg1_mecc_err,
mcu0_dbg1_secc_err,mcu0_dbg1_fbd_err,mcu0_dbg1_err_mode,mcu1_dbg1_rd_req
_in_0[3:0],mcu1_dbg1_rd_req_in_1[3:0],
mcu1_dbg1_rd_req_out[4:0],mcu1_dbg1_wr_req_in_0, mcu1_dbg1_wr_req_in_1,
mcu1_dbg1_wr_req_out[1:0],mcu1_dbg1_mecc_err, mcu1_dbg1_secc_err,
mcu1_dbg1_fbd_err, mcu1_dbg1_err_mode, mcu2_dbg1_rd_req_in_0[3:0],
mcu2_dbg1_rd_req_in_1[3:0],mcu2_dbg1_rd_req_out[4:0],mcu2_dbg1_wr_req_in_0,
mcu2_dbg1_wr_req_in_1,mcu2_dbg1_wr_req_out[1:0],mcu2_dbg1_mecc_err,
mcu2_dbg1_secc_err, mcu2_dbg1_fbd_err, mcu2_dbg1_err_mode,
mcu3_dbg1_rd_req_in_0[3:0],
mcu3_dbg1_rd_req_in_1[3:0],mcu3_dbg1_rd_req_out[4:0],
mcu3_dbg1_wr_req_in_0,mcu3_dbg1_wr_req_in_1, mcu3_dbg1_wr_req_out[1:0],
mcu3_dbg1_mecc_err,mcu3_dbg1_secc_err,mcu3_dbg1_fbd_err,mcu3_dbg1_err_mo
de) }
Chapter 10 Debug 10-67

001 : Tester
Charac/CPU
Debug

159:0 {6'b0,
2x (spc7_dbg1_instr_cmt_grp1[1:0],spc7_dbg1_instr_cmt_grp[1:0],
spc6_dbg1_instr_cmt_grp1[1:0], spc6_dbg1_instr_cmt_grp[1:0],
spc5_dbg1_instr_cmt_grp1[1:0],spc5_dbg1_instr_cmt_grp0[1:0],
spc4_dbg1_instr_cmt_grp1[1:0], spc4_dbg1_instr_cmt_grp0[1:0],
spc3_dbg1_instr_cmt_grp1[1:0],spc3_dbg1_instr_cmt_grp0[1:0],
dbg0_dbg1_spc2_instr_cmt_grp1[1:0], dbg0_dbg1_spc2_instr_cmt_grp0[1:0],
spc1_dbg1_instr_cmt_grp1[1:0], spc1_dbg1_instr_cmt_grp0[1:0],
dbg0_dbg1_spc0_instr_cmt_grp1[1:0], dbg0_dbg1_spc0_instr_cmt_grp0[1:0],
l2t7_dbg1_xbar_vcid[5:0], l2t6_dbg1_xbar_vcid[5:0],
l2t5_dbg1_xbar_vcid[5:0],l2t4_dbg1_xbar_vcid[5:0],
l2t3_dbg1_xbar_vcid[5:0],dbg0_dbg1_l2t2_xbar_vcid[5:0],
l2t1_dbg1_xbar_vcid[5:0],dbg0_dbg1_l2t0_xbar_vcid[5:0])
}

010 :
Repeatability

165:0 {
x (niu_ncu_vld,niu_ncu_data[31:0],niu_ncu_stall,

niu_sii_hdr_vld,niu_sii_reqbypass, niu_sii_datareq, niu_sio_dq,niu_sii_data[127:0]),
x (dmu_ncu_data_fnl[11:0],dmu_ncu_wrack_vld,

dmu_ncu_wrack_tag[3:0],dmu_ncu_stall, dmu_sii_hdr_vld,
dmu_sii_reqbypass,dmu_sii_datareq, dmu_sii_datareq16,
dmu_sii_be[15:0],dmu_sii_data[127:0])
}
where, dmu_ncu_data_fnl[11:0] = 1/3
{{dmu_ncu_vld_r,dmu_ncu_data_r[10:0], dmu_ncu_vld_r,
dmu_ncu_data_r[21:11], dmu_ncu_vld_r, 1'b0,dmu_ncu_data_r[31:22]}

TABLE 10-8 Mapping (Continued)
10-68 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

011 :
CORE_SOC
debug

149:86
82:0

{ 16'b0,
2x
(spc7_dbg1_instr_cmt_grp1[1:0],spc7_dbg1_instr_cmt_grp0[1:0],spc6_dbg1_instr_c
mt_grp1[1:0],spc6_dbg1_instr_cmt_grp0[1:0],spc5_dbg1_instr_cmt_grp1[1:0],spc5_d
bg1_instr_cmt_grp0[1:0],spc4_dbg1_instr_cmt_grp1[1:0],spc4_dbg1_instr_cmt_grp0[
1:0],spc3_dbg1_instr_cmt_grp1[1:0],spc3_dbg1_instr_cmt_grp0[1:0],dbg0_dbg1_spc2
_instr_cmt_grp1[1:0],dbg0_dbg1_spc2_instr_cmt_grp0[1:0],spc1_dbg1_instr_cmt_gr
p1[1:0],spc1_dbg1_instr_cmt_grp0[1:0],dbg0_dbg1_spc0_instr_cmt_grp1[1:0],dbg0_
dbg1_spc0_instr_cmt_grp0[1:0]),
3'b0,
x (dmu_ncu_data_fnl[11:0],dmu_ncu_wrack_vld,

dmu_ncu_wrack_tag[3:0],dmu_ncu_stall, dmu_sii_hdr_vld,
dmu_sii_reqbypass,dmu_sii_datareq, dmu_sii_datareq16,
dmu_sii_be[15:0],dmu_sii_data[127:0])
}
where, dmu_ncu_data_fnl[11:0] = 1/3 {{dmu_ncu_vld_r,dmu_ncu_data_r[10:0],
dmu_ncu_vld_r, dmu_ncu_data_r[21:11], dmu_ncu_vld_r,
1'b0,dmu_ncu_data_r[31:22]}

100 : NIU
Debug

157:124 165:158 : dont care
157:124 :
{niu_mio_debug_data[31:0], niu_mio_debug_clock[1:0]}

123:0 : dont care

101 : PCI_EX
Debug

123:9182:0 123:91 :
{dbg0_mio_debug_bus_a_r[7:0],dbg0_mio_debug_bus_b_r[7:0],
peu_mio_debug_bus_a[7:0],peu_mio_debug_bus_b[7:0],peu_mio_debug_clk}
82:0 :
x (dmu_ncu_data_fnl[11:0],dmu_ncu_wrack_vld,

dmu_ncu_wrack_tag[3:0],dmu_ncu_stall, dmu_sii_hdr_vld,
dmu_sii_reqbypass,dmu_sii_datareq, dmu_sii_datareq16,
dmu_sii_be[15:0],dmu_sii_data[127:0])
}
where, dmu_ncu_data_fnl[11:0] = 1/3
{{dmu_ncu_vld_r,dmu_ncu_data_r[10:0], dmu_ncu_vld_r,
dmu_ncu_data_r[21:11], dmu_ncu_vld_r, 1'b0,dmu_ncu_data_r[31:22]}

TABLE 10-8 Mapping (Continued)
Chapter 10 Debug 10-69

FIGURE 10-8 OpenSPARC T2 Debug Port layout across DBG0,DBG1 and MIO
10-70 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 10-9 Rate Conversion from iol2clk to io2xclk
Chapter 10 Debug 10-71

FIGURE 10-10 Rate Conversion from l2clk to io2xclk

10.6.2 CSR Block in debug.v
The CSR block in debug.v will host the OpenSPARC T2 Debug port Config
register,the OpenSPARC T2 I/O Quiesce Control register and the SOC DECR register
. These registers are all defined in the Appendix section of this document. This
module will be operating at iol2clk frequency and will communicate with NCU
,TCU,DMU and NIU.

It will have a 4 bit standard UCB interface with NCU similar to the UCB interface
between NCU and RST and NCU and TCU. It will be able to respond to CSR
read/write requests on this UCB interface from the NCU initiated either by the
SPARCs or JTAG (CREG access from TCU).
10-72 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

W.r.t. TCU, it will have a a pair of signals : dbg_tcu_soc_hard_stop and
dbg_tcu_soc_asrt_trigout to request hard stop and TRIGOUT pulsing respectively
due to occurrence of some SOC debug event. The SOC debug event sampling logic
will be working at iol2clk frequency . So all debug events that arrive at l2clk
frequency as pulses(e.g L2 PA matches) will need to be synchronized to a iol2clk
pulse before being sampled @ iol2clk (first 0 to 1 transition) . All debug events that
come as levels either at iol2clk or l2clk will be sampled @ iol2clk (first 0 to 1
transition) . All debug events that come as pulses in iol2clk domain will also be
sampled @ iol2clk (first 0 to 1 transition) . Then the result of the sampling logic for
all the respective debug events will get Ored and based on what is programmed in
SOC DECR register , will pulse either dbg_tcu_soc_hard_stop or
dbg_tcu_soc_asrt_trigout for one iol2clk cycle . If there is a request for hard stop and
TRIGOUT assertion both in the same iol2clk cycle, both wires will be pulsed
simultaneously to TCU for one iol2clk cycle.

W.r.t. NIU and DMU it will support separate interfaces to control I/O quiescing of
NIU and DMU individually to complement checkpoint replay. The details of this
protocol and SW-HW handshake has already been described in 3.2.2.

10.7 APPENDIX

10.7.1 Checkpoint Sequence (SW-HW interaction)
prior to booting OS:

====================

reserve at least half of system DRAM for checkpoint code/dump

enable timer tick interrupts on all threads

to take checkpoint:

===================

tick interrupt jumps into hypervisor code on each thread (this will happen at approx.
the same time on all threads as ticks are synchronized).

each thread does following sparcv9 state dump:
Chapter 10 Debug 10-73

dump ARF/FRF

dump trap/pstate regs

dump hpriv state regs

dump global regs

dump MMU config regs

dump scratch regs

dump interrupt pending register

write local regs into scratch regs so we can reuse %l's

one thread from each core dumps the ITLB and DTLB

** master thread stalls IO DMA

all threads jump into spin loop waiting for others to arrive

**wait for pending DMA to complete

master thread dumps all active pages of dram (can make this multiple threads to
save time). Active pages are tagged using software tricks to minimize how much
dumping is required.

do debug init sequence - see below

**enable DMA

restore local regs

restore scratch regs

all threads jump into spin loop waiting for others to arrive

program tick compare to time of next checkpoint

retry back into normal execution

the following is required to get all the flops in the core blocks in a known state.
Careful alignment of code and reset handler is required to ensure allocation in
caches is predictable. All code from reset vector to dram refresh should hit in i$, to
avoid repeatability problems. If we plan to reset the MCU and use self refresh mode,
we'll make sure the whole reboot sequence is in the l2/l1$ before the reset.

debug init sequence:

====================
10-74 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

halt all threads except master

put l2$ into direct mapped mode

clear VUAD bits.

flush l2$ (implies l1$ flush too)

**dump NCU interrupt state to memory.

Wait 1 microsec for all pending MCU transactions to complete to memory (The
worst case time to flush 16 writes in each MCU if no reads are present is about 660
ns)

**initiate debug reset - assume short enough to not drop excessive DRAM

refreshes - or use self refresh if we reset the MCU

** ..reboot out of dram/l2...

** write MCU refresh counters

go back to 16 way l2$ mode

** ..restore hpriv regs from saved area

** ..execute done to get back to where we were

** reload regs from dumped state that we cleared by reset

** reload NCU regs.

** Probe all NIU interrupt sources and poke interrupt into NCU or cores for all
dropped interrupts.

debug port info:

================

debug port dumps NIU and PCI-ex traffic to pins

sync point is deemed to be the end of the debug reset. thus we need to be able to

observe the end of the debug reset on an external pin somehow.
Chapter 10 Debug 10-75

clock alignment:

================

OpenSPARC T1 debug init ensures a known clock alignment. Need to prove
OpenSPARC T2 reset scheme will do the same, unless clocks alignment is always the
same for given ratio

10.7.2 SW Visible State Lost on Debug Reset
The following table shows all the SW visible registers in the synchronous portion of
OpenSPARC T2 (excluding PCI-EX and NIU blocks) that will maintain their value
over “debug_reset”.

TABLE 10-9 State that Loses Value over debug_reset (excluding NIU and PCI_EX)

Name Fields POR WMR/DBR

PSTATE TCT 0 (Trap on control transfer) 0 (Trap on control transfer)

PSTATE MM 0 (TSO) 0 (TSO)

PSTATE RED 0 (RED_state bit is in
HPSTATE register)

0 (RED_state bit is in HPSTATE register)

PSTATE PEF 1 (FPU on) 1 (FPU on)

PSTATE AM 0 (Full 64-bit addresses) 0 (Full 64-bit addresses)

PSTATE PRIV 0 (Hyperpriviledged mode) 0 (Hyperpriviledged mode)

PSTATE IE 0 (Disable interrupts) 0 (Disable interrupts)

PSTATE AG 0 (Alternate globals always
0)

0 (Alternate globals always 0)

PSTATE CLE 0 (Current not little endian) 0 (Current not little endian)

PSTATE TLE 0 (Trap not little endian) 0 (Trap not little endian)

PSTATE IG 0 (Interrupt globals always 0) 0 (Interrupt globals always 0)

PSTATE MG 0 (MMU globals always 0) 0 (MMU globals always 0)

HPSTATE IBE 0 (Instruction breakpoint
disabled)

0 (Instruction breakpoint disabled)

HPSTATE RED 1 (RED_state) 1 (RED_state)

HPSTATE HPRIV 1 (Hyperprivileged mode) 1 (Hyperprivileged mode)

HPSTATE TLZ 0 (TLZ traps disabled) 0 (TLZ traps disabled)
10-76 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

TT[TL TT[TL 1 1

TPC[TL]
TnPC[TL]

TPC[TL]
TnPC[TL]

Unknown
Unknown

PC
nPC

TL TL MAXTL MAXTL

GL GL MAXGL MAXGL

TSTATE[TL GL Unknown Unknown

TSTATE[TL CCR Unknown Unknown

TSTATE[TL] ASI Unknown Unknown

TSTATE[TL PSTATE Unknown Unknown

TSTATE[TL CWP Unknown Unknown

HTSTATE[TL] IBE Unknown Unknown

HTSTATE[TL] RED Unknown Unknown

HTSTATE[TL] HPRIV Unknown Unknown

HTSTATE[TL] TLZ Unknown Unknown

TICK NPT 1 1

TICK Counter Unknown Count

PERF_CONTROL
(PCR)

all 0 (off) 0 (off)

PERF_COUNTER
(PIC)

0 0

ASI_INST_MASK_R
EG

0 0

ASI_LSU_DIAG_RE
G

0 0

ASI_ERROR_INJECT
_REG

0 0

ASI_LSU_CONTROL
_REG

0 0

ASI_DECR 0 0

ASI_CERER 0 0

ASI_CETER 0 0

ASI_SPARC_PWR_M
GMT

0 0

TABLE 10-9 State that Loses Value over debug_reset (excluding NIU and PCI_EX) (Continued)
Chapter 10 Debug 10-77

ASI_IMMU_TAG_TA
RGET

0 0

ASI_IMMU_SFSR 0 0

ASI_IMMU_TAG_A
CCESS

0 0

L2 Error Injection
Reg

0 0

L2 Error En Reg 0 0

DRAM Error
Injection Reg

0 0

SSI Timeout Reg 0x800000 0x800000

L2 Control Reg 0x1 0x1

L2 Diag Data X X

L2 Diag Tag X X

L2 Diag VD X X

L2 Diag UA X X

L2 Bist control reg 0 0

SPARC Bist Control
Reg

0 0

NCU Core running
RW Reg

0 0

NCU L2 Bank Enable
Reg

Bank_avail Bank_avail

NCU L2 Index Hash
Enable

0 0

NCU PCIE LinkA
Mem32 Addr Offset
Base

0 0

NCU PCIE LinkA
Mem32 Addr Offset
Mask

0 0

NCU PCIE LinkA
Mem64 Domain
Addr Base

0 0

NCU PCIE LinkA
Mem64 Domain
Addr Mask

0 0

TABLE 10-9 State that Loses Value over debug_reset (excluding NIU and PCI_EX) (Continued)
10-78 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

10.7.3 Registers to Support Debug

10.7.3.1 Debug Port Configuration Register

This register is used to enable and configure the debug port in any one of 6 modes .
It is located in debug.v module at location 0x86-0000-0000. The format of this
register is shown in :TABLE 10-11

NCU PCIE LinkA
IOConfig Domain
Addr Base

0 0

NCU PCIE LinkA
IOConfig Domain
Addr Mask

0 0

NCU PCIE Link A
Flush

0 0

TABLE 10-10 Debug Port Configuration Register

Field Bit Position POR Value R/W Description

IMP_CTRL 63:62 0x0
Preserved on
WMR/DBR

R/W MIO Driver Impedance Control.
11 : Strong Driver
10 : Nominal Driver
01 : Weak Driver
00 : Low Power Driver

IMPED_MON_EN 61 0
Preserved on
WMR/DBR

R/W Impedence monitoring on/off for
IMPED_MON_PU, IMPED_MON_PD
pins in OpenSPARC T2.
1 : on
0 : off

RSVD 60:10 0x0 RO Reserved, Read as 0.

NIU_DBG_SEL 9:5 0x0
Preserved on
WMR/DBR

R/W NIU debug select bits ,sent out on
dbg1_niu_dbg_sel[4:0] wires

TABLE 10-9 State that Loses Value over debug_reset (excluding NIU and PCI_EX) (Continued)
Chapter 10 Debug 10-79

10.7.3.2 RESET_GEN Register

The reset generation register, shown below , is provided to allow software to
generate XIR resets to all processors specified in the ASI_XIR_STEERING register or
a chipwide warm or debug reset.

Debug_Train 4 0x0
Preserved on
WMR/DBR

R/W When set to 1, enables Training for
Debug port in modes 000,001, 010 and
011

Debug_Conf 3:1 0
Preserved on
WMR/DBR

R/W Debug Port Configuration
000 : SOC Observability
001 : Tester Charac/CPU debug
010 : Repeatability
011 : CORE_SOC debug
100 : NIU Debug
101 : PCI_EX Debug
110 – 111 : Reserved

Debug_En 0 0
Preserved on
WMR/DBR

R/W When set to 1, enables debug port
drivers

TABLE 10-11 Reset Generation Register RESET_GEN (0x89-0000-0808)

Field Bit Position Initial Value R/W Description

RSVD0 63:4 0 RO Reserved

DBR_GEN 3 0 R/W Set to one to generate Debug Reset.
Value is automatically cleared once the
DBR is complete.

RSVD1 2 0 RO Reserved (was POR_GEN on Fire).

XIR_GEN 1 0 R/W Set to one to generate a XIR. Value is
automatically cleared once the XIR is
complete.

WMR_GEN 0 0 R/W Set to one to generate a WMR. Value is
automatically cleared once the WMR is
complete.

TABLE 10-10 Debug Port Configuration Register (Continued)
10-80 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

10.7.3.3 RESET_SOURCE Register

The reset source register, shown below allows software to identify the source of a
reset. The bits in this register are write-one to clear.

10.7.3.4 ASI_WMR_VEC_MASK Register

All physical cores share a hyperprivileged, read/write ASI_WMR_VEC_MASK
register located as ASI 0x45, VA 0x18. Reserved bits read as zero and are ignored on
write. The contents of this register are preserved across warm reset and debug reset
. This register will be physically located in the NCU block (ncu.sv). The format of
the register is as follows :

TABLE 10-12 Reset Source Register RESET_SOURCE (0x89-0000-0818)

Field Bit Position Initial Value R/W Description

RSVD0 63:8 0 RO Reserved

DBR_GEN 7 0 R/W1C Software wrote a 1 to the DBR_GEN
field of the RESET_GEN register.

FATAL 6 0 R/W1C The L2 cache detected a fatal error.

PB_XIR 5 0 R/W1C The user asserted the BUTTON_XIR_
input pin.

PB_RST 4 0 R/W1C The user asserted the PB_RST_ input
pin.

POR 3 1 R/W1C The system processor asserted the POR_
input pin

RSVD1 2 0 RO Reserved (was POR_GEN on Fire).

XIR_GEN 1 0 R/W1C Software wrote a 1 to the XIR_GEN field
of the RESET_GEN register.

WMR_GEN 0 0 R/W1C Software wrote a 1 to the WMR_GEN
field of the RESET_GEN register.

TABLE 10-13 ASI_WMR_VEC_MASK Reg Format

Field Bit Position Initial Value R/W Description

RSVD 63:1 0 RO Reserved

VEC_MASK 0 0 R/W If `1', trap to 0x0000000000000020
instead of 0xFFFFFFFFF0000020.
Value preserved across warm reset and
debug reset.
Chapter 10 Debug 10-81

10.7.3.5 MCU Channel Read Latency Register

This register is at location 0x84_0000_08B8 . The format is as follows :

10.7.3.6 MCU Sync Frame Frequency Register

This register is at location 0x84_0000_08B0. The format is as follows.

10.7.3.7 Subsystem Reset Register

The subsystem reset generation register, is provided to allow software to reset
selected IO subsystems. This register is located at (0x89-0000-0838).

TABLE 10-14 MCU Channel Read latency Register Format

Field Bit Position Initial Value R/W Description

RSVD 63:32 0 RO Reserved

LATENCY1 31:16 0xFFFF RW Read Latency For Channel 1. Determined
during polling state.

LATENCY0 15:0 0xFFFF RW Read Latency For Channel 0. Determined
during polling state.

TABLE 10-15 MCU Sync Frame Frequency Register

Field Bit Position Initial Value R/W Description

RSVD 63:6 0 RO Reserved

FREQ 5:0 0x2A RW Frequency at which Sync frames are
issued on the FBDIMM channels.

TABLE 10-16 Subsystem Reset Register

Field Bit Position Initial Value R/W Description

RSVD1 63:5 0 RO Reserved
10-82 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

10.7.3.8 I/O Quiesce Control Register

This register is used by SW to quiesce I/O to SII and NCU blocks in OpenSPARC T2
from NIU and PCI_EX blocks. It is located in debug.v module at location 0x86-0000-
0008. The format of this register is shown in TABLE 10-18:

RSVD0 3:2 0 RO Reserved

DMU_LINK_
TRAIN

1 0 R/W Set to one to have the DMU cause a link
reset training sequence. Value is
automatically cleared once the XIR is
complete.

NIU 0 0 R/W Set to one to generate a warm reset to
the Ethernet subsystem, both ingress
and egress. Value is automatically
cleared once the WMR is complete.

TABLE 10-17 I/O Quiesce Control Register Format

Field Bit Position POR Value R/W Description

RSVD 63:4 0x0 RO Reserved

NIU_STALL_ DONE 3 X RO Status bit set to 1 when NIU stall
complete.
Cleared by hardware when NIU_STALL
cleared from 1 to 0 by SW.

DMU_STALL_DON
E

2 X RO Status bit set to 1 when DMU stall
complete.
Cleared by hardware when DMU_STALL
cleared from 1 to 0 by SW.

NIU_STALL 1 0
Preserved
across
WMR/DBR

R/W When set to 1, causes NIU traffic to stall .
When cleared to 0 from 1, causes NIU
traffic to resume.

DMU_STALL 0 0
Preserved
across
WMR/DBR

R/W When set to 1, causes DMU traffic to
stall.
When cleared to 0 from 1, causes DMU
traffic to resume.

TABLE 10-16 Subsystem Reset Register (Continued)
Chapter 10 Debug 10-83

10.7.3.9 Core DECR Register

All strands of a physical OpenSPARC T2 core share a hyperprivileged, read/write,
Debug Event Control Register located at ASI 0x45, VA 0x8. The DECR controls the
stop type (hard or soft) or a trigger pin for an associated event if that event occurs.
The format of the Core DECR is described in the following table.

Bits 63:62 control what type of stop occurs if an instruction watchpoint occurs on
any strand. (Each strand has independent control over instruction breakpoints via
it's HPSTATE.IBE register). Remaining bit pairs in the table similarly control their
associated event.

There are two bits in the DECR for each event type. Each pair of bits in the DECR
encode the type of stop for that event as follows.

TABLE 10-18 ASI_DECR Format

Data Bits Field name Remarks

63:62 IWA_DE Instruction breakpoint match debug event enable

61:60 IVA_DE Instruction virtual address match debug event enable

59:58 DVA_DE Data virtual address match debug event enable

57:56 DPA_DE Data physical address match debug event enable

55:54 TCT_DE Trap on Control Transfer debug event enable

53:52 PE_DE Precise error event (an event which will be recorded in the I-
SFSR or D-SFSR) debug event enable

51:50 DE_DE Disrupting error event (an event which will be recorded in the
DESR) debug event enable

49:48 DF_DE Deferred error event (an event which will be recorded in the
DFESR) debug event enable

47:46 PM_DE Performance monitor event which causes a performance counter
to wrap debug event enable

45:0 - Reserved

TABLE 10-19 ASI_DECR bit-pair settings to achieve Debug

DECR event enable bit pair settings, bit i+1:i Response if debug event occurs

00 Debug event disabled

01 Soft-stop

10 Hard-stop

11 Pulse trigger pin
10-84 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

10.7.3.10 SOC DECR Register

All SOC Debug events will share a read/write, SOC Debug Event Control Register
located at address 0x86-0000-0010. The SOC DECR controls hard stop or a trigger
pin assertion for an associated event if that event occurs. The format of the SOC
DECR is described in the following table. This register will be physically located in
the Debug block (debug.v).

Thus there are two bits in the SOC_DECR for each event type. Each pair of bits in
the SOC_DECR encode the type of stop for that event as follows.

TABLE 10-20 SOC_DECR Format

Data Bits Field name Remarks

63:22 - Reserved

21:20 SE_DE SOC Error (SII,SIO,NCU,DMU,PEU)Debug Event Enable

19:18 ME_DE MCU Error Debug Event Enable

17:16 L2E_DE L2 Error Debug Event Enable

15:14 L2B7_DE L2 PA Match Bank 7 Debug Event Enable

13:12 L2B6_DE L2 PA Match Bank 6 Debug Event Enable

11:10 L2B5_DE L2 PA Match Bank 5 Debug Event Enable

9:8 L2B4_DE L2 PA Match Bank 4 Debug Event Enable

7:6 L2B3_DE L2 PA Match Bank 3 Debug Event Enable

5:4 L2B2_DE L2 PA Match Bank 2 Debug Event Enable

3:2 L2B1_DE L2 PA Match Bank 1 Debug Event Enable

1:0 L2B0_DE L2 PA Match Bank 0 Debug Event Enable

TABLE 10-21 ASI_DECR bit-pair settings to achieve Debug

DECR event enable bit pair settings, bit i+1:i Response if debug event occurs

00 Debug event disabled

01 Debug event disabled

10 Hard-stop

11 Pulse trigger pin
Chapter 10 Debug 10-85

10.7.3.11 L2 Mask Register

This register will be located at address 0xAF-0000-0000 within l2t.sv. The format is
as shown in TABLE 10-23.

10.7.3.12 L2 Compare Register

This register will be located at 0xBF-0000-0000 within l2t.sv. The format is as shown
inTABLE 10-24.

TABLE 10-22 L2 Mask reg Format

Field Bit Position Initial Value R/W Description

RSVD 63:52 0 RO Read as Zero

TTYPE[3:0] 51:48 Preserved R/W Transaction Type

RSVD1 47:46 0 RO Read as Zero

VCID[5:0] 45:40 Preserved R/W Virtual Core ID.

RSVD2 39:34 0 RO Read as Zero

ADDR[33:2] 33:2 Preserved R/W Corresponds to addr[33:2]

RSVD4 1:0 0 RO Read as Zero

TABLE 10-23 L2 Compare Reg Format

Field Bit Position Initial Value R/W Description

RSVD 63:52 0 RO Read as Zero

TTYPE[3:0] 51:48 Preserved R/W Transaction Type

RSVD1 47:46 0 RO Read as Zero

VCID[5:0] 45:40 Preserved R/W Virtual Core ID.

RSVD2 39:34 0 RO Read as Zero

ADDR[33:2] 33:2 Preserved R/W Corresponds to addr[33:2]

RSVD4 1:0 0 RO Read as Zero
10-86 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

10.7.3.13 DMC Core and Block Interrupt Enable Register

This register is at address (0x00631800 / 0x0). It will host the Debug_trig_en bit for
DMU and PEU errors.

10.7.3.14 DRAM Debug Trigger Enable Register

Each DRAM controller has a register that contains the Debug_Trig_En for all the
errors detected by that DRAM controller (Esc,mecc and fbdimm channel errors) .The
register is located at address (0x97-0000-0230) in mcu.sv . The format of this register
is as follows :

TABLE 10-24 DMC Core and Block Interrupt Enable register Format

Field Bit Position Initial Value R/W Description

DMC 63 0x0 R/W The enable bit to enable all operations
from the DMC which will cause an
interrupt via mondo 62. 1 = Core Level
interrupt is enabled, 0 Core Level
interrupt is disabled

DEBUG_TRIG_EN 62 0x0 R/W DEBUG_TRIG_EN for PCI_EX Errors .

Reserved 61:2 - RO Reserved

MMU 1 0x0 R/W The enable bit to enable all operations
from the MMU which will cause an
interrupt via mondo 62. 1 = Block Level
interrupt is enabled, 0 = Block Level
interrupt is disabled.

IMU 0 0x0 R/W The enable bit to enable all operations
from the IMU which will cause an
interrupt via mondo 62. 1 = Block Level
interrupt is enabled, 0 = Block Level
interrupt is disabled.

TABLE 10-25 DRAM Debug Trigger Enable Register

Field Bit Position Initial Value R/W Description

RSVD 63:3 0x0 R/W Reserved
Chapter 10 Debug 10-87

10.7.3.15 NCU Debug Trigger Enable Register

The NCU has a register to contain the Debug_Trig_en for all the SOC errors logged
in SOC Error Status Register in NCU (ncu.sv). This register is located at address
0x80_0000_4000 . The format of this register is as follows :

DEBUG_TRIG_EN 2 0x0 R/W DEBUG_TRIG_EN for DRAM Controller
Errors

MASK_ERR 1 0x0 on POR,
preserved on
WMR/DBR

R/W If set to 1, MCU mask all the errors it
normally detects on LFSR mismatches
on ALERT frame patterns coming in
from AMB .

KP_LNK_UP 0 0x0 on POR,
preserved on
WMR/DBR

R/W When written to 1'b1 :
(i) Keeps the Southbound Links enabled
during the duration of the Debug reset
to send out the sync pulses.
(ii) selects the output of the sync pulse
gen logic in the new MCU control
module to generate sync pulses.
When written to 1'b0 :
(i) selects the output of the regular sync
pulse gen logic in MCU
(ii) clears the counter for the regular
sync pulse gen logic in MCU.
(iii) takes MCU fbdimm interface state
machine to L0 state, where it is ready to
dispatch new read/write requests to the
DIMMs.

TABLE 10-26 NCU Debug Trigger Enable Register

Field Bit Position Initial Value R/W Description

RSVD 63:1 0x0 RO Reserved

DEBUG_TRIG_EN 0 0x0 R/W DEBUG_TRIG_EN for SOC Error Status
Register Errors

TABLE 10-25 DRAM Debug Trigger Enable Register (Continued)
10-88 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

10.7.3.16 L2 Error Enable Register

This register contains the DEBUG_TRIG_EN bit for L2 errors. In addition it also
contains the trigger enable for PA & VCID match . It is located at address 0xAA-
0000-0000 or 0xBA-0000-0000 in l2t.sv and the format is as follows :

10.7.3.17 ASI_OVERLAP_MODE Register

All physical cores share a hyperprivileged ASI_OVERLAP_MODE register located at
ASI 45, VA 0x10. The contents of the ASI_OVERLAP_MODE register are described
below. Reserved bits read as all zeroes and are ignored on write. Bits 15:0 is set to '0'
on POR.

TABLE 10-27 L2 Error Enable Register

Field Bit Position Initial Value R/W Description

RSVD 63:3 X RO Reserved

DEBUG_TRIG_EN_
ERR

2 0 RW DEBUG_TRIG_EN for L2 Errors

NCEEN 1 0 RW If set to 1, report uncorrectable errors.

CEEN 0 0 RW If set to 1, report correctable errors.

TABLE 10-28 ASI_OVERLAP_MODE Register

Field Bit Position Initial Value R/W Description

RSVD 63:16 0 RO Reserved

OVLP_7 15:14 0 R/W Overlap control for physical core 7 as
follows:
0x - Normal operation
10 - Disable overlap
11 - Single-step

OVLP_6 13:12 0 R/W Overlap control for physical core 6 as
follows:
0x - Normal operation
10 - Disable overlap
11 - Single-step

OVLP_5 11:10 0 R/W Overlap control for physical core 5 as
follows:
0x - Normal operation
10 - Disable overlap
11 - Single-step
Chapter 10 Debug 10-89

10.7.3.18 PEU Debug Select A Register

The PEU debug select register selects the output on PEU debug bus A .

OVLP_4 9:8 0 R/W Overlap control for physical core 4 as
follows:
0x - Normal operation
10 - Disable overlap
11 - Single-step

OVLP_3 7:6 0 R/W Overlap control for physical core 3 as
follows:
0x - Normal operation
10 - Disable overlap
11 - Single-step

OVLP_2 5:4 0 R/W Overlap control for physical core 2 as
follows:
0x - Normal operation
10 - Disable overlap
11 - Single-step

OVLP_1 3:2 0 R/W Overlap control for physical core 1 as
follows:
0x - Normal operation
10 - Disable overlap
11 - Single-step

OVLP_0 1:0 0 R/W Overlap control for physical core 0 as
follows:
0x - Normal operation
10 - Disable overlap
11 - Single-step

TABLE 10-28 ASI_OVERLAP_MODE Register (Continued)
10-90 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

10.7.3.19 PEU Debug Select B Register

The PEU debug select register selects the output on PEU debug bus B.

TABLE 10-29 PEU Debug Select A Register (0x000683000/0x0)

Field Bit Position Initial Value R/W Description

RSVD 63:9 0x0 RO Reserved

BLOCK 8:6 0x0 R/W Block select in core
000b - Constant zero
001b - Training Sequence Selection
010b - ETL block
011b - ITL block
100b - PMC block
101b - RSB block
110b - CTB block
111b - CXPL core

MODULE 5:3 0x0 R/W Module select in block

SIGNAL 2:0 0x0 R/W Signal select in sub-block

TABLE 10-30 PEU Debug Select B Register (0x000683008/0x0)

Field Bit Position Initial Value R/W Description

RSVD 63:9 0x0 RO Reserved

BLOCK 8:6 0x0 R/W Block select in core
000b - Constant zero
001b - Training Sequence Selection
010b - ETL block
011b - ITL block
100b - PMC block
101b - RSB block
110b - CTB block
111b - CXPL core

MODULE 5:3 0x0 R/W Module select in block

SIGNAL 2:0 0x0 R/W Signal select in module
Chapter 10 Debug 10-91

10.7.3.20 DMU Debug Select Register for DMU Debug Bus A

The DMU debug select register A selects the output on DMU debug bus A.

TABLE 10-31 DMU Debug Select A Register (0x000653000/0x0)

Field Bit Position Initial Value R/W Description

RSVD 63:10 0x0 RO Reserved

BLOCK 9:6 0x0 R/W DMU Block Debug Selects for DMU
Debug Bus A
0000 – All Zeroes
0001 – CLU Block Selects (cache Line
Unit)
0010 – CMU Block Selects (Context
Manager Unit)
0011 – CRU Block Selects (CSR Request
Unit)
0100 – DSN Block Selects
0101 – Training Sequence Select
0110 – ILU Block Selects (Interface Layer
Unit)
0111 – All Zeroes
1000 – All Zeroes
1001 – IMU Block Selects (Interrupt
Messager Unit)
1010 – MMU Block Selects
1011 – PMU Block Selects
1100 – PSB Block Selects (Packet
Scoreboard unit)
1101 – RMU Block Selects (Record
Manager Unit)
1110 – TMU Block Selects (Transaction
Manager Unit)
1111 – TSB Block Selects (Transaction
Scoreboard Unit)

SUB_SEL 5:3 0x0 R/W Select the sub-block for DMU Debug Bus
A

SIGNAL_SEL 2:0 0x0 R/W Select the signals for DMU Debug Bus A
10-92 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

10.7.3.21 DMU Debug Select Register for DMU Debug Bus B

The DMU debug select register selects the output on DMU debug bus B.

TABLE 10-32 DMU Debug Select B Register (0x000653008/0x0)

Field Bit Position Initial Value R/W Description

RSVD 63:10 0x0 RO Reserved

BLOCK 9:6 0x0 R/W DMU Block Debug Selects for DMU
Debug Bus B
0000 – All Zeroes
0001 – CLU Block Selects (cache Line
Unit)
0010 – CMU Block Selects (Context
Manager Unit)
0011 – CRU Block Selects (CSR Request
Unit)
0100 – DSN Block Selects
0101 – Training Sequence Select
0110 – ILU Block Selects (Interface Layer
Unit)
0111 – All Zeroes
1000 – All Zeroes
1001 – IMU Block Selects (Interrupt
Messager Unit)
1010 – MMU Block Selects
1011 – PMU Block Selects
1100 – PSB Block Selects (Packet
Scoreboard unit)
1101 – RMU Block Selects (Record
Manager Unit)
1110 – TMU Block Selects (Transaction
Manager Unit)
1111 – TSB Block Selects (Transaction
Scoreboard Unit)

SUB_SEL 5:3 0x0 R/W Select the sub-block for DMU Debug Bus
B

SIGNAL_SEL 2:0 0x0 R/W Select the signals for DMU Debug Bus B
Chapter 10 Debug 10-93

10-94 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

CHAPTER 11

Electronic Fuse Unit (EFU)

This chapter contains the following sections:

■ Section 11.1, “Overview” on page 11-1

■ Section 11.2, “EFU Block Diagram” on page 11-4

■ Section 11.3, “EFU Logical Implementation ” on page 11-8

■ Section 11.4, “Unit-Level Interface Signals” on page 11-32

■ Section 11.5, “Misc/Multiple Clock Domains” on page 11-40

■ Section 11.6, “Efuse Array Specification ” on page 11-41

11.1 Overview
The Efuse (electronic fuse) unit (EFU) contains an Efuse array macro (EFA), TCU
interface and an Efuse controller(FCT). In a broad sense, the Efuse array is a non-
volatile memory used to store information that needs to be programmed at the
factory and used in the field.

On OpenSPARCT2, EFA contains the following die specific information :

Redundant array repair information for the SRAMs

Serial ID of the chip

Working processor core IDs (core available information)

Working L2 bank information (bank available information)

SERDES bits

DMU delay calibration
11-1

The Efuse array is a 64 deep and 32 bit wide array. Each cell in the Efuse array
consists of poly fuses that replace traditional laser fuses. They can be programmed
to store any value by blowing them with an electrical pulse. The Efuse controller
has the logic to read and transfer data from EFA to on and off chip components. The
TCU interface consists of logic to handle all the TCK clock domain generated signals.

The Efuse unit has only limited knowledge of ways to interpret the data stored in
the array. Most of the time the payload data is just read and passed along with little
interpretation. This document will attempt to describe some of the data uses, to aid
users.

After the power on reset sequence, a state machine in FCT reads all the 64 entries of
the EFA (one at a time). If a valid (refer table 2) SRAM repair row is found, it is
shifted to the destination register. If no information is programmed into the EFA, no
information will be shifted to the destination registers. Read access to the Efuse
array is available at any point (other than during power up sequence) through
TCU(TAP controller). EFA can be programmed and read via private TAP
instructions. Moreover, after power on reset, data can be shifted through TCU to
any destination register overriding either the default value of the destination register
or the previously programmed value.

Main features of the Efuse unit:

The Efuse array is organized as 32 bits wide 64 entry array.

It supports a maximum of 59 SRAM repairs.

It stores 3 entries of chip ID information, 1 entry for core valid information, and 1
entry for L2 bank valid information.

It interfaces with TCU : TCU can program the EFA, read any entry in EFA, and
configure EFU in bypass mode to overwrite the destination register.

It interfaces with NCU to provide serial ID, core and L2 bank available information.

It interfaces with L1 cache (instruction and data) and L2 cache (tag and data). EFU
provides information to swap defective SRAM rows and columns with redundant
spares.

Access (programming and reading) to EFA is supported at various stages :

1. Before bump : through JTAG with Vpp laser pad.

2. At wafer level : through JTAG with Vpp bump.

3. At package : through JTAG with Vpp pins.

Writing to destination registers is done only through the JTAG port. Software
running on OpenSPARC T2 cannot program the destination registers (in SRAM or
NCU) or access EFU.
11-2 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

11.1.1 Definitions of Terms Used

TABLE 11-1 Terms

Abbreviations Expansions

EFU Efuse unit

EFA Efuse array

FCT Efuse controller

ICD L1 Instruction cache

DCD L1 Data cache

RID Logical sub bank ID in the SRAM

RV Repair value.
Chapter 11 Electronic Fuse Unit (EFU) 11-3

11.2 EFU Block Diagram

FIGURE 11-1 EFU Top Level Diagram

11.2.1 Unit Functional Description of EFU
1. The Efuse unit (EFU) contains :

2. Efuse array (EFA)

Efuse
array
(EFA)

TCU
interface

tcu_efc_rowaddr[6:0]

tcu_efc_coladdr[4:0]

tcu_efc_read_en

tcu_efc_read_mode[1:0]

tcu_efc_rowread_start

tcu_efc_rowfuse_bypass

tcu_efc_dest_sample

tck

tcu_efc_data_in

efc_tcu_data_out

tcu_efc_updatedr

tck_efc_capturedr

tck_efc_shiftdr

Efuse
control
(FCT)

vpp

io_vpp

io_prog_en

tcu_efc_read_mode[1:0]

efu_dest_xfer_en

efu_dest_clr

efu_dest_data

dest_efu_data

efu_tcu_scan_out

dest_efu_xfer_en
11-4 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

3. Efuse controller (FCT)

4. TCU interface

11.2.1.1 Efuse Array (EFA)

The Efuse array is a 64 deep and 32 bit wide array. Each cell in the Efuse array
consists of poly-fuse that replace a traditional laser fuse. Each cell can be
programmed to store any value by blowing the fuse with an electrical pulse.

Fuse data interpretation :

We assume that EFA consists of 64 rows with 32 bits each. Each entry consists of the
following fields.

The Efuse controller will use EFA bits[31:22]. EFA bits [21:0] will be interpreted and
used by hardware in the cluster associated with the destination register.

TABLE 11-2 Fields in the Efuse Array Data[31:0]

Bit position Number of bits Description of fields

31:29 3 Valid bits

28 1 Parity bit

27:22 6 Block ID of destination register

21:0 22 Data

Truth Table of EFA Programmed Data

of valid bits
at logic “1”

Computed
parity = ^efa

bits [28:0]

Row valid Row error Action on read Interpretation

2 or 3 Logic 0 Y N Shift value to
destination
register

Programmed row with valid data

0 X N N Ignore A row which was not programmed
correctly or not used

1 X N Y Log error (NCU)
and ignore data

Programmed row where 1 or 2 valid
bits have flipped from their intended
values.

2 or 3 Logic 1 N Y Log error (NCU)
and ignore data

Programmed row where a EFA bit in
position [27:0] has flipped from it's
intended value.
Chapter 11 Electronic Fuse Unit (EFU) 11-5

Note:If any of bits[28:0] cannot be programmed successfully, the valid bits are left
un-programmed and the desired data is programmed at another row address.

11.2.1.2 Efuse Controller (FCT)

An Efuse controller reads from the Efuse array and transfers data to on and/or off-
chip components. The Efuse controller hosts the following main sub blocks :

1. Clock generator

IO clock (iol2clk) is distributed within the Efuse unit. A pair of two phase (fuse_clk1
and fuse_clk2), non-overlapping IO clock(nominally 375 MHz) divided by 4 signals
are used to shift values into the destination registers. This block generates shift
clocks for each destination register.

The shift clocks are active only when data is shifting to any destination register.
Qualification with either ashift or dshift (refer to figure 1) is necessary to ensure that
only the correct destination register is being addressed.

2. Address sequencer

The address sequencer is a 0 to 63 counter. It counts through all the entries of the
Efuse array. Its initial state consists of all zeroes (reset by POR).

TCU asserts tcu_efu_read_start which starts the counter operation. The counter
increments when the shift_done signal from the shift register is asserted. When a
new address is generated, it asserts the new_addr signal to the shift register. Upon
reaching the count of 63, the next shift_done signal results in asserting the
addr_done signal to power down the EFA.

3. Shift register

This block contains a parallel in/serial out register. Loading of the shift register can
happen from EFA or TCU (Depending on the mode EFU is configured in(refer
section 4.1)). Unloading of the shift registers can be to any legal block ID (refer table
4) or TCU.

Reads from EFA are loaded in parallel to a shift register called read_data_ff[31:0].
The shift register block checks the valid bits and parity of the data (refer table 2). If
the entry is valid, and no parity errors are detected, the shift register shifts bits [21:0]
to the destination register specified by the block ID bits[27:22]. Signals ashift and
dshift are asserted to qualify shifted data fields repair ID and repair value
respectively. If a parity error or invalid row is encountered in a row “n”, the
corresponding parity_status_reg[63:0] bit gets set. The shift states are still counted
internally (no ashift or dshift signals are asserted) and the address sequencer
increments. At the end of the sequence (after EFA entry 63's data has been
determined invalid or shifted to the appropriate destination register), the error
report (parity_status_reg[63:0]) is shifted to the NCU cluster. The parity status
11-6 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

register in the NCU enables software to figure out whether a parity error or row
error occurred in EFA readout. Software can then decide whether to fail out or
continue (if for instance the device ID is potentially incorrect). Additionally, the
register can be loaded serially by TCU via tcu_efu_data_in. Control signals used by
TCU to load are tcu_efu_shiftdr, tcu_efu_updatedr and tcu_efu_capturedr.

The serial output of the shift register is read_data_ff[31]. The serial output
(read_data_ff[31]) is shifted to the destination register defined by block ID field
bits[27:22] (refer table 4) as efu_<destination>_fuse_data or to TCU as
efu_tcu_data_out.

Destination registers are organized as repair chains. Repair chains for the L2 caches
are 22 bits long and enables are held high for 22 cycles when shifting data. Each
SPARC cluster gets two (22 bit long) repair chains, one for I and the other for D
cache.

11.2.1.3 TCU Interface

All the signals coming from the TCU clock are generated in TCK clock domain. The
TCU interface of EFU synchronizes almost all incoming TCU signals to the iol2clk
domain. (refer section 10 multi clock domains for details).

EFU places tcu_efu_data_in from TCU at bit 0 of the tck 32 bit register. As a result
the first bit that is shifted in from TCU will end up at bit 31 of the tck 32 bit register.
MSB of the data should be shifted in first.

When EFU shifts the data back to TCU it loads bit 31 on to efu_tcu_data_out. As a
result bit 31 will go back first followed by bit 30, bit 29, and so on. MSB of the
readback data is shifted out first.

Following table lists all the commands, which are used by TCU to program EFU
behavior.

TABLE 11-3 TAP Private Instructions for Fuse Functionality

Command Encoding Functionality

TAP_FUSE_READ 6h'28 Issue Read Command and shift out the result to destination
registers

TAP_FUSE_BYPASS_DATA 6h'29 Issue Bypass command and shift in 32 bit value from TCU

TAP_FUSE_BYPASS 6'h2a Command initiates shifting of data to receiver from FCT block

TAP_FUSE_ROW_ADDR 6h'2b Shift in 7 bit Row Address for EFA access
Chapter 11 Electronic Fuse Unit (EFU) 11-7

For more instruction details, please refer to TCU specification.

11.3 EFU Logical Implementation

11.3.1 Efuse Modes of Operations
TCU can configure Efuse in 5 different modes. The following are the various modes
of operation of EFU :

11.3.1.1 Power On Reset Read Mode

In this mode, all the valid entries in EFA are shifted to the destination register.

At some point after POR_, TCU signals EFU to start shifting all valid entries in the
EFA. The sequence of events are :

TCU asserts tcu_efu_read_start valid for one TCK clock cycle. tcu_efu_read_start is
synchronized to iol2clk as local_read_start (refer figure 1 group A).

local_read_start triggers a counter addr_cnt_ff[5:0]. This counter is used to compute
row address for reading EFA. fct_efa_read_en is asserted for a predetermined
number of clocks to read an entry in EFA. The EFA read data efa_fct_data[31:0] is
then parallel loaded to a shift register read_data_ff[31:0] (refer figure 1 group B).

EFU determines if the row is valid and error free (refer table 2). If an error is
encountered then the corresponding bit is set in the rslt_status_ff[63:0].

For a valid row, EFU interprets block ID (read_data_ff[27:22]) to determine the
destination register for the row. EFU asserts a pair of non overlapping clocks
(iol2clk/4 clocks) efu_<dest>_fuse_clk1 and efu_<dest>_fuse_clk2 for the duration
of transfer. Only the read_data_ff[21:0] is shifted to the destination register.
read_data_ff[21:0] consists of RID and RV information. Higher order bits are shifted
first. efu_<dest>_fuse_ashift is asserted and RID information (bits[21:12]) and wren

TAP_FUSE_COL_ADDR 6h'2c Shift in 5 bit Column address (only for programming) for EFA
access

TAP_FUSE_READ_MODE 6h'2d Shift in 2 bit Read Mode for EFA access

TAP_FUSE_DEST_SAMPLE 6'h2e Tell efu to get the data and return it to tcu

TABLE 11-3 TAP Private Instructions for Fuse Functionality (Continued)
11-8 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

are shifted to the destination register. A unit that doesn't use the higher order bits
allow (unwanted) data to overflow. The RV (bits read_data_ff[11:0]) are shifted to the
destination register, by asserting efu_<dest>_fuse_dshift. (refer FIGURE 11-2 group C)

Upon completion of processing a row, addr_cnt_ff[5:0] is incremented (refer
FIGURE 11-2 group D). This process is repeated until the last row is processed.

EFU will shift out the rslt_status_ff[63:0] to NCU. Software will interpret this
information and decide to failout or continue. (refer to NCU interface protocol in
Section 11.3.2.3, “EFU to NCU Interface :” on page 11-19.
Chapter 11 Electronic Fuse Unit (EFU) 11-9

FIGURE 11-2 Timing Diagram showing Power On Reset Read Mode

tcu_efu_read_start

local_read_st art

fct_efa_read_en

efa_data_out[31:0]

read_data_ff[31:0]

io_clk

T
C

K

ef u_<dest>_dat a_out

efu_<dest>_ashift

efu_<dest>_dshift

efu_<dest>_fuse_clk1

ef u_<dest>_f use_clk2

addr_cntr[5:0]
11-10 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

11.3.1.2 JTAG Read Access

In this mode, a row in EFA can be read via the TAP controller in TCU. To read an
EFA row, read mode (tcu_efa_read_mode[1:0]), row address (tcu_efu_rowaddr[6:0]),
and read enable are required. The sequence of JTAG instructions to program the TAP
controller to read the fuse array are as follows :

1. TAP_FUSE_READ_MODE

2. TAP_FUSE_ROW_ADDR

3. TAP_FUSE_READ

TAP_FUSE_READ_MODE instruction is programmed to the TAP controller through
the JTAG port (this instruction configures EFU to read EFA in a particular mode).
TCU will decode the instruction and drive a 2 bit encoded tcu_efa_read_mode[1:0]
signal to EFU. tcu_efa_read_mode[1:0] gets registered and is driven to EFA as
fct_efa_margin0_rd and fct_efa_margin1_rd respectively. (refer figure 2 group A) Bit
2 of tcu_efa_read_mode bus is a power down enable mode bit. When the internal
state machine finishes all the transfers and there is no pending transfer the EFU state
machine will activate the power-down signal to EFA. When bit 2 is low EFA is in the
normal mode. When it is high EFA will power down after the current operation
finishes.

EFA can be read in 4 different modes. EFA decodes fct_efa_margin0_rd and
fct_efa_margin1_rd as 00=normal mode, 01=margin0 mode, 10=margin1A mode
and 11=margin1B and configures it's sense amplifier circuit. In different modes, EFA
sense amplifiers are supplied with different reference voltages to detect logic 1 and
logic 0.

TAP_FUSE_ROW_ADDR instruction provides EFA with a read address. TCU
provides EFU with the row address as tcu_efu_rowaddr[6:0]. tcu_efu_rowaddr[6:0]
generated in TCK domain is synchronized to the iol2clk domain and driven to
EFA.(refer figure 2 group B) Bit[6] (when it is high; the other bits will be ignored) of
the tcu_efu_rowaddr[6:0] is to read back the stage of the power supply. The format
of the read is as follow from the efa fuse:

efa_fuseout[31:0] = {29'b0,vddc_ok,vddo_ok,vpp_ok

TAP_FUSE_READ instruction requests a read to be performed. TCU decodes this
instruction and generates a one cycle tcu_efu_read_en pulse. tcu_efu_read_en is
synchronized into iol2clk domain as local_read_en. (refer FIGURE 11-3 group C)

The logic in EFU will load a counter with read latency and assert fct_efa_read_en.
After the counter is counted down to zero, the EFA output is parallel loaded into a
shift register read_data_ff[31:0]. (refer FIGURE 11-3 group D)
Chapter 11 Electronic Fuse Unit (EFU) 11-11

11-12 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

TCU will wait for a predetermined period (EFA read is a multicycle operation;
the current wait time is 30 tck cycles) and issue one TCK cycle valid
tcu_efu_capturedr pulse. Shift register read_data_ff[31:0] contents are loaded to
another shift register called tck_shft_data_ff[31:0] (read_data_ff shift register is
in iol2clk domain and tck_shft_data_ff is in TCK clock domain). TCU asserts
tcu_efu_shiftdr for 32 clocks causing the shift of tcu_shft_data_ff[31] onto
efu_tcu_data_out. (refer FIGURE 11-3 group E) The readback data shifted out first
is bit 31 to tcu, followed by the subsequent lower significant bits
Chapter 11 Electronic Fuse Unit (EFU) 11-13

FIGURE 11-3 JTAG Read Access Timing Diagram.

11.3.1.3 Fuse Programming Mode

In this mode, EFA is programmed one bit at a time (EFA does not support multiple
bit programming). To program a bit, row address[6:0], column address[4:0] and
fct_efa_prog_en should be valid. In order to program a fuse bit, actions required are
:

1. TAP_FUSE_ROW_ADDR

2. TAP_FUSE_COL_ADDR

tcu_efu_read_m
ode[1:0]

tcu_efu_row
addr[6:0]

tcu_efu_read_en

local_read_en

fct_efa_read_en

efa_dat a_out[31:0]

read_data_ff[31:0]

tcu_ef u_capturedr

tck_shf t_dat a_ff [31: 0]

tcu_efu_shiftdr

efu_tcu_data_out

io_clk

T
C

K

fct_efa_row
addr[6:0]
11-14 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

TAP_FUSE_ROW_ADDR instruction gets issued to the TAP controller through the
JTAG port. TCU decodes and supplies the row address as efu_tcu_rowaddr[6:0].
The row address is synchronized from TCK to iol2clk domain as
fct_efa_row_addr[6:0]. (refer FIGURE 11-5 group A)

TAP_FUSE_COL_ADDR instruction gets issued to the TAP controller through the
JTAG port. TCU decodes and supplies the column address as tcu_efa_coladdr[6:0].
(refer FIGURE 11-5 group B).

After the row and column address is supplied to EFA, fct_efa_prog_en is asserted for
as long as deemed necessary by TI. The fuse value is then read back (refer section
4.1.2) to ensure that the bit was programmed correctly. (refer FIGURE 11-5 group C).

fct_efa_prog_en chip pin must be available to all test environments, so we need a
probe pad, C4 and a package pin. From the top level, the of fct_efa_prog_en signal is
fed directly to the row and column decoders as well as the supply enable

FIGURE 11-4 Fuse Programming Mode Timing Diagram.

11.3.1.4 JTAG Fuse Bypass Mode

Fuse bypass mode is to enable bring up if there is a problem in the Efuse
functionality. In this mode, EFA is bypassed. The sequence of operations to program
the TAP controller to bypass the fuse array are as follows :

1. TAP_FUSE_BYPASS_DATA

2. TAP_FUSE_BYPASS

TAP_FUSE_BYPASS_DATA instruction gets issued to the TAP controller through the
JTAG port. TCU decodes and programs a shift register tck_shft_data_ff[31:0] serially
with efu_tcu_data_in by asserting tcu_efu_shiftdr for 32 clocks. tcu_efu_updatedr,

Chapter 11 Electronic Fuse Unit (EFU) 11-15

valid for one TCK clock will parallel load tck_shft_data_ff[31:0] to
read_data_ff[31:0]. As mention previously tcu_efu_data_in is placed at bit 0 of the 32
bit tck register, tck_shft_data_ff[31:0]. MSB of the data should be shifted in first.

TAP_FUSE_BYPASS instruction gets issued to the TAP controller through the JTAG
port. TCU decodes and asserts tcu_efu_fuse_bypass valid for one TCK clock.
tcu_efu_fuse_bypass is synchronized into iol2clk domain as local_fuse_bypass.

local_fuse_bypass triggers the shift of the contents of shift register (read_data_ff) to
destination register. EFU decodes the block ID (read_data_ff[27:22]) to determine
the destination register and determines if the row is valid and error free (refer
TABLE 11-3).

For a valid row, EFU interprets block ID (read_data_ff[27:22]) to determine the
destination register for the row. It asserts a pair of non overlapping clocks (iol2clk/4
clocks) efu_<dest>_fuse_clk1 and efu_<dest>_fuse_clk2 for the duration of transfer.
Only the read_data_ff[21:0] is shifted to the destination register. Higher order bits
are shifted first.

efu_<dest>_fuse_ashift is asserted and RID information (bits[21:12]) and wren are
shifted to the destination register. A unit that doesn't use the higher order bits allow
(unwanted) data to overflow. The RV (bits read_data_ff[11:0]) are shifted to the
destination register, by asserting efu_<dest>_fuse_dshift. (refer FIGURE 11-6 group C)
11-16 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 11-5 JTAG Fuse Bypass Mode

11.3.1.5 Fuse Sample Mode

In this mode the destination redundancy value (RV) is read and transferred to TCU.
In order to read the destination register the following commands need to be
executed.

1. TAP_EFU_BYPASS_DATA

2. TAP_EFU_DEST_SAMPLE

3. TAP_CAPTUREDR

io_clk

tcu_ef u_shift dr

tcu_ef u_data_in

tcu_efu_updatedr

read_dat a_ff [31: 0]

local_f use_bypass

tcu_efu_fuse_bypass

efu_<dest>_data_out

efu_<dest>_ashift

efu_<dest>_dshift

efu_<dest>_fuse_clk1

efu_<dest>_fuse_clk2

tck_shf t_dat a_ff [31: 0]

T
C

K

Chapter 11 Electronic Fuse Unit (EFU) 11-17

4. TAP_SHIFTDR

TAP_FUSE_BYPASS_DATA instruction gets issued to the TAP controller through the
JTAG port. TCU decodes and programs a shift register tck_shft_data_ff[31:0] serially
with efu_tcu_data_in by asserting tcu_efu_shiftdr for 32 clocks. TCU asserts
tcu_efu_updatedr valid for one clock. tcu_efu_updatedr parallel loads
tck_shft_data_ff[31:0] to read_data_ff[31:0].

When TAP_EFU_DEST_SAMP is issued read_data_ff shift register bits[21:0] where
bit[21] is the read_en, are shifted to the destination register. efu_<dest>_xfer_en is
asserted for the duration of transfer. The redundancy registers are organized as
chains. During the efu_<dest>_fuse_xfer_en, the data is collected and forwarded to
the SRAM header after all the data has been shifted in. <dest>_efu_fuse_xfer_en is
then asserted to read the correct data into read_data_ff[31:0] shift register.

TCU will wait for a predetermined period and issue one TCK cycle valid
tcu_efu_capturedr. Shift register read_data_ff[31:0] contents are parallel loaded into
tck_shft_data_ff[31:0] by the valid tcu_efu_capturedr. tcu_efu_shiftdr asserted by
TCU for 32 clocks shifts tcu_shft_data_ff[31] onto efu_tcu_data_out (refer FIGURE 11-6
group D). Bit 31 of the tck 32 bit register, tck_shft_data_ff[31:0], will be shifted out
first.
11-18 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 11-6 Destination Sample Mode Timing Diagram

11.3.2 Interface with NCU, SRAM Header Flops and
TCU Destinations

11.3.2.1 EFU to SRAM Header Flops

io_clk

tcu_ efu_shif tdr

tcu_efu_dat a_in

tcu_efu_updatedr

read_data_ff[31:0]

local_fuse_dest_sam
ple

tcu_efu_dest_sam
ple

efu_<dest>_data_out

efu_<dest>_ashift

ef u_<dest>_dshif t

efu_<dest>_fuse_clk
1

efu_<dest>_fuse_clk
2

tck_shft_da ta_f f[31:0]

<dest>_efu_data_out

T
C

K

tcu_efu_capturedr

efu_tcu_data_out
Chapter 11 Electronic Fuse Unit (EFU) 11-19

Data from EFU is transferred serially to SRAM destination header from
read_data_ff[31:0]. EFU asserts efu_<dest>_xfer_en for the duration of transfer. MSB
is shifted first as efu_<dest>_fuse_data. See the timing diagram below.

11.3.2.2 SRAM to EFU Interface :

The redundancy registers are organized as chains. <dest>_efu_xfer_en is asserted
and held valid to read the correct data. The valid clocks correspond to the the
appropriate SRAMs with the correct sync_en signals.

FIGURE 11-7 SRAM to EFU Data Transfer Timing Diagram

11.3.2.3 EFU to NCU Interface :

EFU transfers serial number, core available, bank available information, and fuse
state information (rslt_shft_ff[63:0]) to NCU. The protocol for transfer is similar to
SRAM header. EFU asserts efu_ncu_<info>_dshift where <info> indicates serial
number, core available, bank available information, and fuse state information.
efu_ncu_fuse_clk1 is active for the duration of transfer. efu_ncu_fuse_data is
transferred.
11-20 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 11-8 EFU to NCU Interface Timing Diagram

11.3.2.4 TCU to EFU Transfers

The protocol for transfering data from TCU to EFU is as follows :

TCU asserts tcu_efu_shiftdr in order to initiate a transfer and keeps it asserted for
the duration of the transfer. EFU configures a shift register tck_shft_data_reg[31:0]
to accept data from TCU. This shift register receives the data in TCK clock domain.
TCU then asserts tcu_efu_updatedr. EFU transfers the data from
tck_shift_data_reg[31:0] in tck domain to read_data_ff in iol2clk domain.

11.3.2.5 EFU to TCU :

TCU asserts tcu_efu_capturedr. EFU transfers the contents from read_data_ff in
iol2clk domain to tck_shift_data_reg[31:0] in TCK domain. TCU asserts
tcu_efu_shiftdr. EFU shifts the data out from tck_shift_data_reg as efu_tcu_data_out
(tck_shift_data_reg[31]).

11.3.3 Register Formats

11.3.3.1 RV REGISTER CLEAR ID

The following are the 7 bit rv register clear ID. When bit 7 is high the clear function
is enable. When bit 7 is low the clear function is disable. When all 7 bits are high all
rv clear signals are active.

TABLE 11-4 6 Bit Block ID for Memories

DestinationID Clear ID Description

Core0 I$ 1000000 Clear all bits in the rv registers

Core0 D$ 1000001 Clear all bits in the rv registers

Core1 I$ 1000010 Clear all bits in the rv registers

D21 D20 D19 D18 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 ... D1 D0
Chapter 11 Electronic Fuse Unit (EFU) 11-21

Core1 D$ 1000011 Clear all bits in the rv registers

Core2 I$ 1000100 Clear all bits in the rv registers

Core2 D$ 1000101 Clear all bits in the rv registers

Core3 I$ 1000110 Clear all bits in the rv registers

Core3 D$ 1000111 Clear all bits in the rv registers

Core4 I$ 1001000 Clear all bits in the rv registers

Core4 D$ 1001001 Clear all bits in the rv registers

Core5 I$ 1001010 Clear all bits in the rv registers

Core5 D$ 1001011 Clear all bits in the rv registers

Core6 I$ 1001100 Clear all bits in the rv registers

Core6 D$ 1001101 Clear all bits in the rv registers

Core7 I$ 1001110 Clear all bits in the rv registers

Core7 D$ 1001111 Clear all bits in the rv registers

l2t0 1010000 Clear all bits in the rv registers

l2t1 1010001 Clear all bits in the rv registers

l2t2 1010010 Clear all bits in the rv registers

l2t3 1010011 Clear all bits in the rv registers

l2t4 1010100 Clear all bits in the rv registers

l2t5 1010101 Clear all bits in the rv registers

l2t6 1010110 Clear all bits in the rv registers

l2t7 1010111 Clear all bits in the rv registers

l2d0 1011000 Clear all bits in the rv registers

l2d1 1011001 Clear all bits in the rv registers

l2d2 1011010 Clear all bits in the rv registers

l2d3 1011011 Clear all bits in the rv registers

l2d4 1011100 Clear all bits in the rv registers

l2d5 1011101 Clear all bits in the rv registers

l2d6 1011110 Clear all bits in the rv registers

l2d7 1011111 Clear all bits in the rv registers

niu_4k_clr 1100000 Clear all bits in the rv registers (RTX VLAN)

niu_ram_clr 1100001 Clear all bits in the rv registers (TDS TDMC)

TABLE 11-4 6 Bit Block ID for Memories (Continued)
11-22 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

11.3.3.2 Block ID

The following are the 6 bit block ID's for destination :

niu_ram0_clr 1100010 Clear all bits in the rv registers (RDP RDMC0)

niu_ram1_clr 1100011 Clear all bits in the rv registers (RDP RDMC1)

niu_cfifo1_clr 1100100 Clear all bits in the rv registers (RTX ZCP1)

niu_cfifo0_clr 1100101 Clear all bits in the rv registers (RTX ZCP0)

niu_mac1_sf_clr 1100110 Clear all bits in the rv registers (RTX TXE1)

niu_mac1_ro_clr 1100111 Clear all bits in the rv registers (RTX TXE1)

niu_mac0_sf_clr 1101000 Clear all bits in the rv registers (RTX TXE0)

niu_mac0_ro_clr 1101001 Clear all bits in the rv registers (RTX TXE0)

niu_ipp1_clr 1101010 Clear all bits in the rv registers (RTX IPP1)

niu_ipp0_clr 1101011 Clear all bits in the rv registers (RTX IPP0)

dmu_clr 1101100 Set the bits to 4'b0010

mcu_fclrz 1110000 Clear all bits in the rv registers

psr_fclrz 1110001 Clear all bits in the rv registers

niu_fclrz 1110010 Clear all bits in the rv registers

All rv clear active 1111111 Clear all bits in the rv registers

TABLE 11-5 6 Bit Block ID for Memories

Destination ID Block ID Description

1 Core0 I$ 000000 Sparc core 0 Icache repair information

2 Core0 D$ 000001 Sparc core 0 Dcache repair information

3 Core1 I$ 000010 Sparc core 1 Icache repair information

4 Core1 D$ 000011 Sparc core 1 Dcache repair information

5 Core2 I$ 000100 Sparc core 2 Icache repair information

6 Core2 D$ 000101 Sparc core 2 Dcache repair information

7 Core3 I$ 000110 Sparc core 3 Icache repair information

8 Core3 D$ 000111 Sparc core 3 Dcache repair information

9 Core4 I$ 001000 Sparc core 4 Icache repair information

10 Core4 D$ 001001 Sparc core 4 Dcache repair information

TABLE 11-4 6 Bit Block ID for Memories (Continued)
Chapter 11 Electronic Fuse Unit (EFU) 11-23

11 Core5 I$ 001010 Sparc core 5 Icache repair information

12 Core5 D$ 001011 Sparc core 5 Dcache repair information

13 Core6 I$ 001100 Sparc core 6 Icache repair information

14 Core6 D$ 001101 Sparc core 6 Dcache repair information

15 Core7 I$ 001110 Sparc core 7 Icache repair information

16 Core7 D$ 001111 Sparc core 7 Dcache repair information

17 l2t0 010000 L2 bank 0 tag array repair information

18 l2t1 010001 L2 bank 1 tag array repair information

19 l2t2 010010 L2 bank 2 tag array repair information

20 l2t3 010011 L2 bank 3 tag array repair information

21 l2t4 010100 L2 bank 4 tag array repair information

22 l2t5 010101 L2 bank 5 tag array repair information

23 l2t6 010110 L2 bank 6 tag array repair information

24 l2t7 010111 L2 bank 7 tag array repair information

25 l2b0 011000 L2 bank 0 data array repair information

26 l2b1 011001 L2 bank 1 data array repair information

27 l2b2 011010 L2 bank 2 data array repair information

28 l2b3 011011 L2 bank 3 data array repair information

29 l2b4 011100 L2 bank 4 data array repair information

30 l2b5 011101 L2 bank 5 data array repair information

31 l2b6 011110 L2 bank 6 data array repair information

32 l2b7 011111 L2 bank 7 data array repair information

33 coreavail 100000 NCU Sparc Core available

34 L2 bank avail 100001 NCU L2 bank available

35 sernum0 100010 NCU Serial number row0

36 Sernum1 100011 NCU Serial number row1

37 Sernum2 100100 NCU Serial number row2

45 DMU 101100 DMU delay calibration

46 101101

47 101110

48 101111

TABLE 11-5 6 Bit Block ID for Memories (Continued)
11-24 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

11.3.3.3 SRAM Redundancy Register Formats :

There are 4 different storage formats in Efuse for SRAM. They are :

■ L2 data array

■ L2 tag array

■ L1 data array

■ L1 tag array

■ Core Available

■ L2 bank available

■ SERDES

■ DMU data

■ SERNUM0, SERNUM1, SERNUM2

The Efuse unit will read the EFA and interpret bits [31:22] and shift out bits [21:0]
into the cluster containing the destination register. Not all of the bits of the RID and
RV will be used for all arrays.

49 110000

50 110001

51 110010

52 110011

53 110100

54 110101

55 110110

56 110111

57 111000

58 111001

59 111010

60 111011

61 111100

62 111101

63 111110

64 111111

TABLE 11-5 6 Bit Block ID for Memories (Continued)
Chapter 11 Electronic Fuse Unit (EFU) 11-25

11.3.3.4 L2 Data Array EFA Entry Definition

For the L2 Data array, the EFA entry is stored in the following format :

0.5.4 L2 Tag Array EFA Entry Definition
For the L2 Tag array, the RID/RV fields are defined as follows for row repairs:

TABLE 11-6 L2 Data Array Entry Description

Bits Size Description

[21] 1 DO NOT BLOW THIS BIT
Read enable: 1-read, 0-write (used in the bypass mode; must be 0 in the fuse)

[20:18] 3 Unused

[17:11] 7 RID[6:5] Selects one of the four quads
RID[4:3] Selects one of the four 32KB in the quad

RID[2:0] Selects one of 8 registers in the 32KB.

[11] 1 E1 (Enable1 -Both Enable1 and Enable0 must be asserted or the repair value is ignored)

[10:9] 2 Unused RV (These bits are shifted out of the EFU and off the end of the redundancy register)

[8:1] 8 RV (Repair Value – the row(needs all the 8bits) or column(needs only 6bits) to be repaired)

[0] 1 E0 (Enable0- Both Enable1 and Enable 0 must be asserted or the repair value is ignored)

TABLE 11-7 Readback

Bits Size Description

[10] 1 Unused

[9:8] 2 Valid: always 2'b11 on the readback data

[7:0] 8 RV data

TABLE 11-8 L2 Tag Array RID/RV Field dDescription

Bits Size Description

[21] 1 DONOT BLOW THIS BIT
Read enable: 1-read, 0-write (used in the bypass mode; must be 0 in the fuse)

[20:15] 5 Unused

[14:11] 4 RID[3:0] (Logical subbank ID. Values 0-15 are valid.)

[11] 1 E1(Enable1- Both Enable1 and Enable 0 must be asserted or the repair value is ignored.)
11-26 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

For the L2 Tag array, the RID/RV fields are defined as follows for column repairs :

[10:6] 5 Unused RV

[5:1] 5 RV (Repair Value—The row/column to be repaired)

[0] 1 E0 (Enable0- Both Enable1 and Enable 0 must be asserted or the repair value is ignored.)

TABLE 11-9 L2 Tag Array RID/RV Field Description

Bits Size Description

[21] 1 DO NOT BLOW THIS BIT
Read enable: 1-read, 0-write (used in the bypass mode; must be 0 in the fuse)

[20:15] 5 Unused

[14:11] 4 RID[3:0] (Logical sub bank ID. Values 0-15 are valid.)

[11] 1 E1(Enable1- Both Enable1 and Enable 0 must be asserted or the repair value is ignored.)

[10:6] 5 Unused RV

[5:1] 5 RV (Repair Value—The row/column to be repaired)

[0] 1 E0 (Enable0- Both Enable1 and Enable 0 must be asserted or the repair value is ignored.)

TABLE 11-10 Readback

Bits Size Description

[10:6] 5 Unused

[5:1] 5 RV value

[0] 1 Valid: 1'b1 always on the readback unless there is a problem

TABLE 11-8 L2 Tag Array RID/RV Field dDescription
Chapter 11 Electronic Fuse Unit (EFU) 11-27

11.3.3.5 L1 INSTRUCTION CACHE (ICD) EFA Entry Definition

For the L1 ICD, the RID/RV fields are defined as follows for column repairs:

11.3.3.6 L1 data cache array redundancy register (DCD) definition

For the L1 DCD, the RID/RV fields are defined as follows for column repairs:

TABLE 11-11 L1 ICD RID/RV Field Descriptions

Bits Size Description

[21] 1 DO NOT BLOW THIS BIT
Read enable: 1-read, 0-write (used in the bypass mode; must be 0 in the fuse)

[20:15] 6 Unused

[14:11] 4 RID select value

[11] 1 E1 (Enable1- Both Enable1 and Enable 0 must be asserted or the repair value is ignored.)

[10:6] 5 Unused RV

[5:1] 5 RV (Repair Value—The row to be repaired): 5 bits of rv and 1 bit of row/column repair select

[0] 1 Enable: tie it to both enable pins of the SRAM

TABLE 11-12 L1 DCD RID/RV Field Descriptions for Column Repair

Bits Size Description

[21] 1 DO NOT BLOW THIS BIT
Read enable: 1-read, 0-write (used in the bypass mode; must be 0 in the fuse)

[20:13] 8 Unused

[12:11] 2 RID[1:0] (register select. Values 0-3 are valid)

[11] 1 E1(Enable1- Both Enable1 and Enable 0 must be asserted or the repair value is ignored)

[10:7] 4 Unused RV

[6:1] 6 RV (Repair Value—The column to be repaired)

[0] 1 E0 (Enable0- Both Enable1 and Enable 0 must be asserted or the repair value is ignored)
11-28 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

11.3.3.7 Core Available

11.3.3.8 L2 Bank Available

11.3.3.9 FSR SERDES Trimming Registers

Each time the data is written in the internal data is sent back to EFU from the output
of the last chains. There is no direct readback from the serdes registers. RTRIM[0] is
closest to fdo. Any reprogramming of the FSR SERDES macros also requires three
EFA rows. The three row addresses are also important:

Address Row0 EFA.ROW[6:0] is arbitrary

Address Row1 EFA.ROW[6:0] > Row0 EFA.ROW[6:0]

Address Row2 EFA.ROW[6:0] > Row1 EFA.ROW[6:0]

Start: efu_mcu_fdi (out from EFU)
fsr_left.fsr0_b8_1.FDI
fsr_left.fsr0_a8.FDI
fsr_left.fsr0_b8_0.FDI
fsr_left.fsr1_b8_1.FDI
fsr_left.fsr1_a8.FDI
fsr_left.fsr1_b8_0.FDI
fsr_left.fsr2_b8_1.FDI
fsr_left.fsr2_a8.FDI
fsr_left.fsr2_b8_0.FDI
fsr_left.fsr3_b8_1.FDI

TABLE 11-13 Core Available

Bits Size Description

[21:8] 16 Reserved (not used)

[7:0] 8 Core available : 1 = core available; 0 = core not available (NCU initializes its core-available
register to all 1's. Upon the completion of the EFUSE dump, the register will pick up the value of
this fuse.)

TABLE 11-14 L2 Bank Available

Bits Size Description

[21:8] 16 Reserved (not used)

[7:0] 8 L2 bank available : 1 = L2 bank available; 0 = L2 bank not available (NCU initializes its bank-
available register to all 1's. Upon the completion of the EFUSE dump, the register will pick up
the value of this fuse.)
Chapter 11 Electronic Fuse Unit (EFU) 11-29

fsr_left.fsr3_a8.FDI
fsr_left.fsr3_b8_0.FDI
fsr_right.fsr4_b8_1.FDI
fsr_right.fsr4_a8.FDI
fsr_right.fsr4_b8_0.FDI
fsr_right.fsr5_b8_1.FDI
fsr_right.fsr5_a8.FDI
fsr_right.fsr5_b8_0.FDI
fsr_right.fsr6_b8_1.FDI
fsr_right.fsr6_a8.FDI
fsr_right.fsr6_b8_0.FDI
fsr_bottom.fsr7_b8_1.FDI
fsr_bottom.fsr7_a8.FDI
fsr_bottom.fsr7_b8_0.FDI
End: mcu_efu_fdo (back to efu)
>>-Aaron

11.3.3.10 DMU DATA Registers

TABLE 11-15 DMU WRITE DATA FORMAT

Bits Size Description

[21] 1 read_enable: 1-read, 0-write (used in the bypass mode; must be 0 in the fuse)

[20:12] 9 Reserved (not used)

[11] 1 VALID bit; must be 1'b1 to write fuse data

[10:5] 6 Reserved (not used)

[4:1] 4 Fuse data, where bit 4 is the bit identified pt 3 in the iommu spec, and bit 2 is the default bit to
be on, this vector being one-hot

note: bits[4:1] correspond to fuse[3:0] and bits[2] == fuse[1] (default bit to be on)

[0] 1 VALID bit; must be 1'b1 to write fuse data

TABLE 11-16 DMU READ DATA FORMAT

Bits Size Description

[21:4] 18 ignored

[3:0] 4 Readback fuse data; when clear the data is 4'b0010
11-30 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

11.3.3.11 SER_NUM Programming

SERNUM Format (SER_NUM reg)

SER_NUM[63:60] => DeltaVdd

SER_NUM[59:50] => DeltaT

SER_NUM[49] => TESTINFO-RESERVED

SER_NUM[48:46] => Fab

SER_NUM[45:41] => TESTINFO-RESERVED

SER_NUM[40] => Bin

SER_NUM[39:16] => Lot

SER_NUM[15:10] => Wafer

SER_NUM[9:5] => Column

SER_NUM[4:0] => Row

The SERNUM id has 64 bits. It uses three fuse rows, SERNUM0, SERNUM1, and
SERNUM2. The SERNUM id in each row can have 22 bits of data. As the result there
are possible 66 bits for SERNUM_ID in the fuse array. However the NCU register only
keep 64 LSB. The upper 2 bits are shifted out of the SERNUM2 register. Those bits can
be read directly from the fuse array. According to the SERNUM format above
SERNUM0, SERNUM1, and SERNUM2 formats are as follow:

TABLE 11-17 Efuse Row SERNUM0 Format

<31:29> <28> <27:22> <21:16> <15:10> <9:5> <4:0>

Valid Parity Block id Lot[5:0] Wafer Column Row

TABLE 11-18 Efuse Row SERNUM1 Format

<31:29> <28> <27:22> <21:19> <18> <17:0>

Valid Parity Block id TESTINFO-
RESERVED

Bin Lot[23:6]
Chapter 11 Electronic Fuse Unit (EFU) 11-31

The most significant bit—DeltaVdd[3]—should be interpreted as a sign, and the
bits DeltaVdd[2:0] define 8 positive (negative) increments (decrements) of the
vdd.

DeltaVdd[3] = 0 means that the delta is an increment to the nominal vdd

DeltaVdd[3] = 1 means a decrement to the nominal vdd.

Each increment is a fixed value for the product typically in the order of 25mV.
Not all steps need be used. Initially it is expected that only 2 or 3 decrements of
Vdd will be allowed. Extra bits are allowed in case we need them on future
products.

In an Efuse array row, this information would take the following format:

When the test flow determines that a change from the nominal Vdd is necessary to
optimize yield, a new SERNUM2 row will be programmed into the Efuse array at a
higher row address than the previous one. Thus it overwrites the previous DeltaVdd
value.

Each time SERNUM2 is reprogrammed at least one additional row out of the Efuse
array will be consumed.

TABLE 11-19 Proposed Efuse Row SERNUM2 Format

<31:29> <28> <27:22> <21:20> <19:16> <15:6> <5> <4:2> <1:0>

Valid Parity Block id TESTINFO-
RESERVED

DeltaVdd
[3:0]

DeltaT
[9:0]

TESTINF
O-
RESERVE
D

FAB TESTINFO-
RESERVED
11-32 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

11.4 Unit-Level Interface Signals
TABLE 11-20 Unit-Level Interface Signal s

Signal name Direction Size Description

io_vpp Input 1 Programming voltage

gclk Input 1 L2 Input clock

tcu_aclk Input 1 Test clock

tcu_bclk Input 1 Test clock

tcu_pce_ov Input 1 Scan - Override

tcu_clk_stop Input 1 Scan stop

tcu_scan_en Input 1 Scan enable

scan_in Input 1 Scan input

scan_out Output 1 Scan output

io_pgrm_en Input 1 Program Enable

ccu_io_out Input 1

io_cmp_clk_sync_en Input 1 IO to CMP clock sync enable

cmp_io_clk_sync_en Input 1 CMP to IO clock sync enable

rst_por_ Input 1 POR reset active low

TCU to EFU

tcu_efu_rowaddr Input 7 Efuse row address for read/write

tcu_efu_coladdr Input 5 Efuse column address for write

tcu_efu_read_en Input 1 Read enable

tcu_efu_read_mode Input 3 00=normal; 01=margin0, 10=margin1A; 11=margin1B

tcu_efu_read_start Input 1 Start SM for scanning bits out

tcu_efu_fuse_bypass Input 1 Shift data from TCU

tcu_efu_dest_sample Input 1 Destination sample from TCU

TCU EFU shift interface

tcu_efu_data_in Input 1 Serial scan in from TCU

tcu_efu_updatedr Input 1 Read reg update from shift register

tcu_efu_shiftdr Input 1 Shift data register
Chapter 11 Electronic Fuse Unit (EFU) 11-33

tcu_efu_capturedr Input 1 Shift data register captures read register value

tck Input 1 Shift dr data in/out from TCU

tcu_red_reg_clr Input 7 Redundancy register clear

efu_tcu_data_out Output 1 Serial scan out to TCU

EFU to outside logic in the chip

EFU and SPC interface

efu_spc1357_fuse_data Output 1 Efuse data to SPARC cores 1,3,5 and 7

efu_spc0246_fuse_data Output 1 Efuse data to SPARC cores 2,4,6 and 8

efu_spc7_fuse_iclr Output 1 SPARC core 7 I$ clear

efu_spc7_fuse_ixfer_en Output 1 SPARC core 7 I$ transfer enable

efu_spc7_fuse_dclr Output 1 SPARC core 7 D$ clear

efu_spc7_fuse_dxfer_en Output 1 SPARC core 7 D$ transfer enable

spc7_efu_fuse_idata Input 1 SPARC core 7 I$ read header data return

spc7_efu_fuse_ixfer_en Input 1 SPARC core 7 I$ read transfer enable

spc7_efu_fuse_ddata Input 1 SPARC core 7 D$ read header data return

spc7_efu_fuse_dxfer_en Input 1 SPARC core 7 D$ read transfer enable

efu_spc6_fuse_iclr Output 1 SPARC core 6 I$ clear

efu_spc6_fuse_ixfer_en Output 1 SPARC core 6 I$ transfer enable

efu_spc6_fuse_dclr Output 1 SPARC core 6 D$ clear

efu_spc6_fuse_dxfer_en Output 1 SPARC core 6 D$ transfer enable

spc6_efu_fuse_idata Input 1 SPARC core 6 I$ read header data return

spc6_efu_fuse_ixfer_en Input 1 SPARC core 6 I$ read transfer enable

spc6_efu_fuse_ddata Input 1 SPARC core 6 D$ read header data return

spc6_efu_fuse_dxfer_en Input 1 SPARC core 6 D$ read transfer enable

efu_spc5_fuse_iclr Output 1 SPARC core 5 I$ clear

efu_spc5_fuse_ixfer_en Output 1 SPARC core 5 I$ transfer enable

efu_spc5_fuse_dclr Output 1 SPARC core 5 D$ clear

efu_spc5_fuse_dxfer_en Output 1 SPARC core 5 D$ transfer enable

spc5_efu_fuse_idata Input 1 SPARC core 5 I$ read header data return

spc5_efu_fuse_ixfer_en Input 1 SPARC core 5 I$ read transfer enable

spc5_efu_fuse_ddata Input 1 SPARC core 5 D$ read header data return

TABLE 11-20 Unit-Level Interface Signal (Continued)s
11-34 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

spc5_efu_fuse_dxfer_en Input 1 SPARC core 5 D$ read transfer enable

efu_spc4_fuse_iclr Output 1 SPARC core 4 I$ clear

efu_spc4_fuse_ixfer_en Output 1 SPARC core 4 I$ transfer enable

efu_spc4_fuse_dclr Output 1 SPARC core 4 D$ clear

efu_spc4_fuse_dxfer_en Output 1 SPARC core 4 D$ transfer enable

spc4_efu_fuse_idata Input 1 SPARC core 4 I$ read header data return

spc4_efu_fuse_ixfer_en Input 1 SPARC core 4 I$ read transfer enable

spc4_efu_fuse_ddata Input 1 SPARC core 4 D$ read header data return

spc4_efu_fuse_dxfer_en Input 1 SPARC core 4 D$ read transfer enable

efu_spc3_fuse_iclr Output 1 SPARC core 3 I$ clear

efu_spc3_fuse_ixfer_en Output 1 SPARC core 3 I$ transfer enable

efu_spc3_fuse_dclr Output 1 SPARC core 3 D$ clear

efu_spc3_fuse_dxfer_en Output 1 SPARC core 3 D$ transfer enable

spc3_efu_fuse_idata Input 1 SPARC core 3 I$ read header data return

spc3_efu_fuse_ixfer_en Input 1 SPARC core 3 I$ read transfer enable

spc3_efu_fuse_ddata Input 1 SPARC core 3 D$ read header data return

spc3_efu_fuse_dxfer_en Input 1 SPARC core 3 D$ read transfer enable

efu_spc2_fuse_iclr Output 1 SPARC core 2 I$ clear

efu_spc2_fuse_ixfer_en Output 1 SPARC core 2 I$ transfer enable

efu_spc2_fuse_dclr Output 1 SPARC core 2 D$ clear

efu_spc2_fuse_dxfer_en Output 1 SPARC core 2 D$ transfer enable

spc2_efu_fuse_idata Input 1 SPARC core 2 I$ read header data return

spc2_efu_fuse_ixfer_en Input 1 SPARC core 2 I$ read transfer enable

spc2_efu_fuse_ddata Input 1 SPARC core 2 D$ read header data return

spc2_efu_fuse_dxfer_en Input 1 SPARC core 2 D$ read transfer enable

efu_spc1_fuse_iclr Output 1 SPARC core 1 I$ clear

efu_spc1_fuse_ixfer_en Output 1 SPARC core 1 I$ transfer enable

efu_spc1_fuse_dclr Output 1 SPARC core 1 D$ clear

efu_spc1_fuse_dxfer_en Output 1 SPARC core 1 D$ transfer enable

spc1_efu_fuse_idata Input 1 SPARC core 1 I$ read header data return

spc1_efu_fuse_ixfer_en Input 1 SPARC core 1 I$ read transfer enable

TABLE 11-20 Unit-Level Interface Signal (Continued)s
Chapter 11 Electronic Fuse Unit (EFU) 11-35

spc1_efu_fuse_ddata Input 1 SPARC core 1 D$ read header data return

spc1_efu_fuse_dxfer_en Input 1 SPARC core 1 D$ read transfer enable

efu_spc0_fuse_iclr Output 1 SPARC core 0 I$ clear

efu_spc0_fuse_ixfer_en Output 1 SPARC core 0 I$ transfer enable

efu_spc0_fuse_dclr Output 1 SPARC core 0 D$ clear

efu_spc0_fuse_dxfer_en Output 1 SPARC core 0 D$ transfer enable

spc0_efu_fuse_idata Input 1 SPARC core 0 I$ read header data return

spc0_efu_fuse_ixfer_en Input 1 SPARC core 0 I$ read transfer enable

spc0_efu_fuse_ddata Input 1 SPARC core 0 D$ read header data return

spc0_efu_fuse_dxfer_en Input 1 SPARC core 0 D$ read transfer enable

L2 and EFU shift interface

efu_l2t0246_fuse_data Output 1 Efuse data to l2t banks 0,2,4 and 6

efu_l2t1357_fuse_data Output 1 Efuse data to l2t banks 1,3,5 and 7

efu_l2b0246_fuse_data Output 1 Efuse data to l2b banks 0,2,4 and 6

efu_l2b1357_fuse_data Output 1 Efuse data to l2b banks 1,3,5 and 7

efu_l2t0_fuse_clr Output 1 l2t bank 0 fuse data clear

efu_l2t0_fuse_xfer_en Output 1 l2t bank 0 fuse data transfer enable

l2t0_efu_fuse_data Input 1 Fuse read data shift from l2t bank 0

l2t0_efu_fuse_xfer_en Input 1 Fuse read shift enable for bank 0

efu_l2b0_fuse_clr Output 1 L2b bank 0 fuse data clear

efu_l2b0_fuse_xfer_en Output 1 L2b bank 0 fuse data transfer enable

l2b0_efu_fuse_data Input 1 Fuse read data shift from l2b bank 0

l2b0_efu_fuse_xfer_en Input 1 Fuse read shift enable for l2b bank 0

efu_l2t1_fuse_clr Output 1 l2t bank 1 fuse data clear

efu_l2t1_fuse_xfer_en Output 1 l2t bank 1 fuse data transfer enable

l2t1_efu_fuse_data Input 1 Fuse read data shift from l2t bank 1

l2t1_efu_fuse_xfer_en Input 1 Fuse read shift enable for bank 1

efu_l2b1_fuse_clr Output 1 L2b bank 1 fuse data clear

efu_l2b1_fuse_xfer_en Output 1 L2b bank 1 fuse data transfer enable

l2b1_efu_fuse_data Input 1 Fuse read data shift from l2b bank 1

l2b1_efu_fuse_xfer_en Input 1 Fuse read shift enable for l2b bank 1

TABLE 11-20 Unit-Level Interface Signal (Continued)s
11-36 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

efu_l2t2_fuse_clr Output 1 l2t bank 2 fuse data clear

efu_l2t2_fuse_xfer_en Output 1 l2t bank 2 fuse data transfer enable

l2t2_efu_fuse_data Input 1 Fuse read data shift from l2t bank 2

l2t2_efu_fuse_xfer_en Input 1 Fuse read shift enable for bank 2

efu_l2b2_fuse_clr Output 1 L2b bank 2 fuse data clear

efu_l2b2_fuse_xfer_en Output 1 L2b bank 2 fuse data transfer enable

l2b2_efu_fuse_data Input 1 Fuse read data shift from l2b bank 2

l2b2_efu_fuse_xfer_en Input 1 Fuse read shift enable for l2b bank 2

efu_l2t3_fuse_clr Output 1 l2t bank 3 fuse data clear

efu_l2t3_fuse_xfer_en Output 1 l2t bank 3 fuse data transfer enable

l2t3_efu_fuse_data Input 1 Fuse read data shift from l2t bank 3

l2t3_efu_fuse_xfer_en Input 1 Fuse read shift enable for bank 3

efu_l2b3_fuse_clr Output 1 L2b bank 3 fuse data clear

efu_l2b3_fuse_xfer_en Output 1 L2b bank 3 fuse data transfer enable

l2b3_efu_fuse_data Input 1 Fuse read data shift from l2b bank 3

l2b3_efu_fuse_xfer_en Input 1 Fuse read shift enable for l2b bank 3

efu_l2t4_fuse_clr Output 1 l2t bank 4 fuse data clear

efu_l2t4_fuse_xfer_en Output 1 l2t bank 4 fuse data transfer enable

l2t4_efu_fuse_data Input 1 Fuse read data shift from l2t bank 4

l2t4_efu_fuse_xfer_en Input 1 Fuse read shift enable for bank 4

efu_l2b4_fuse_clr Output 1 L2b bank 4 fuse data clear

efu_l2b4_fuse_xfer_en Output 1 L2b bank 4 fuse data transfer enable

l2b4_efu_fuse_data Input 1 Fuse read data shift from l2b bank 4

l2b4_efu_fuse_xfer_en Input 1 Fuse read shift enable for l2b bank 4

efu_l2t5_fuse_clr Output 1 l2t bank 5 fuse data clear

efu_l2t5_fuse_xfer_en Output 1 l2t bank 5 fuse data transfer enable

l2t5_efu_fuse_data Input 1 Fuse read data shift from l2t bank 5

l2t5_efu_fuse_xfer_en Input 1 Fuse read shift enable for bank 5

efu_l2b5_fuse_clr Output 1 L2b bank 5 fuse data clear

efu_l2b5_fuse_xfer_en Output 1 L2b bank 5 fuse data transfer enable

l2b5_efu_fuse_data Input 1 Fuse read data shift from l2b bank 5

TABLE 11-20 Unit-Level Interface Signal (Continued)s
Chapter 11 Electronic Fuse Unit (EFU) 11-37

l2b5_efu_fuse_xfer_en Input 1 Fuse read shift enable for l2b bank 5

efu_l2t6_fuse_clr Output 1 l2t bank 6 fuse data clear

efu_l2t6_fuse_xfer_en Output 1 l2t bank 6 fuse data transfer enable

l2t6_efu_fuse_data Input 1 Fuse read data shift from l2t bank 6

l2t6_efu_fuse_xfer_en Input 1 Fuse read shift enable for bank 6

efu_l2b6_fuse_clr Output 1 L2b bank 6 fuse data clear

efu_l2b6_fuse_xfer_en Output 1 L2b bank 6 fuse data transfer enable

l2b6_efu_fuse_data Input 1 Fuse read data shift from l2b bank 6

l2b6_efu_fuse_xfer_en Input 1 Fuse read shift enable for l2b bank 6

efu_l2t7_fuse_clr Output 1 l2t bank 7 fuse data clear

efu_l2t7_fuse_xfer_en Output 1 l2t bank 7 fuse data transfer enable

l2t7_efu_fuse_data Input 1 Fuse read data shift from l2t bank 7

l2t7_efu_fuse_xfer_en Input 1 Fuse read shift enable for bank 7

efu_l2b7_fuse_clr Output 1 L2b bank 7fuse data clear

efu_l2b7_fuse_xfer_en Output 1 L2b bank 7 fuse data transfer enable

l2b7_efu_fuse_data Input 1 Fuse read data shift from l2b bank 7

l2b7_efu_fuse_xfer_en Input 1 Fuse read shift enable for l2b bank 7

NCU and EFU shift interface

efu_ncu_fuse_data Output 1 Efuse NCU data

efu_ncu_srlnum0_xfer_e
n

Output 1 Efuse NCU serial number 0 transfer enable

efu_ncu_srlnum1_xfer_e
n

Output 1 Efuse NCU serial number 1 transfer enable

efu_ncu_srlnum2_xfer_e
n

Output 1 Efuse NCU serial number 2 transfer enable

efu_ncu_fusestat_xfer_en Output 1 Efuse NCU fuse status transfer enable

efu_ncu_coreavl_xfer_en Output 1 Efuse NCU core available transfer enable

efu_ncu_bankavl_xfer_en Output 1 Efuse NCU bank available transfer enable

NIU and EFU shift interface

NIU SRAM 2

niu_efu_4k_data Input 1 Niu to efu data

niu_efu_4k_xfer_en Input 1 Niu to efu xfer enable

TABLE 11-20 Unit-Level Interface Signal (Continued)s
11-38 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

efu_niu_4k_clr Output 1 Efu to niu clear

efu_niu_4k_data Output 1 Efu to niu data

efu_niu_4k_xfer_en Output 1 Efu to niu xfer enable

NIU SRAM 1

niu_efu_cfifo0_data Input 1 Niu cfifo0 data to efu

niu_efu_cfifo0_xfer_en Input 1 Niu cfifo0 xfer enable to efu

efu_niu_cfifo0_clr Output 1 Efu to niu cfifo0 clear

efu_niu_cfifo0_xfer_en Output 1 Efu to niu cfifo0 xfer enable

niu_efu_cfifo1_data Input 1 Niu cfifo1 data to efu

niu_efu_cfifo1_xfer_en Input 1 Niu cfifo1 xfer enable to efu

efu_niu_cfifo1_clr Output 1 Efu to niu cfifo1 clear

efu_niu_cfifo1_xfer_en Output 1 Efu to niu cfifo1 xfer enable

efu_niu_cfifo_data Output 1 Share data from efu to niu for this group of RAMs

NIU SRAM 0

niu_efu_ipp0_data Input 1 Niu ipp0 data to efu

niu_efu_ipp0_xfer_en Input 1 Niu ipp0 xfer enable to efu

efu_niu_ipp0_clr Output 1 Efu to niu ipp0 clear

efu_niu_ipp0_xfer_en Output 1 Efu to niu ipp0 xfer enable

niu_efu_ipp1_data Input 1 Niu ipp1 data to efu

niu_efu_ipp1_xfer_en Input 1 Niu ipp1 xfer enable to efu

efu_niu_ipp1_clr Output 1 Efu to niu ipp1 clear

efu_niu_ipp1_xfer_en Output 1 Efu to niu ipp1 xfer enable

niu_efu_mac0_ro_data Input 1 Niu mac0 ro data to efu

niu_efu_mac0_ro_xfer_en Input 1 Niu mac0 ro xfer enable to efu

niu_efu_mac1_ro_data Input 1 Niu mac1 ro data to efu

niu_efu_mac1_ro_xfer_en Input 1 Niu mac1 ro xfer enable to efu

niu_efu_mac0_sf_data Input 1 Niu mac0 sf data to efu

niu_efu_mac0_sf_xfer_en Input 1 Niu mac0 sf xfer enable to efu

efu_niu_mac0_ro_clr Output 1 Efu to niu mac0 ro clear

efu_niu_mac0_ro_xfer_en Output 1 Efu to niu mac0 ro xfer enable

efu_niu_mac0_sf_clr Output 1 Efu to niu mac0 sf clear

TABLE 11-20 Unit-Level Interface Signal (Continued)s
Chapter 11 Electronic Fuse Unit (EFU) 11-39

efu_niu_mac0_sf_xfer_en Output 1 Efu to niu mac0 sf xfer enable

niu_efu_mac1_sf_data Input 1 Niu mac1 sf data to efu

niu_efu_mac1_sf_xfer_en Input 1 Niu mac1 sf xfer enable to efu

efu_niu_mac1_ro_clr Output 1 Efu to niu mac1 ro clear

efu_niu_mac1_ro_xfer_en Output 1 Efu to niu mac1 ro xfer enable

efu_niu_mac1_sf_clr Output 1 Efu to niu mac1 sf clear

efu_niu_mac1_sf_xfer_en Output 1 Efu to niu mac1 sf xfer enable

efu_niu_mac01_sfro_data Output 1 Efu to niu mac01 sfro data

NIU SRAM3

niu_efu_ram0_data Input 1 Niu ram0 data to efu

niu_efu_ram0_xfer_en Input 1 Niu ram0 data xfer enable to efu

efu_niu_ram0_clr Output 1 Efu to niu ram0 clear

efu_niu_ram0_xfer_en Output 1 Efu to niu ram0 xfer enable

niu_efu_ram1_data Input 1 Niu ram1 data to efu

niu_efu_ram1_xfer_en Input 1 Niu ram1 xfer enable to efu

efu_niu_ram1_clr Output 1 Efu to niu ram1 clear

efu_niu_ram1_xfer_en Output 1 Efu to niu ram1 xfer enable

niu_efu_ram_data Input 1 Niu ram data to efu

niu_efu_ram_xfer_en Input 1 Niu ram xfer enable to efu

efu_niu_ram_clr Output 1 Efu to niu ram clear

efu_niu_ram_xfer_en Output 1 Efu to niu ram xfer enable

efu_niu_ram_data Output 1 Efu to niu ram, ram0, ram1 data in

NIU SERDES i/f

niu_efu_fdo Input 1 Niu to efu data

efu_niu_fclk Output 1 Efu to niu fclk (100MHz)

efu_niu_fclrz Output 1 Efu to niu clear

efu_niu_fdi Output 1 Efu to niu data in

PEU and EFU shift interface

psr_efu_fdo Input 1 Psr to efu data

efu_psr_fclk Output 1 Efu to psr clock

efu_psr_fclrz Output 1 Efu to psr clear

TABLE 11-20 Unit-Level Interface Signal (Continued)s
11-40 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

11.5 Misc/Multiple Clock Domains
The following signals coming from the TCU will have to be synchronized to the io
clock domain before use since they are generated on the tck (JTAG) clock.

tcu_efu_read_start
tcu_efu_read_en
tcu_efu_fuse_bypass
tcu_efu_updatedr
tcu_efu_rowaddr[6:0]

A special synchronizer library cell will be used to synchronize the above signals.
tcu_efu_rowaddr[6:0] is fed through the same synchronizer. This signal is assumed
to be stable before being used and hence is not qualified with any valid signal.

The following signals are not synchronized. They are used only on the tester and
hence are assumed to transition and settle well before they are used. They do not
need explicit synchronization.

io_pgrm_en
tcu_efu_coladdr[4:0]
tcu_efu_read_mode[1:0]

efu_psr_fdi Output 1 Efu to psr data

MCU and EFU shift interface

mcu_efu_fdo Input 1 Mcu to efu data

efu_mcu_fclk Output 1 Efu to mcu clock

efu_mcu_fclrz Output 1 Efu to mcu clear

efu_mcu_fdi Output 1 Efu to mcu data

DMU and EFU shift interface

dmu_efu_data Input 1 Dmu to efu data

dmu_efu_xfer_en Input 1 Dmu to efu xfer enable

efu_dmu_clr Output 1 Efu to dmu clear

efu_dmu_data Output 1 Efu to dmu data

efu_dmu_xfer_en Output 1 Efu to dmu xfer enable

TABLE 11-20 Unit-Level Interface Signal (Continued)s
Chapter 11 Electronic Fuse Unit (EFU) 11-41

The following signals are generated and used in the tck clock domain:

tcu_efu_data_in
efu_tcu_data_out
tcu_efu_shiftdr
tcu_efu_capturedr
tck

11.6 Efuse Array Specification

11.6.1 Efuse Array Organization
In a broad sense, the Efuse array is a non-volatile memory used to store information
that needs to be programmed at the factory and used in the field. On OpenSPARC
T2, it contains the following die specific information :

■ Redundant array repair information for the SRAMs

■ Serial ID of the chip

■ Working processor core IDs (core available information)

■ Working L2 bank information (bank available information)

The Efuse array is a 64 deep and 32 bit wide array. Each cell in the Efuse array
consists of a poly fuse that replace traditional laser fuse. They can be programmed
to store any value by blowing them with an electrical pulse.

11.6.2 Efuse Array Functions
Supports the following 2 funcitons :

1. Read access : There can be 2 types of read access.

a. EFA row read : Contents of an entry in the array specified by
fct_efa_word_addr[5:0] are read out as fct_efa_data_out[31:0].

b. Supply detect read : efa_sup_det_rd is asserted indicating a request for supply
detect read. EFA will read out voltage levels and sense amplifier power levels
(vpp_detect, vdd_detect, vddo_detect, and sense amplifier power level detect)
as efa_sbc_data[3:0].
11-42 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

2. Program access : EFA array is programmed one bit at a time. The
fct_efa_prog_en needs to be asserted requesting a program access. The vpp bump
pads needs to be supplied with special voltage before fct_efa_prog_en is valid.
fct_efa_word_addr[5:0] and fct_efa_bit_addr[4:0] needs to be valid. The bit in
entry specified by fct_efa_word_addr[5:0] and fct_efa_bit_addr[4:0] is
programmed. After a entry is programmed, the entry is read back. If the desired
value is not obtained, the mismatched bits if possible are reprogrammed. The
process is repeated until desired value is read. Valid bits are then programmed
when the entry is programmed with valid data.

11.6.3 Timing Diagrams
Read access :

EFA row read :

The Efuse controller (FCT) will request a normal read operation by asserting
fct_efa_read_en along with fct_efa_row_addr[5:0].

FCT will assert fct_efa_read_en for a predetermined number of clocks (as per the
requirements of the EFA) for the read data efa_fct_data_out[31:0] to be ready.

FIGURE 11-9 EFA Row Read Access

Supply detect read :

fct_efa_row_addr[5:0]

[31:0]

Valid address

Multi cycle path
Chapter 11 Electronic Fuse Unit (EFU) 11-43

FCT can perform a supply read detect by asserting fct_efa_sup_det_rd. In this case
EFA will read out various voltage levels (vpp_detect, vdd_detect, vddo_detect, and
sense amplifier power level detect) as efa_fct_data_out[3:0].

FIGURE 11-10 EFA Supply Detect Access

Program access :

Programming happens one bit at a time.

EFA will request a program access by asserting fct_efa_row_addr[5:0],
fct_efa_bit_addr[4:0] and fct_efa_prog_en.

EFA will zap the fuse in the bit cell identified by the row address
(fct_efa_row_addr[5:0]) and the bit address (fct_efa_bit_addr[4:0]). (The zapped bit
will be read as a zero)

Multi cycle path

fct_efa_row_addr[5:0]

[3:0]

Valid address
11-44 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 11-11 EFA Program Access

b

g

[4:0]

Multi cycle path

Valid address

Valid address

fct_efa_row_addr[5:0]
Chapter 11 Electronic Fuse Unit (EFU) 11-45

11.6.4 Interface Table

TABLE 11-21 Interface Table for EFA

Signal name I/O Width Description

Vpp I 1 VPP input from I/O

fct_efa_prog_en I 1 Efuse array program enable

fct_efa_read_en I 1 Efuse array read enable

fct_efa_word_addr I 6 Efuse array word address from TCU

fct_efa_bit_addr I 5 Efuse array bit address

fct_efa_sup_det_rd I 1 Efuse array supply detect read

fct_efa_power_down I 1 Efuse array power down signal from SBC

scan_in I 1 Scan input

scan_en I 1 Scan enable

clk I 1 Clock

scan_out O 1 Scan output

efa_fct_data O 32 Data from Efuse array to SBC

fct_efa_margin0_rd I 1 Efuse array margin0 read

fct_efa_margin1_rd I 1 Efuse array margin1 read
11-46 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

CHAPTER 12

Reset Unit Specification

This chapter contains the following sections:

■ Section 12.1, “OpenSPARC T1 and OpenSPARC T2 Partitioning” on page 12-2

■ Section 12.2, “Reset Overview” on page 12-2

■ Section 12.3, “Types of Reset” on page 12-14

■ Section 12.4, “Machine State after Each Kind of Reset” on page 12-21

■ Section 12.5, “ OpenSPARC T2 is a System On a Chip” on page 12-29

■ Section 12.6, “Registers” on page 12-34

■ Section 12.7, “Power-On Reset Sequence Overview” on page 12-44

■ Section 12.8, “Deterministic Behavior” on page 12-51

■ Section 12.9, “Power-On Reset Sequence” on page 12-52

■ Section 12.10, “Warm Reset Sequence” on page 12-64

■ Section 12.11, “Reset Sequence for DBG” on page 12-67

■ Section 12.12, “Reset Sequence for NIU” on page 12-67

■ Section 12.13, “Reset Sequence for XIR” on page 12-67

■ Section 12.14, “Reset and Scan of the Reset Unit” on page 12-68

■ Section 12.15, “Reset Unit Ports” on page 12-69

■ Section 12.16, “Appendices” on page 12-74
12-1

12.1 OpenSPARC T1 and OpenSPARC T2
Partitioning
Except for the system controller, OpenSPARC T2 integrates all motherboard system
circuitry on a chip. While OpenSPARC T1 writes to a register on an external IO
Bridge chip to assert WMR_RST, OpenSPARC T2 writes to the on-chip RESET_GEN
register.

12.2 Reset Overview

12.2.1 Goals
The Reset Unit asserts signals that cause other units to immediately revert to the
initial state defined by the Programmer’s Reference Manual.

TABLE 12-1 OpenSPARC Partitioning

OpenSPARC T1 OpenSPARC T2

Abbr. Unit Abbr. Unit

IOB (Internal) IO Bridge Unit NCU Non-Cacheable Unit

n.a. External IO Bridge chip

CTU Control and Test Unit TCU Test Control Unit

CCU Clock Control Unit

RST Reset Unit

CMP Chip MultiProcessor Unit (may be
part of NCU)

JBus System Interface DMU Data Management Unit

n.a. n.a. PEU PCI Express Unit

n.a. n.a. NIU Network Interface Unit
12-2 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

The OpenSPARC T2 team has endeavored to keep OpenSPARC T2 as much the same
as OpenSPARC T1 as possible. One major difference is that OpenSPARC T2
conforms to the CMP Programming Model.

12.2.2 Nomenclature
In the specifications relevant to OpenSPARC T2, the term reset is used in many ways.
The table in the following section lists all of them except one. The exception is that
the two-bit TYPE field of the OpenSPARC T1 INT_VEC_DIS register can take on a
value named reset, described below in the OpenSPARC T1 Thread Suspension
section, but that register field named reset differs from signals named reset in the
sense used here.

Exercise caution in referring to the various documents, as a single reset can have
multiple names. Power-on reset has several names: POR, cold power-on, flush, scan
flush, and hard reset. In fact, the chip-wide warm reset also goes by at least six other
names: chip, CR, full-CMP, soft, software induced warm, and system reset.

Conversely, resets that are different can have names that are similar (soft or software
induced warm differ from Software-Initiated), or have identical abbreviations (chip-
wide WMR differs from OpenSPARC T1 thread WMR). The CMP Programming
Model considers POR to be a special case of system reset.

OpenSPARC T2 retains the reset concepts and names used in OpenSPARC T1.
TABLE 12-2 expands upon Table 5-4 in the Fire ASIC spec.

12.2.3 Priority
The OpenSPARC T1 Programmer’s Reference Manual and the OpenSPARC T2
Programmer’s Reference Manual give the trap types of the resets in TABLE 12-3. Priority
1 traps, which are resets other than POR, are processed in the following order (with
the trap type in parentheses):
XIR(3) > WDR(2) > SIR(4) > RED(5).

TABLE 12-2 Reset Actions

Function Sun/Fire ASIC PCI-Express Spec OpenSPARC
T1

OpenSPARC
T2

Reset of all chip state
including errors

Hard Cold Power-On

Reset of all non-error chip
state

Soft Warm Warm
Chapter 12 Reset Unit Specification 12-3

Reset priorities from highest to lowest are:

*Note: WMR trap, XIR, WDR, and SIR do not cause other units to immediately
revert to the initial state defined by the Programmer’s Reference Manual. They are
interrupt traps. “Software can distinguish a chip-wide Warm Reset from a Warm
Reset [trap] by the RSET_STAT register.”

TABLE 12-3 Trap Types

Trap
Type

Abbr. Reset Name Priority Cause Scope

- TRST_ Test Reset Assert with POR TRST_ TCU only

1 POR Power-On, cold power-on,
flush, scan flush, hard

Highest PWRON_RST_L Chip-wide
except TCU

1 WMR Chip-wide warm, chip,
CR, full-CMP, soft,
software induced warm,
system

WMR < POR PB_RST_L (1st pri.), or
Fatal Error (2nd pri.), or
write Gen_Reset reg
(ctu40) or RESET_GEN
reg (ctu39) (3rd pri.)

Chip-wide,
except for WMR-
protected flops.
See PRM, Table
11-13.

- DBG_I
NIT

debug_init_ Same as WMR rst_wmr_, or
PIO read to DBG_INIT reg
(ctu56, n1prm369,
n2prm386)

OpenSPARC T1
only. Replaced
by DBR in
OpenSPARC T2.

- DBR Debug DBR< WMR Write to DBR_GEN bit of
Reset_Gen reg

Full chip, except
NIU and DMU-
PEU

1* WMR
trap

Warm Reset trap WMR < POR Write INT_VEC_DIS reg Per thread

3* XIR Externally-Initiated XIR < WMR BUTTON_XIR_L (1st pri.),
or set bit[1] in Reset_Gen
reg (tprm190)

Virtual cores set
in ASI_XIR_
STEERING

2* WDR Watchdog WDR < XIR Write INT_VEC_DIS reg Per thread

4* SIR Software-Initiated Lowest Issue SIR (SIGM) instr in
priv mode, or write
INT_VEC_DIS reg

Per thread

- NIU NIU - Write to NIU bit of
SSYS_RESET reg

NIU
12-4 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

Software can distinguish a POR from a WMR by the RSET_STAT register, as follows:
Reset from WMR_RSTpin sets WMR bit of RSET_STAT.
Reset from PWRON_RST_pin sets PWRON_RST bit of RSET_STAT.

12.2.4 OpenSPARC T2 Structures that Hold State
OpenSPARC T2 holds state in three types of structure:

1. Latches.

2. Flip-flops. These may be:

a. Synchronously-resettable.
The Asic clusters use synchronous reset.

b. Asynchronously-resettable.
Only the CCU and the cluster headers contain asynchronously-resettable flops.

c. Resettable by flush reset.
The SPARC core clusters use flush reset.

d. Resettable by having a known value shift down a pipeline.

e. Non-resettable.

3. Array cores.

a. E-Fuse Array.

b. SRAM array cores.

An SRAM may use each of the three kinds of structure to hold state:

1. Latches. There are three types:

TABLE 12-4 Preemption

TRST The FPGA or tester can assert TRST_ at any time, and it will reset the JTag Test Access Port.

POR The FPGA or tester can assert PWRON_RST_L at any time, and it will reset OpenSPARC T2
immediately.

WMR, DBR If the Reset Unit is in the engaged in servicing a prior POR, WMR, or DBR, it will defer
processing a WMR, a DBR, or an XIR until it finishes the prior one. If, at that time, it finds
more than one reset pending, it will choose the highest priority, according to the table above.

XIR If the Reset Unit is in the engaged in servicing a Externally-Initiated Reset, it will allow any
other reset to preempt the XIR.
Chapter 12 Reset Unit Specification 12-5

a. SRAM redundant array Repair Value latches. (Not shown.) An SRAM may
hold its Repair Values in flops instead, depending upon its area requirements.
See next section.

b. Other SRAM latches.

c. Latches in the path of the clock pre-grid drivers. These latches remain, even
though multiple drivers, each controlled by its own latch, are shorted together
through the grid. describes how we avoid clock contention in Asic cluster
SRAMs without resetting these latches. SunV cluster SRAMS are held in flush
reset until gclk starts, and flush reset asserts SE, which is how we avoid clock
contention in these SRAMs.

2. Flip Flops:

a. SRAM redundant array Repair Value flops. (Not shown.) An SRAM may hold
its Repair Values in latches instead, depending upon its area requirements. See
next section.

b. SRAM input flops. The L2T CAM only has a latch at the input. All other
SRAMs have input flops.

c. SRAM output flops. Approximately 35 percent of SRAMs have an output flop.
The remaining 65 percent have a latch, instead.

3. SRAM array core contents. A special case of SRAM contents is the valid bits in the
L2 directory of L1 tags.

12.2.5 E-Fuse destination Flops and Latches
"EFUSE OpenSPARC T2 Micro-Architecture Specification" lists the destinations of
information from the EFU, as shown in TABLE 12-5:

TABLE 12-5 Destination of Information from the EFU

Block ID Destination Information

00-15 SPC I-cache and D-cache Repair Values (RV)

16-31 L2T,L2D SRAM RV

32 NCU SPARC core available

33 NCU L2 bank available

34, 35, 36 NCU Serial number

37-40 NIU SRAM RV

41 PSR PSR Serdes termination resistor trimming
12-6 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

Only the destination flops in the NCU are affected by flush reset, and since they are
Warm Reset-protected, they are only reset during POR1 and POR2. Since they are
reset by POR2, the Power-On Reset sequence includes EFU2.

All of the other destination flops and latches are only set to their initial values by the
TCU via the E-Fuse Unit, before the transfer starts, using flash (synchronous) reset.
An SRAM may hold its Repair Values in latches or flip-flops, depending upon its
area requirements. If it holds its RVs in flops, they are not scannable, so that they are
protected from flush reset. The initial value for all SRAM RVs is 0. The initial value
for the Serdes's termination resistor trimming may be other than 0. The
DMU/IOMMU DEVTSB RAM delay chain calibration will initialize to 4'b0010.

12.2.6 Latches
TABLE 12-6 lists each kind of latch, the agent that sets it to its initial value, and how it
does it

42 MCU FSR Serdes termination resistor trimming

43 NIU ESR Serdes termination resistor trimming

44-62 DMU/IOMMU DEVTSB RAM delay chain calibration

TABLE 12-6 Latch Kind

Latch Agent that initializes value Method of initializing

SRAM redundant array Repair Value valid bit
latches

TCU via E-Fuse Unit, before the
transfer starts

Flash (synchronous) reset

Other SRAM redundant array Repair Value
latches

E-Fuse Unit Write to latch. (These bits
have no effect if the valid
bit is cleared.)

Other SRAM latches (Not resettable.) (See SRAM tables, below.)

Valid bits in the L2T directory of L1 tags,
implemented as latches
(a special case of SRAM core array contents.)

Reset Unit Flash (synchronous) reset
(See Section 5.3)

TABLE 12-5 Destination of Information from the EFU (Continued)
Chapter 12 Reset Unit Specification 12-7

12.2.7 Flip-flops Outside of SRAMs
Flip-flops may be found in special clusters, in flop stations, and in SPARC core and
ASIC clusters. Within SPARC core and ASIC clusters, they may be found in cluster
headers, in SRAMs, and in the rest of the cluster. TABLE 12-7 lists each kind of flip-
flop, except for SRAM input and output flops:

TABLE 12-7 Flip-Flop Kinds

Flip-flops outside of SRAMs Agent that initializes value Method of initializing

7-bit counter in
Process Control Monitor (PCM)

Raw PWRON_RST_ input pin
(not synchronized)

Reset of unknown type.

In Test Access Port (TAP) TAP or TRST input pin Asynchronous and
synchronous reset

Boundary scan flops (Not resettable.) JTAG

In Reset Unit rst_fsm_ctl module PWRON_RST_ input pin, after
synchronized to ccu_rst_sys_clk

Synchronous reset

In Reset Unit rst_ucbflow_ctl module Reset Unit Synchronous reset

In Reset Unit rst_cmp_ctl and rst_io_ctl modules Some by Reset Unit, and some
by resettable.

Synchronous reset, or
known value shifts down
pipeline.

In global distribution flop stations
(approximately 500 flops)

(Not resettable, and
not scannable.)

Known value shifts down
pipeline
in ~5 cycles.

In SPARC core cluster headers (Not resettable, and
not scannable.)

Known value shifts down
pipeline
in ~5 cycles.

In ASIC cluster headers
(CCU, DMU, PEU, and NIU)

(Not resettable, and
not scannable.)

Known value shifts down
pipeline
in ~5 cycles.

In non-SRAM, non-cluster header portions of
ASIC clusters
(DMU, PEU, NIU, and parts of CCU)

Reset Unit Synchronous reset

In CCU Reset Unit Synchronous and
asynchronous reset

Some flops in MAC cluster of NIU (Not resettable.) Known value shifts down
pipeline.
12-8 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

Notice that the Reset Unit only resets flops in clusters, and it does not affect flops in
the following:

1. The PCM (partially in the MIO).

2. The TAP (in the TCU).

3. The boundary scan flops don't really need to be flush reset, since they are
bypassed in functional mode and must be specifically selected by JTAG to be
active. When they are selected, the chip is no longer in a functional mode.

4. Serdes clusters. The Reset Unit affects these indirectly, since for each Serdes, it
resets its configuration register in the cluster that controls it. MCU controls FSR,
PEU controls PSR, and NIU controls ESR.

5. The Reset Unit itself, except as part of normal logic operation.

6. Global distribution flop stations.

7. Some flops in some SRAMs (see next two sections).

Besides the TAP, which the Reset Unit does not affect, there are two blocks that
contain asynchronously-resettable flops

1. CCU,reset by rst_ccu_ and rst_ccu_pll_, and

2. Cluster header,reset by cluster_arst_.

The Reset Unit will suppress its rst_ccu_, rst_ccu_pll_, and cluster_rst_l output ports
when it is being scanned.

FSR SERDES MCU via config. bus LFSR has ckt to prevent
lockout value. String of 1s
flushes out bubble in the
middle.

PSR SERDES PEU via config. bus

ESR SERDES NIU vis config. bus

ESR SERDES Software resettable from SCR
MAC.

Synchronous reset

Shadow-scan flops in non-cluster header portions
of SunV clusters

(Not resettable.) Acquires value of master
flop after first clock cycle.

In non-cluster header portions of SPARC core
clusters, other than the Reset Unit

Reset Unit Flush reset

TABLE 12-7 Flip-Flop Kinds (Continued)
Chapter 12 Reset Unit Specification 12-9

12.2.8 SRAM Input flops
TABLE 12-8 lists each kind of SRAM input flop:

12.2.9 SRAM Output Flops
TABLE 12-9 lists each kind of SRAM output flop:

MBisi now performs a read after competing all writes, for the purpose of initializing
SRAM output flops. This requires twice as much time to complete MBisi, but we also
now have the JTag POR instruction to abort MBisi, if desired.

TABLE 12-8 SRAM Input Flops

SRAM Input Flops Agent that initializes value Method of initializing

In L2T CAM (Latch, not input flop.) (Latch, not input flop.)

In DMU, PEU, and NIU (Not resettable.) Known value shifts in from
upstream logic.

In SunV clusters Reset Unit Flush reset

TABLE 12-9 SRAM Output Flops

SRAM Output Flops Agent that initializes value Method of initializing

In 65 percent of SRAMs (Latch, not output flop.) Pre-MBISI value shifts in from
core array.

In DMU and PEU (No output flops.) (No output flops.)

In NIU, 15 instances of 4 types of compiled
SRAMs that are
shared with other clusters

(Not resettable.) Pre-MBISI value shifts in from
core array.

In NIU, custom (latches) SRAMs that are
unique to the NIU

Reset Unit Synchronous reset

In SPARC core clusters Reset Unit Flush reset
12-10 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

12.2.10 Core Array Contents
TABLE 12-10 lists each kind of core array contents:

There is one reset signal (por_n) which comes to n2_efa_sp_256b_cust. The function
of the por_n in the Efuse array is to ensure the following:

1. The output of the efa-array is reset to zero at powerup.

2. The readpath of the efuse-array is disabled at powerup, sustained to be in the
disable state by primary inputs.

3. The efuse-array is precharged during the powerup with por_n and sustained to
be in the precharge state by primary inputs.

The por_n is used to reset the flops inside the efuse-array because the efuse-array is
NOT on the scan chain.

12.2.11 NIU, DMU-PEU, RST, and TAP Reset
Implementations Differ
The flip-flops in OpenSPARC T2 's library have no reset input. Instead, each flip-flop
is reset in one of two ways:

1. Flush reset. The Reset Unit resets most flip-flops by flush reset.

2. Synchronous reset. The two IO clusters, NIU and DMU-PEU, as well as the Reset
Unit [and the TAP], use synchronous reset. Each flip-flop in these clusters has a
mux feeding its D input. The reset signal directs the mux to select either (1) an
initial value or (2) an operational value. The flip-flop loads this value at the next
rising edge of the clock.

TABLE 12-10 Core Array Contents

Core array contents Agent that initializes value Method of initializing

E-Fuse Array contents Factory Fuse blow

E-Fuse Array block Reset Unit via EFU (See note at end of this
section.)

SRAM core array contents (Not resettable.) MBISI or MBIST writes to
SRAM.

Valid bits in the L2T directory of L1 tags,
implemented as latches
(a special case of SRAM core array contents.)

Reset Unit Flash reset, a kind of
synchronous reset.
(See Section 5.3)
Chapter 12 Reset Unit Specification 12-11

12.2.12 Eliminating Clock Contention
To eliminate clock contention in Asic cluster SRAMs, assert SE. (SPARC core cluster
SRAMs are held in flush reset until gclk starts, and flush reset asserts SE, which is
how we avoid clock contention in those clusters.)

To eliminate clock contention in the CCX cluster, assert cluster_arst_l.

Clock contention is only a problem at the beginning of POR1, before gclk has started
running for the first time. During later resets, even if gclk stops, since gclk has
already been running, every pair of flops and every pair of latches that are capable
of causing contention have the same value.

12.2.12.1 Before gclk starts

1. To eliminate clock contention in Asic cluster SRAMs before gclk starts, assert SE.
Also assert cluster_arst_l, for both the Asic cluster SRAMs and CCX.

The l1clk header l1clk output has an Or gate, l1clk = (other signals) | SE, so SE =
1 will cause every l1clk header to drive l1clk = 1. No contention.

Also, the cluster header l2clk output has an And gate, l2clk = (other signals) &
cluster_arst_l, so cluster_arst_l = 0 will cause every cluster header to drive l2clk =
0.

This makes the l1clk header latch transparent. Within each SRAM, the multiple
l1clk headers have the same inputs. The transparent latch will cause the multiple
l1clk headers to drive l1clk the same. No contention.

2. To eliminate clock contention in CCX cluster before gclk starts, assert
cluster_arst_l.

As described above, the cluster header l2clk output has an And gate, l2clk =
(other signals) & cluster_arst_l, so cluster_arst_l = 0 will cause every cluster
header to drive l2clk = 0. No contention.

12.2.12.2 After gclk starts, Asic SE deasserts, and Asic clk_ctop
deasserts

1. In Asic cluster SRAMs: After about 5 gclk cycles, known values shifted down
pipeline to both Asic and SPARC core cluster headers. Flops in both CCX cluster
headers will then contain identical values. Can deassert multi-cycle cluster_arst_l
and give it time to propagate. After deasserted cluster_arst_l arrives at cluster
header, asserted Asic clk_stop continues to cause l2clk = 0.
12-12 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

After gclk starts, the l1clk header latch will operate. Within each SRAM, the
multiple l1clk headers have the same inputs. The operating latch will cause the
multiple l1clk headers to drive l1clk the same. No contention.

Deassert multi-cycle Asic SE and give it time to propagate. This releases l1clk
from 1 and causes it to follow l2clk = 0. Deassert Asic stop_clk. This releases l2clk
from 0 and allows it to follow gclk.

Continue to assert:

rst_dmu_peu_por_ = gl_dmu_por_ = gl_peu_por_. Allow at least 1 l1clk edge for
Asic synchronous reset. Deassert:

rst_dmu_peu_por_ = gl_dmu_por_ = gl_peu_por_.

2. In CCX: After about 5 gclk cycles, known values shifted down pipeline to both
Asic and SunV cluster headers. Flops in both CCX cluster headers contain
identical values. No contention. Can now safely deassert multi-cycle
cluster_arst_l and give it time to propagate.

12.2.12.3 Two Signals RequireAsynchronous Assert, Synchronous
Deassert.

To eliminate clock contention, (1) rst_tcu_pwronrst_l and (2) cluster_arst_l require
asynchronous assert and synchronous deassert.

1. The TCU asserts SE when the Reset Unit holds it in reset through
rst_tcu_pwronrst_l. We assert this signal asynchronously, because we wish to
eliminate clock contention even before sys_clk starts. We deassert this signal
synchronously, because we wish the behavior of OpenSPARC T2 to be
deterministic and repeatable. (Implementation note: we achieve this
asynchronous assert and synchronous deassert by providing an And gate that
bypasses a synchronization flop.)

2. The Reset Unit drives cluster_arst_l, so it drives this signal with asynchronous
assert and synchronous deassert, just as it does rst_tcu_pwronrst_l, above.
Chapter 12 Reset Unit Specification 12-13

12.3 Types of Reset

12.3.1 TRST_
TRST_ only involves the TCU, and not RST. The IEEE 1149.1 JTag Spec. requires five
external pins:

An alternate way to reset the JTag TAP is for the service processor to assert TMS for
5 clock cycles.

12.3.2 POR
Power-On Reset clears all flip-flops in OpenSPARC T2 clusters, except the JTag
portion of TCU, which must be reset earlier by TRST. POR also clears the valid bits
in the L2 cache directory of L1 tags.

Deassertion of PWRON_RST_L causes the Reset Unit to start the Power-On Reset
sequence.

12.3.3 DBR
OpenSPARC T2 uses Debug Reset, DBR (instead of the DEBUG_INIT that
OpenSPARC T1 uses). It is the same as WMR, but does not reset NIU nor DMU-PEU.
PCI Express resets after 50 ms, so we want to do checkpoint and watchpoint and
restore in 25 ms. Programming note: Be sure to configure MBIST not to run before
triggering DBR.

TCK Test Clock

TMS Test Mode Select

TDIT Test Data In

TDO Test Data Out

TRST_ Test Reset
12-14 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

12.3.4 WMR
By definition, Warm Reset occurs after the chip has already been running. It differs
from POR in three ways:

1. It clears flip-flops in state machines, just as POR does, to ensure the chip will be
able to run, but WMR attempts to maintain as much state as possible for error
logging. After a WMR, this state is available to enable software to determine the
cause of the reset. WMR must invalidate L2 cache to be coherent. There is no
permanent state in the L1 caches since they are write-through, so WMR
invalidates the L1 tags and parity, if WMR runs BISI. Section 12.4.2, “Reset Signals
Asserted for each Kind of Reset” on page 12-23.

2. The EFU does not scan out the EFA again.

3. MCU continues to perform refresh cycles in order to preserve main memory
contents. (It does this by placing the SDRams in self-refresh mode.) Software
enables this by setting the MCU_SELFRSH bit in the SSYS_RESET register.

Three agents can cause a Warm Reset, as follows:

1. The user can press the Warm Reset pushbutton, or the external system processor
can assert the PB_RST_L input pin.

2. Software can write to the WMR_GEN bit of the RESET_GEN register.

3. The L2 cache can detect a Fatal Error. (See Section 12.3.4.1, “A Fatal Error causes a
WMR” on page 12-15.)

12.3.4.1 A Fatal Error causes a WMR

The two OpenSPARC T2 Fatal Errors are as follows:

1. LRU: L2 cache directory Uncorrectable parity error. “During directory scrub,
parity is checked for the directory entry.”

2. LVU: L2 cache VAD array Uncorrectable parity error. “On every L2 access, parity
is checked for all 12 VAD bits in the set. (The used bit of VUAD is not covered by
parity since it only affects performance, not correctness.)”

“When an Uncorrectable parity error is detected, the error information is captured in
the L2 Cache Error Status and L2 Cache Error Address registers. In addition, a fatal
error indication is issued... to request a warm_reset trap to the entire chip.”

When the L2 cache detects either of these errors, it asserts l2t_rst_fatal. [Actually 8
signals.]
Chapter 12 Reset Unit Specification 12-15

Even though the Fire documents make reference to Fatal Error, that case differs from
what this document calls Fatal Error. OpenSPARC T2 will handle that case via an
interrupt. If the interrupt handler decides a Warm Reset is needed, it can then cause
it. For example, “Fire can initiate a Fatal Error [warm] reset...“Note: A fatal error is
an error which causes the chip to no longer function in the manner it was designed
for. A fatal error requires a reset, and there is no way to recover from it without a
reset."

Fatal Errors can be masked by a register in the NCU, Fatal Error Enable - FEE
(0x3020). "Each error type may be programmed to cause a Fatal Error. This register
enables an error to cause the signal ncu_rst_fatal_error to be asserted to the Reset
Unit. If the respective "Fatal Error Enable" bit is set, and the corresponding error
type is asserted, a fatal error will be dispatched to the Reset Unit."

We reserve the right to add a third Fatal Error, if we discover a way to detect that a
transaction queue is wedged, or has a bad address or control. (We can confine bad
data to one thread.) We wish to prevent bad data from getting off the chip.

12.3.4.2 Conflicting Demands placed on WMR

Warm reset serves two purposes:

1. Test

2. Fatal error

1. Test involves hundreds of functional vectors. For example, the table below shows
the percent of time on the tester for various steps in testing OpenSPARC T2.
Also, to make a test reproducible, it must start from a known state. This tends to
demand resetting as much of the chip's state as possible.

2. Since a WMR can occur due to a Fatal Error, it attempts to maintain as much state
as possible for error logging. After a WMR, this state is available to enable
software to determine the cause of the reset This tends to demand resetting as
little of the chip's state as possible.

To satisfy both of these demands, WMR keeps memory state, L2 cache, error logs,
and most architecturally-visible registers. It discards: transactions in flight, store
buffers, and FIFOs, puts each state machine into its idle state, and lets the pipeline
register drain. For a table of core CPU state as a result of POR and WMR, see Section
11.9, “Machine State after Reset and in RED_State”.

TABLE 12-11 Chip Reset

Chip reset step Jclks Percent of diags

POR/PLL 34800 27

EFA 8000 6
12-16 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

12.3.5 WMR Trap and SPARC-V9 POR Trap
The WMR trap generates a SPARC-V9 POR trap, which has a trap type of 1.

12.3.5.1 How OpenSPARC T1 Starts its Virtual Cores at Reset

To start its virtual cores at reset, OpenSPARC T1 uses the Warm Reset trap.

1. The IOB starts the first virtual core with an interrupt: "Cold Power-On Reset
Sequence, Step 19: IOB sends interrupt to Thread 0 on first available core.”

2. That virtual core then starts each of the others with an interrupt: "11.10.1
Assumed POR software Initialization Sequence, Step 19: Send interrupts to other
available cores."

From the OpenSPARC T1 Programmer’s Reference Manual:

11.5.1 Warm Reset [Trap] (WMR [Trap])

"A thread can be sent a WMR [Trap] via the INT_VEC_DIS register. The warm
reset [trap] generates a SPARC-V9 POR [trap], which has a trap type of 00116 at
physical address offset 2016. Software can distinguish a thread warm reset [trap]
from a chipwide warm reset by the RSET_STAT register. Since thread resets
[traps] do not set any bits in this register, and software will clear the chipwide
reset bits after the reset sequence has been completed, a RSET_STAT with all reset
source bits cleared will signal to the thread that it received a thread warm reset
[trap].

OpenSPARC T1 and T2 both have an Interrupt/Trap Vector Dispatch Register,
INT_VEC_DIS. For OpenSPARC T1, INT_VEC_DIS is in the IOB unit. For
OpenSPARC T2, it is in the NCU.

7.3.2 Interrupt/Trap Vector Dispatch Register

WRM 4000 3

BISI 2600 2

SSI 27800 22

Total reset steps 77200 60

Total for 145 diags 127200 100

Diag portion other than reset 50000 40

TABLE 12-11 Chip Reset (Continued)
Chapter 12 Reset Unit Specification 12-17

"A thread may write to the following register to trigger an interrupt to another
thread. This is intended to support interrupts from the TAP during bring up. In
addition, any thread may be sent a reset [trap interrupt] via this register.

12.3.5.2 How OpenSPARC T2 Starts its Virtual Cores at Reset

1. For OpenSPARC T2, the E-Fuse Cluster scans out the E-Fuse Array to set
ASI_CORE_AVAILABLE. NCU uses ASI_CORE_AVAILABLE to set
ASI_CORE_ENABLE and ASI_CORE_ENABLE_STATUS. When the TCU finishes
BIST, NCU can then unpark one virtual core, by setting one bit of
ASI_CORE_RUNNING.

2. That virtual core then starts each of the others by unparking them, by setting the
other bits in ASI_CORE_RUNNING.

The first time each SPARC core sees its bit of ASI_CORE_RUNNING change to 1, it
does a POR trap.

"IMPL. DEP. #114: The RED_state trap vector is located at an implementation-
dependent address referred to as RSTVaddr.

"Implementation Note: The RED_state trap handlers should be located in trusted
memory, for example, in ROM. The value of RSTVaddr may be hard-wired in an
implementation, but it is suggested that it be externally settable, for instance by
scan, or read from pins at power-on reset." OpenSPARC T2 does not implement
RSTVaddr as a register, so it is not settable.

"The RED_state trap vector address (RSTVaddr) is 256 MB below the top of the
virtual address space; this is, at virtual address FFFF FFFF F000 000016, which is
passed through to physical address FF F000 000016 in RED_state."

“Following the state initialization process, the TCU [NCU] instructs the machine (via
the Trap Unit) to begin fetching and executing instructions at the RSTVaddr ||
0x20.... These values may be changed by the system controller, if present, during
reset.” The system controller cannot change these values during reset.

12.3.6 XIR
OpenSPARC T2 accepts a signal on its external BUTTON_XIR_ pin, and sends a
packet for each virtual core enabled by the ASI_XIR_STEERING register. (By
contrast, OpenSPARC T1 received XIR from a write to the INT_VEC_DIS register
and did not use the ASI_XIR_STEERING register.)

“Used to... gain control of a chip. This corresponds to the L1-A key combination on
Sun machines, or Ctl-Alt-Delete on a PC”.
12-18 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

“7.1.3.1 Soft XIR

“By setting bit[1] in the Reset_Gen Register of Tomatillo, a processor can generate
an XIR. The Reset_Source register logs the cause of an XIR so that the XIR trap
handler can easily identify the source.

“Reset due to XIR does not initiate fetch of initialization code from Boot PROM,
and the memory controller continues to perform refresh cycles in order to
preserve main memory contents.”

The trap handler may initiate a reset, so it is not a reset like the others. Thus, XIR
only involves the CMP and SPG units, and not RST, except to the extent that RST
may debounce and synchronize the signal from the external input pin, and Or it
with the XIR_GEN bit in the RESET_GEN register.

The FPGA debounces BUTTON_XIR_, so OpenSPARC T2 does not need to.

1. OpenSPARC T2 implements the CMP Programming Model as defined.
OpenSPARC T1 implemented XIR as a hypervisor function, whereas OpenSPARC
T2 will do this in hardware as specified in the CMP Programming Model.”
[OpenSPARC T1 has an ASI register accessible from code and JTag which initiates
XIR on a per thread basis.]

2. OpenSPARC T2 has a pin for XIR. (OpenSPARC T1 did not have one.)”
[OpenSPARC T1 did not implement XIR via Tomatillo. Tomatillo can generate it
but OpenSPARC T2 will ignore the resulting JBus transaction (this is different
from all other JBus implementations). The only off-chip way to cause an XIR on
OpenSPARC T1 is via JTag. The idea is that, as JTag has access to the on-chip
CSRs, it can poke the XIR bit as if it was written to by a thread. OpenSPARC T2
could choose to do the same, but that may break the CMP Programming Model.]

3. The way the OpenSPARC T2 cores handle XIR as a trap allows restart.

4. The XIR CMP config. register is ASI and JTag accessible

5. Application note: If a debug engineer wants to use the feature 'XIR a particular
thread', they will need to implement a debug JTag test setup which can
dynamically modify the XIR steering register, and make sure their POST code
handles this correctly.

12.3.6.1 JTag can cause XIR

OpenSPARC T2 has a scannable flip-flop that can cause XIR, so JTag can cause XIR.
“A yet-to-be-specified JTag command could cause an XIR to be steered through the
XIR_STEERING register. Since they are OR’ed the first to happen would cause the
first XIR.”
Chapter 12 Reset Unit Specification 12-19

12.3.7 WDR
"Watchdog reset (WDR) is a V9-defined trap. WDR can be initiated via an event
(such as taking a trap when TL == MAXTL) which causes an entry into the V9 error
state - the processor immediately generates a watchdog reset trap to take the core to
RED_state. On N2, a WDR also can result from a fatal error condition detected by
on-chip error logic. A WDR only affects the strand which created it. When a WDR is
recognized, instruction fetching begins at RSTVaddr || 0x40."

12.3.7.1 Tomatillo SouthBridge System_watchdog Timer Signal

The Tomatillo SouthBridge system_watchdog timer signal differs from the CMP
watchdog reset, WDR.

From the Tomatillo Programmer’s Reference Manual:

"7.1.3.2 Button XIR

"For bring-up purposes, the system supports a Button XIR. This reset is triggered
through a push button which is connected to SouthBridge and is OR’ed with the
system_watchdog. This button is physically located on a dongle which is attached
to the motherboard through a header connector.

"The Button XIR feature is designed to facilitate bring-up and to provide an easy
way to get the system out of software hang through an XIR instead of a general
system reset. This allows the system to preserve most of its state and in particular
the contents of all registers in the I/O subsystem. It can prove to be useful in
identifying problems when the system hangs on I/O transfers.

"The Button XIR signal is 'OR’ed' with the SouthBridge watchdog timer signal
(inside the southbridge), and the result is connected to Tomatillo s input. When
either the Button XIR or the watchdog signal is active Tomatillo generates an XIR
transaction to all processors. Bit[5] of the Reset Source register is set to one when
a watchdog or Button XIR is generated. This allows the trap handler to identify
the cause of the XIR."

12.3.7.2 CMP Watchdog Reset, WDR

From the CMP Programming Model:

"The only resets that are limited to a single virtual core are the resets internally
generated by a virtual core.... for current SPARC processors, these are the Software
Initiated Reset, SIR, and the watchdog reset, WDR. These types of resets are
generated by an individual virtual core and are not propagated to the other virtual
cores on a CMP."
12-20 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

12.3.8 XIR, WDR, and SIR Perform No Reset
WDR and SIR are internally generated by a virtual core and are limited to a single
virtual core. They are thread-specific and not propagated to other cores or TCU .
They are independent of RST.

In conclusion, of the concepts in the above table, only POR, DBG_INIT, WMR, and
NIU involve the reset unit. “Other reset types [XIR, WDR, SIR] are called reset for
historical reasons, but they do not actually perform a reset. Their actual behavior is
that of a Non-Maskable Interrupt (Trap) with fetch from PROM, TL = 2.”

12.4 Machine State after Each Kind of Reset
TABLE 12-12 uses 0 as a shorthand to mean that each unit in this portion of the chip
will revert to the initial state defined by the Programmer’s Reference Manual.

Notes:

1. A table entry of 0 indicates that a unit outside of the JTag portion of TCU is reset
by TRST_ implicitly, because of the requirement that “the system must assert both
TRST_ and PWRON_RST_L to properly reset the part.”

2. The Programmer’s Reference Manual defines the subset of the chip unchanged by
WMR, and includes: integer registers, floating-point registers, TBA, Y, PIL, CWP,
CCR, ASI, CANSAVE, CANRESTORE, OTHERWIN, CLEANWIN, WSTATE, FSR,

TABLE 12-12 Machine State

JTag portion of
TCU

WMR-
protected
portion
(Note 2)

WMR-
protected part
of DMU, PEU

WMR-exposed
part of DMU,

PEU

NIU Rest of chip

TRST_ 0 0
(Note 1)

0
(Note 1)

0
(Note 1)

0
(Note 1)

0
(Note 1)

POR Stable 0 0 0 0 0

WMR Stable Stable 0 0 0 0

DMU_PEU bit Stable Stable Stable 0 Stable Stable

NIU bit Stable Stable Stable Stable 0 Stable

DBG Stable Stable Stable Stable Stable 0
Chapter 12 Reset Unit Specification 12-21

FPRS, TICK_CMPR, VA_WATCHPOINT, I/D/L2 tags and data, L2 directory,
iTLB/DTLB, Sparc Error Status, Sparc Error Address, L2 Error Status, L2 Error
Address, MCU Error Status, MCU Error Address, and all IO Error registers.

12.4.1 Venn Diagram
Rectangles in FIGURE 12-1 represent regions of the chip affected by each kind of reset.
For example, POR resets all flops in the chip, except for those reset by TRST_. Parts
of the chip affected by WMR are also reset by POR. Registers cleared by DBG_INIT
are also cleared by WMR and POR.

TABLE 12-13 Cleared Arrays

Arrays
cleared by

WMR

Arrays cleared by
BISI on WMR

Flops cleared on WMR Flops cleared on
DBG_INIT [change to

DBG]

L2 Dcdir
Icdir

VUAD-UA,
VUAD-VD

All state machines.
(CSRs not yet defined.)

None.

SIU None. None. All. (No error logs in SIU.) None.

DMU, PEU None. None. All state machines. Some CSRs will be cleared,
and some not.

None.

MCU None. None. All except:
MCU Error Status
MCU Error Address

Refresh, scrub, &
arbiter (1 bit now)
state machines.

NCU None. None. All except: ASI_CORE_AVAILABLE
ASI_CORE_ENABLE
ASI_CORE_ENABLE_STATUS
ASI_XIR_STEERING

None.
12-22 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 12-1 Venn Diagram

12.4.2 Reset Signals Asserted for each Kind of Reset

TRST_ DBG_I
NIT

rst_dbg
init

NIU
rst_niu_

WMR rst_wmr_

POR rst_por_

integer registers, floating-point registers, TBA, Y, PIL, CWP, CCR, ASI,
CANSAVE, CANRESTORE, OTHERWIN, CLEANWIN, WSTATE, FSR,

FPRS, TICK_CMPR, VA_WATCHPOINT, I/D/L2 tags and data, L2 directory,
iTLB/DTLB, Sparc Error Status, Sparc Error Address, L2 Error Status, L2 Error

Address, MCU Error Status, MCU Error Address, and all IO Error registers
Chapter 12 Reset Unit Specification 12-23

FIGURE 12-2 Reset Signals

The Reset Unit resets the PLL within the CCU with rst_ccu_pll_ when it is locking.

CLU
CTM

16x60

Data Cmd

16x60x2

CRM

Cmd

PMU PRM

4x79

PSB

32x44
+16x6

P
I
O

D
M
A

M
S
I

P
I
O

D
M
A

Cmd Rcrd

2KB
16x

19B
2KB

RCM

4x93

CMU

CTX
TCM

4x80

Data

4x60

Ingr Pkt Rcrd Egr Pkt Rcrd

32x(48+5+11+5)
16x(48+4)

MMU TDB

VTB PTB

4KB

Schd Rcrd

TSB
32x48

RMUSRM

LRM

TSB

IMU INT Out Rcrd LRM Rcrd

8x116(FF)

6x124(FF)
RRM

6x70(FF)

Retired Rcrd

DIM DEMTMU

DIM Rcrd RRM Rcrd

4x128(FF)5x126(FF)

PEC Rcrd

Align

PIO
DMA/
INT

Unsup./
Fault

MSI Data

INT In Rcrd

2x13112x17

Mondo Req

INT
Ack/Nack

SRM Rcrd

6x123(FF)

DMC

PEC Rcrd
12-24 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

(The PLL calls this signal pll_arst_l.) Thus, the Reset Unit resets it during POR1, and
also during WMR1 if ccu_rst_change == 1. Once the PLL has locked to its new
frequency, there is no need to reset it again during WMR2.

The Reset Unit asserts rst_ccu_ to reset the CCU only during POR1. This is one of
the main differences between POR1 and POR2. It never resets the CCU during either
WMR1 or WMR2.

Each of the next six signals is one of a pair, with a por version and a wmr version.
Notice that in FIGURE 12-2, if the Reset Unit asserts the por member, it will also assert
the wmr version, so that during POR, it resets both the WMR-exposed and the
WMR-protected flops of a cluster.

The signals rst_l2_por_ and rst_l2_wmr_ differ from the others in that the L2 cache
clusters are reset by flush reset, in which these two signals play no part. Rather, they
are inputs to L2 cache intellectual property which had been reset by synchronous
reset, and these two inputs remain.

The Reset Unit will reset the MAC, rst_niu_mac_, during POR1 and POR2. It will
also reset it during WMR1 and WMR2 if ccu_rst_change == 1, but software can
suppress this last event by setting to one the MAC_PROTECT bit in the SSYS_RESET
register. FIGURE 12-2 shows two waveforms for rst_niu_mac_, one for
MAC_PROTECT == 0, and another for MAC_PROTECT == 1. When the Reset Unit
resets the MAC during POR1, it continues to assert rst_niu_mac_ for NIU_TIME
after the TCU has deasserted the Asic clk_stop signals.

During Subsystem Reset, the Reset Unit will treat the NIU as if it were performing a
Warm Reset when ccu_rst_change == 1. Thus it will reset the MAC by asserting
rst_niu_mac_, by default. Software can suppress this by setting to one the
MAC_PROTECT bit in the SSYS_RESET register.

To keep the link from going down while we apply reset to the NIU, software should
do the following:

1. Program MAC tx_enable and rx_enable to zero. MAC will do a graceful shut-
down, meaning it will stop transactions at a packet boundary.

2. Wait for some time to let the NIU enter a quiescent state.

3. Set to one the MAC_PROTECT bit and issue an NIU Subsystem Reset.

The Reset Unit will reset the other three NIU blocks, RTX, TDS, and RDP, by
asserting rst_niu_wmr_ during POR, WMR, and NIU Subsystem Reset.

If rst_l2_wmr_ resets a flip-flop, then WMR will clear it, as will POR.
Chapter 12 Reset Unit Specification 12-25

12.4.3 POR Clears the Valid Bits in the L2T Directory of
L1 Tags CAM
To guarantee coherency and correct functionality, initialize the following before
enabling the L2 cache:

BISI or ASIs are used to initialize the tag array with good parity.

BISI or ASIs are used to initialize the VUAD arrays by clearing all the valid bits.

Once we enable the L2 cache, it will generate parity for each directory entry written
and check it when it reads it out, including the valid bit. However, directory hits are
independent of parity. If there's a hit in a directory CAM, it sends a packet across the
crossbar, even with the L2 cache disabled. To prevent such spurious hits and packets
upon power-up, a signal at the time of Power-On Reset immediately clears all the
directory valid bits. This leaves the parity bits uninitialized, but parity will be set
later, by BIST, by ASIs, or by the L2 cache in operation after it is enabled. Should the
L2 cache detect a parity error at any time, it logs the event and issues an interrupt.

L2 needs to be informed of three things:

1. L2 lines are invalid.

2. L1 lines are invalid (directory in L2).

3. L2 tag array parity and valid bits are cleared.

L2 lines are invalidated with BIST or BISI instructions issued to VUAD array.

L1 lines are invalidated using immediate reset. This is straightforward. There is
already logic in the CAM which resets the valid bit when the corresponding entry is
a hit. Hence this clearing of the valid bit is just a logic OR of the immediate reset
input and the valid bit reset logic in the currently existing logic.

libs/n2sram/cams/
 n2_com_cm_64x64_cust_l/
 n2_com_cm_64x64_cust/rtl/
 n2_com_cm_64x64_cust.sv:

TABLE 12-14 Initialize Arrays

Structure Initialize Approximate size

tag array parity bits 28 kilobyte * 8

VUAD array valid bits 140 bits * 32 * 8

directory CAM valid bits 15 bits * 32 * 16 * 2

data array no initialization 500 kilobyte * 8
12-26 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

 cam_hit0[63] = (wr_data[12:0]== addr_array_63[12:0]);
 cam_hit1[63] = ((wr_data[13]== addr_array_4[63]) | force_hit);
 cam_hit [63] = (cam_hit0[63] & cam_hit1[63]) & valid_bit[63];

The above mechanism prevents spurious packets dispatched to CCX. We wish to
prevent such packet, even if the Sparc cores are all parked, because L2 will retry.

BIST or BISI sets the L2 tag array with good parity and valid bits.

The L2 directories are in l2t. The Reset Unit has to assert the clear pin (rst_l2_por_?)
for 1 or 2 clock cycles. The clocks have to be running.

Each SRAM has a register at its input that is scanned and clocked at the rising edge
of the clock. It is followed by a latch that is not scanned and clocked at the falling
edge of the clock. The latch needs a clock edge to reset. The Reset Unit asserts
rst_l2_por_ to reset the latches.

/l2sat_top/cpu/l2t0/ dc_row0/panel0 /array/valid_bit[63:0]
/l2sat_top/cpu/l2t7/ ic_row2/panel3
/array/valid_bit[63:0]
/l2sat_top/cpu/l2t[bank#]/[cache#]c_row[row#]
/panel[panel#]/array/valid_bit[63:0]

L2 initializations:
During POR_:

8 banks data cache, instruction cache 2 rows 4 panels

l2t[bank#] [cache#]c_ _row[row#] panel[panel#]

0 bank# 7 dc cache# ic 0 row# 2 0 panel# 3

l2t0 dc_ row0 panel0

l2t1 ic_ row2 panel1

l2t2 panel2

l2t3 panel3

l2t4

l2t5

l2t6

l2t7
Chapter 12 Reset Unit Specification 12-27

1) The directories should be initialized before L2 cache is enabled to guarantee
coherency and correct functionality. The directory valid bits are cleared (flash clear)
during POR_ [rst_l2_por_].

=> When the valid bits are cleared (not valid) then the entries are don’t-care. Hence,
the parity bits does not need to be initialized to good parity.

**Clearing valid bits in the directory informs the L2 cache that there are no valid
lines in L1.**

BISI or ASI's are used to initialize:

1. The VUAD arrays by clearing all the VUAD bits and ecc associated with it.
This informs L2 cache that there are no valid lines in L2.

2. The tag array with good parity. This eliminates the possibility of any error cases
from happening. (False/true hits and misses)

3. The data array is initialized to good ecc+clean data eliminate any kind of false
error detection.

Reverse directories valid bits will be clear up by synchronous rst_l2_por_. This
ensures no pointers to L1 lines. L2 valid bits in VUAD array are reset by flush reset
only. L2 LRU initialization is achieved by using rst_l2_por_ to set the all LRU entries
to way 0.

In summary L2 uses a combination of flush reset and synchronous reset.

Before a core is turned off, all lines in the caches need to be cleared. If core enable or
bank enable status is changed, then L1 and L2 caches need to be flushed by running
BISI. If they are not changed, then you do not have to run BISI.

TABLE 12-15 shows the cache lines in Table 13-17, “CPU State After Reset and in
RED_state”, on page 179 of the OpenSPARC T2 Programmer's Reference Manual,
Revision 1.2, April 3, 2006:

TABLE 12-15 CPU State after Reset

Structure that holds state POR WMR

I/D cache tags All invalid Unchanged if BISI not run, else
invalid

L2 tags and data Unknown

L2 directory All invalid
12-28 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

12.5 OpenSPARC T2 is a System On a Chip

12.5.1 System On a Board
FIGURE 12-3 shows a possible configuration for a Jalapeno or a OpenSPARC T1
processor in a system on a board. An external NorthBridge chip such as Tomatillo
supplies the processor with J_POR_L and J_RST_L.
Chapter 12 Reset Unit Specification 12-29

FIGURE 12-3 System On a Board

12.5.2 System On a Chip
FIGURE 12-4 shows the external reset connections for a OpenSPARC T2 system on a
chip. The N-One initiative says there will be a service processor for any platform.
"Addressable power devices that allow for software-based powering up or down of
any device in the data center."

South
Bridge

sys_watchdog
BUTTON_XIR_L

North
Bridge:
Tomatillo

PB_RST_L

Processor:
Jalapeno or
OpenSPARC T1

PCI_RESET_L

POWER_GOOD

POWER_GOOD

J_POR_L

J_RST_LXTRNL_RST_L

PB_RST_L
12-30 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 12-4 System On a Chip

12.5.3 Serial System Interface, SSI
"The Serial System Interface (SSI) is defined to allow microprocessors to access
peripherals in a low-pin-count fashion. The OpenSPARC T2 chip will not directly
interface to peripherals but instead will provide a interface that can be easily
converted to peripheral protocols by an external Programmable Logic Device (PLD).
Isolating the OpenSPARC T2 chip from these peripherals allows the devices to use
higher voltage signalling and provides a mechanism for protocol conversion.

"... OpenSPARC T2 will always be the master of the bus."

"Addresses within the SSI address range (0xFF_F000_0000 to 0xFF_FFFF_FFFF) are
issued to the off-chip SSI interface bus. The only transactions that are supported
directly to the SSI interface are:

South
Bridge

sys_watchdog

OpenSPARC
T2

FPGA

System
Processor

PROM

SSI

POWER_GOOD

BUTTON_XIR_L

PB_RST_L

PWRON_RST_L

TRST_L

EXT_INT_L

PCI_EXPRESS_RESET_
Chapter 12 Reset Unit Specification 12-31

1. 1, 2, 4, 8 Byte aligned Reads

1. 1, 2, 4, 8 Byte aligned Writes

"SSI generates interrupts for two reasons: either the EXT_INT_L pin was asserted, or
an error was detected. The external interrupt pin is intended to be used by the
FPGA, and has NO ordering protection, meaning when EXT_INT_L is asserted, an
interrupt is issued to the IOB, without checking any transactions in flight. The
interrupt is delivered to the IOB using the SSI device ID, i.e. (device ID == 2)."

"Current implementation of the SSI interface for N2 has two issues:

1. "During reset (power_on or warm or debug), the SSI_SCK and SSI_MOSI wiggle
over time and then settle to zero during flush. (SSI_SCK and SSI_MOSI are driven
by NCU which gets flush reset). This causes the SSI CLK PLL in the FPGA in the
system to see spurious transactions on SSI_MOSI and also an unstable SSI_SCK,
eventually followed by the SSI_SCK to go to zero for several microsecs. Since the
FPGA uses the SSI_SCK as one if its ref clocks, it loses lock with the SSI_SCK.

2. "When the SSI_SCK starts to run again after the flush, N2 sends out the first boot
fetch after only a few cycles from the time of the unparking of the threads. This
does not provide the FPGA enough time to lock against the SSI_SCK and hence
the FPGA would not be able to service the request properly. Based on the
datasheet from Xilinx, the FPGA PLL would require around 3 msec of time for the
PLL to relock against the SSI_SCK.

"To solve these two issues, it has been agreed upon amongst system folks and N2
design team that N2 needs to indicate to the FPGA on a pin when it should ignore
the SSI_SCK and SSI_MOSI outputs from N2 during reset, and instead hold the
FPGA PLL in reset. The Reset unit would assert this new signal called SSI_SYNC_L
on power-on, and keep asserting it until it unparks the threads to NCU. Then it
would deassert it, indicating to the FPGA that it can deassert the reset to its SSI_CLK
PLL and start locking against SSI_SCK coming from N2. By this point N2 would be
driving the SSI_SCK properly and the PLL would get around 5 to 6 msec to lock
before NCU would assert the first SSI_MOSI.

"Since we are short of functional pins, it has been agreed upon that the FATAL_ERR
pin would be renamed to this SSI_SYNC_L pin. The Service Processor would extract
fatal error information from the chip by reading on-chip registers if required."

Specific timing requirements for rst_mio_ssi_sync_l:

Deassert on power-up.

Assert after flush reset, but before rst_ncu_unpark_thread.

Deassert before flush reset of NCU.
12-32 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

12.5.4 Connections between RST and Other Clusters
FIGURE 12-5 shows some connections between RST and other clusters. See the Reset
Unit Verification Test Plan for a more complete depiction.
Chapter 12 Reset Unit Specification 12-33

FIGURE 12-5 Connections between RST and Other Clusters

12.6 Registers

12.6.1 (0x89-0000-0808) Reset Generation Register,
RESET_GEN

RS T

TCU

NCU

CCU

rst_ncu_unpark_thread

PWRON_RST_L

BUTTON_XIR_L

PB_RST_L rst_wmr_protect

NIU
(IP)rst_niu_

PEU
(IP)rst_dmu_peu_por_

TRST_ scan_in_clock

scan_out_clock

scan_in_data

ccu_freq_chgd

DMU
(IP)

rst_l2b_l2t_

rst_ncu_xir_

ncu_rst_xir_done

UCB
MCUrst_mcu_selfrsh

rst_dmu_peu_wmr_
12-34 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

This register allows software to generate resets. It is a copy of the Fire Reset
Generation register, Reset_Gen, with one exception. Since the service processor
drives PWRON_RST_L, the OpenSPARC T2 RESET_GEN register does not
implement the POR_GEN bit that Fire has in bit position 2.

Write 1 to only one of the bits in this register at a time.

Note that the Fire Programmer’s Reference Manual calls Soft Reset a Power-On Reset.
Section 1.4.2, entitled “Power-On Reset (Soft Reset)”, says, “When power is already
on, if the 'PB_RST_L' input to Fire gets asserted due to a push-button trigger in the
system, Fire initiates a soft reset... When power is already stable and the processor
detects a transition on its J_RST_L input pins, it takes a 'Soft Reset'. It is simply
called a Power-On Reset in this document. It is similar to a 'Hard Reset' except that
the on-chip memory controller continues to perform refresh cycles in order to
preserve main memory contents, and clock ratio is unaffected.” Thus, the Fire
Programmer’s Reference Manual calls bit 0 of Reset_Gen “PO_RST”. This can cause
confusion when speaking about both Fire in a OpenSPARC T1 or OpenSPARC T2
context.

The Fire Programmer’s Reference Manual appears internally inconsistent, however.
Section 1.4.5 is entitled “POR & Warm Reset Initialization”, implying that POR and
Warm Reset are two, different things.Also, the Fire Power-On, Reset and BIST
document says, “18. OBP checks Reset_Source Register. a. if bit3 (Power_On)...”But
the Fire Programmer’s Reference Manual calls bit 3 “PU, Power_up (Low to High
transition on Power_Good).” It's bit 0 that the Fire Programmer’s Reference Manual
calls “PO_RST”. Reset Source Register, RESET_SOURCE

This register allows software to identify the origin of a reset. It is a copy of the Fire
Reset_Source register.

TABLE 12-16 Reset Generation Register

Field Bit Position Initial Value R/W Description

RSVD0 63:4 0 RO Reserved

DBR_GEN 3 0 RW Write 1 to cause a Debug Reset. This is the same as
Warm Reset, except that PCI Express and NIU keep
running. Enters Fig. 7 at WMR2. Set by software,
cleared at completion of DBR.

RSVD1 2 0 RW Reserved. (Was POR_GEN on fire, indicating that
software wrote 1 to cause a Power-On Reset.)

XIR_GEN 1 0 RW Write 1 to cause an eXternally-Initiated Reset. Set by
software, cleared at completion of XIR.

WMR_GEN 0 0 RW Write 1 to cause a Warm Reset. Enters Fig. 7 at WMR1.
Set by software, cleared at completion of WMR.
Chapter 12 Reset Unit Specification 12-35

12.6.2 (0x89-0000-0818) Reset Source Register,
RESET_SOURCE
This register allows software to identify the origin of a reset. It is a copy of the Fire
Reset Source register.

RW1C – Read, Write 1 to Clear: Writing a 0 to a bit in this field has no effect, but
writing a 1 to a bit in this field will cause that bit to be set to 0.

TABLE 12-17 Reset Source Register

Field Bit
Position

Initial
Value

R/W Description

RSVD0 63:16 0 RO Reserved

L2T7_FATAL 15 0 RW1C The L2T7 cache detected a fatal error, causing a WMR.

L2T6_FATAL 14 0 RW1C The L2T6 cache detected a fatal error, causing a WMR.

L2T5_FATAL 13 0 RW1C The L2T5 cache detected a fatal error, causing a WMR.

L2T4_FATAL 12 0 RW1C The L2T4 cache detected a fatal error, causing a WMR.

L2T3_FATAL 11 0 RW1C The L2T3 cache detected a fatal error, causing a WMR.

L2T2_FATAL 10 0 RW1C The L2T2 cache detected a fatal error, causing a WMR.

L2T1_FATAL 9 0 RW1C The L2T1 cache detected a fatal error, causing a WMR.

L2T0_FATAL 8 0 RW1C The L2T0 cache detected a fatal error, causing a WMR.

NCU_FATAL 7 0 RW1C One of the clusters feeding the NCU detected a fatal error,
causing a WMR.

PB_XIR 6 0 RW1C An external agent asserted the BUTTON_XIR_ input pin.

PB_RST 5 0 RW1C WMR: An external agent asserted the PB_RST_L input pin,
causing a WMR.

PWRON_RST 4 1 RW1C The System Processor asserted the PWRON_RST_L input pin.

DBR_GEN 3 0 RW1C Software wrote 1 to the DBR_GEN bit of the RESET_GEN
register to cause a Warm Reset.

RSVD1 2 0 RW1C Reserved. (Was POR_GEN on Fire, indicating that software
wrote 1 to the POR_GEN bit of the RESET_GEN register to
cause a Power-On Reset.

XIR_GEN 1 0 RW1C Software wrote 1 to the XIR_GEN bit of the RESET_GEN
register to cause an eXternally-Initiated Reset.

WMR_GEN 0 0 RW1C Software wrote 1 to the WMR_GEN bit of the RESET_GEN
register to cause a Warm Reset.
12-36 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

The Reset Unit only recognizes an eXternally-Initiated Reset if it is processing no
other reset, since XIR has the lowest priority of the resets that the Reset Unit
handles. Thus, if an external agent asserts the BUTTON_XIR_L input pin, the Reset
Unit will set the PB_XIR bit of the RESET_SOURCE register only when it completes
any earlier reset. If software writes to the XIR_GEN bit of the RESET_GEN register,
when the Reset Unit starts to process it, it will set the XIR_GEN bit of
RESET_SOURCE.

The Reset Unit will clear a bit in the RESET_GEN register upon completion of the
corresponding reset. In the RESET_SOURCE register, by contrast, software can clear
a bit, but not the Reset Unit. It can only set a bit.

If software sets the XIR_GEN bit of the RESET_GEN register, and any other reset
occurs while the Reset Unit is waiting for the NCU to finish processing the XIR, the
Reset Unit will leave the XIR_GEN bit set.

12.6.3 (0x89-0000-0838) Subsystem Reset Register,
SSYS_RESET
This register allows software to reset a particular subsystem.

For the NIU, the minimum reset width needs to cover TI serdes PLL lock up time
(which is 3 s)plus some extra time for synchronous reset to propagate through
various clock domain. A 10 us reset with should be good enough. (The NIU also has
registers within it that allow software to reset portions of the NIU.)

TABLE 12-18 Subsystem Reset Register

Field Bit Position Initial Value R/W Description

RSVD0 63:7 0 RO Reserved

MAC_
PROTECT

6 0 R/W Set to one to suppress the assertion of rst_niu_mac_ that
the Reset Unit would normally generate during a WMR
with ccu_rst_change==1.

MCU_
SELFRSH

5 0 R/W Set to one to have the MCUs put the DRAM info self-
refresh. (Drives clspine_mcu_selfrsh to the MCU.)

RSVD1(Was:
MCU_FBD_PRO
TECT)

4 0 R/W Reserved (Was: When 0, the FBDIMM interface logic in
MCU will get reset as usual on Warm Reset and Debug
Reset. When 1, this FBDIMM interface logic will not be
reset on Warm Reset and Debug Reset and will continue
functioning as normal.) (Now use self refresh.)
Chapter 12 Reset Unit Specification 12-37

12.6.4 (0x89-0000-0810) Reset Status Register,
RSET_STAT
“In order to enable or disable a functional unit's clocks, a number of L1 clock
headers must be fed from the same enable signal. N2 SPG may use a “rolling
enable”, where possible, which follows the pipeline structure within the unit, which
helps with I/dt noise on the power supply”.

“Reset Status Register, RSET_STAT

“RegisterBaseAddress 1 IOBMAN – 0x98-0000-0000

“The chip reset status, shown in TABLE 12-19 is maintained for all chip-wide reset and
power management commands. The reset source bits in this register are writable to
allow software to clear them after the chip reset sequence is complete, in order for
thread warm resets to be distinguished from chip resets. HW will copy the current
reset status into a shadow status whenever a reset occurs."

“Register64 34 Chip Reset Status Register – RSET_STAT (0x89_0000_0810)”

RSVD2 3:2 0 RO Reserved

DMU_PEU 1 0 RW Write 1 to send a warm reset to the PCI-Express
subsystem (DMU and PEU), both ingress and egress, for
at least 15 s.Cleared by hardware at completion.

NIU 0 0 RW Write 1 to send a warm reset to the NIU for at least 4 s.
Cleared by hardware at completion.

TABLE 12-19 Reset Status Register

Field Bit Position Initial Value R/W Description

RSVD0 63:12 0 RO Reserved

FREQ_S 11 0 R/W Shadow status of FREQ

POR_S 10 0 R/W Shadow status of POR

WMR_S 9 0 R/W Shadow status of WMR

RSVD1 8 - 5 0 RO Reserved

RSVD2 4 0 RO Reserved

TABLE 12-18 Subsystem Reset Register
12-38 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

The shadow versions of the bits only have meaning after a WMR, since by definition,
a reset the system controller applies after the machine has been running is a WMR.
Since the system controller only applies a POR upon applying power, the shadow
versions of the bits then will always be 0.

12.6.5 (0x89-0000-0820) Fatal Error Enable Register,
RESET_FEE
Each bit of this register allows the l2tn_rst_fatal_error signal, 0 n 7, from one of the
l2t banks, to cause a Warm Reset. If the respective Fatal Error Enable bit is set, and
the corresponding error type is asserted, the Reset Unit will cause a Warm Reset.
(The NCU contains a register named Fatal Error Enable, FEE. That register enables a
fatal error to cause NCU to assert the signal ncu_rst_fatal_error to the Reset Unit.)

FREQ 3 0 R/W Set to one if the reset is a warm reset that changed
frequency.

POR 2 1 R/W Set to one if the reset is from PWRON_RST_L pin.

WMR 1 0 R/W Set to one if the reset is from:
(1) the PB_RST_L input pin,
(2) the WMR_GEN bit of the RESET_GEN register,
(3) from a Fatal Error, or
(4) the DBR_GEN bit of the RESET_GEN register.
Enter Fig. 7 at WMR1.

RSVD2 0 0 RO Reserved

TABLE 12-20 Fatal Error Enable Register

Field Bit
Position

Initial
Value

R/W Description

RSVD0 63:16 0 RO Reserved

L2T7_FEE 15 0 R/W The L2T7 cache detected a fatal error, causing a WMR.

L2T6_FEE 14 0 R/W The L2T6 cache detected a fatal error, causing a WMR.

L2T5_FEE 13 0 R/W The L2T5 cache detected a fatal error, causing a WMR.

L2T4_FEE 12 0 R/W The L2T4 cache detected a fatal error, causing a WMR.

L2T3_FEE 11 0 R/W The L2T3 cache detected a fatal error, causing a WMR.

L2T2_FEE 10 0 R/W The L2T2 cache detected a fatal error, causing a WMR.

TABLE 12-19 Reset Status Register
Chapter 12 Reset Unit Specification 12-39

12.6.6 (0x89-0000-0860) Clock Control Unit Time
Register, CCU_TIME

The value in this register determines the length of two intervals.

1. CCU_TIME determines the interval from when the Reset Unit deasserts rst_ccu_
until it deasserts cluster_arst_l and rst_tcu_clk_stop. This interval must be long
enough for the CCU to have begun generating the sync_en pulses. (Historical
note: At some point in its operation, the CCU starts to count to 24 and then
asserts an internal signal named ccu_rst_sync_stable. The sync_en pulses are
stable well before the CCU asserts ccu_rst_sync_stable. The Reset Unit cannot
make use of ccu_rst_sync_stable during this interval, because at first the CCU has
not yet begun to drive sync_en pulses, so the Reset Unit cannot observe it.)

2. CCU_TIME also determines the interval from when the Reset Unit deasserts
cluster_arst_l and rst_tcu_clk_stop, until it asserts rst_tcu_flush_stop_req. The
TCU requires some time with its clocks running until it expects to receive
rst_tcu_flush_stop_req.

The default value is 32 sys_clk cycles.

L2T1_FEE 9 0 R/W The L2T1 cache detected a fatal error, causing a WMR.

L2T0_FEE 8 0 R/W The L2T0 cache detected a fatal error, causing a WMR.

RSVD1 7:0 0 RO Reserved

TABLE 12-21 Clock Control Unit Time Register

Field Bit Position Initial Value R/W Description

RSVD 63:16 0 RO Reserved

CCU_TIME 15:0 3210 R/W CCU_TIME

TABLE 12-20 Fatal Error Enable Register
12-40 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

12.6.7 (0x89-0000-0870) Lock Time Register, LOCK_TIME

We need the reset sequence to be repeatable and deterministic in time for the tester
function. Thus feedback from PPL locks and the E-Fuse Cluster is not desirable. It is
better to have a predetermined time configured by software. Also, the pre-WMR
boot code may wish to perform Warm Reset with the same PLL config. register
values, obviating the need to wait for the l2clk PLL to lock.

The value in this register determines the length of time that the Reset Unit asserts
rst_wmr_ while various phase-locked loops lock. The Reset Unit uses this register
twice in the Power-On Reset Sequence:

1. Starting when the system controller deasserts PWRON_RST_L. During this time,
the E-Fuse Cluster scans the E-Fuse Array, and the ddr_pll and NIU PLLs lock.
[E-Fuse now occurs later in the sequence.]

2. Starting when the pre-WMR boot code writes a 1 into the CHIP_RESET register.
During this time, the above two PLLs lock, and potentially the l2clk PLL locks as
well.

Since the PLL config. register might change during WMR, the LOCK_TIME register
cannot use l2clk. It must use the system clock.

Reset causes this register to take on the longest time needed, assuming the highest
planned reference clock frequency. The longest time needed is the maximum of the
time required for the following:

1. 10 sto lock the NIU PLL.

2. 25 sto lock the l2clk PLL.

“System clock is fed into the ref_clk of the cmp PLL. Internal to the PLL, the clock is
multiplied up to the VCO frequency of 3 GHz.” The worst case in this context is the
highest frequency contemplated for sys_clk, 200 MHz, with a period of 5 ns.

lock time in cycles= 25 s 5 ns/cycle = 5,000 cycles

Thus, the initial value for this register is 5k = 5,120.

TABLE 12-22 Lock Time Register

Field Bit Position Initial Value R/W Description

RSVD 63:16 0 RO Reserved

LOCK_TIME 15:0 512010 R/W LOCK_TIME
Chapter 12 Reset Unit Specification 12-41

12.6.8 (0x89-0000-0880) Propagation Time Register,
PROP_TIME

This register indicates how long it takes for the longest scan chain to flush. After the
Reset Unit receives tcu_rst_flush_init_ack, it will wait PROP_TIME pll_sys_clk clock
cycles before asserting rst_tcu_flush_stop_req.

Reset causes this register to take on the longest time needed, assuming the highest
planned reference clock frequency. The longest time needed is the maximum of the
time required for the following:

1. The scan chain to flush.

2. The MAC requires at least 4,000 ns. See Section 4.10, "NIU".

One way to estimate item (1) is to derive a back-of-the-envelope guess for the delay
for each stage of the flush reset. We do this by summing up:

(1) the mid-table delay value of si-to-siclk setup, and

(2) the soclk-to-so clock-to-q delay,

which gives 250 ps. We must consider this estimate within certain limitations, as
follows:

1. The actual flow through delay arc (si to so), when both latch stages are open, will
be different. How much, we don't know. The setup number reflects a failure point
number which doesn't necessarily relate to actual delay path condition during
flush.

2. Scan paths are a weird mix of back-to-back flops and repeated interconnects. We
might guess that the portion of gate-dominated delay is quite high though. We
might suppose an _average_ total interconnect (wire + repeater) delay of 30ps.
This could be way off.

The physical group will eventually use static timing analysis to more rigorously
verify the overall delay. For the moment, the above considerations provide an initial
average number as a starting point.

TABLE 12-23 Propagation Time register

Field Bit Position Initial Value R/W Description

RSVD 63:16 0 RO Reserved

PROP_TIME 15:0 307210 R/W PROP_TIME
12-42 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

Based on an estimate of 250 ps per stage, the time for flush reset to propagate
through any one scan chain would be the number of flops in the chain times 250 ps.
OpenSPARC T2 has approximately 1,000,000 flops in 32 scan chains. With reasonable
balancing, we expect the longest chain will be 45,000 to 50,000 flops long.

Flush reset time= 50,000 flops 250 ps/flop
= 12,500 ns
= 12.5 s

Flush reset time in cycles= 12,500 ns 5 ns/cycle
= 2500 cycles

Thus, the initial value for this register is 3k = 3,072, providing a 22 percent margin
over the value needed for the longest chain.

Since the physical team provided this initial estimate, the library team has provided
timing information, as follows:

/import/n2-
librel/integration/release/rel_1.4/lib/c021a/cl_sc1/compiled/cl_sc1
.SynT
 pin(so) {
 direction : output;
 connection_class : universal;
 timing() {
 related_pin : "si";
 timing_sense : positive_unate;
 cell_fall(table6_7) {

index_1 (" 0.009073, 0.018110, 0.027590, 0.049080, 0.123400,
0.245500");

index_2 (" 0.000500, 0.001000, 0.001500, 0.003500, 0.005000,
0.015000, 0.030000");
 values (\
"0.145700,0.148100,0.150300,0.158000,0.163200,0.196900,0.247000",\
"0.147500,0.149900,0.152100,0.159800,0.165100,0.198700,0.248900",\
"0.149600,0.152000,0.154200,0.161900,0.167200,0.200800,0.251000",\
"0.154200,0.156600,0.158800,0.166500,0.171800,0.205400,0.255600",\
"0.168900,0.171300,0.173500,0.181200,0.186500,0.220100,0.270300",\
"0.191900,0.194400,0.196500,0.204300,0.209600,0.243200,0.293300");
 }
 cell_rise(table6_7)

index_1 (" 0.008461, 0.017230, 0.026730, 0.048000, 0.123300,
0.249000");

index_2 (" 0.000500, 0.001000, 0.001500, 0.003500, 0.005000,
0.015000, 0.030000");
 values (\
"0.138800,0.141600,0.144100,0.152800,0.158700,0.196800,0.253600",\
"0.141600,0.144300,0.146800,0.155500,0.161400,0.199500,0.256300",\
"0.144700,0.147400,0.149900,0.158600,0.164500,0.202600,0.259400",\
Chapter 12 Reset Unit Specification 12-43

"0.151200,0.153900,0.156400,0.165100,0.171100,0.209100,0.265900",\
"0.169000,0.171700,0.174200,0.182900,0.188800,0.226900,0.283700",\
"0.192200,0.195000,0.197500,0.206200,0.212200,0.250200,0.307000");
 }

If we take the entries in the middle column and the middle rows of the cell_fall table
and the cell_rise table, we obtain the following values, in nanoseconds:
0.161900
0.166500
0.158600
0.165100

If we now retain our original estimate of 250 ps per stage, we provide a 50 percent
margin over the slowest of these values, in addition to the 22 percent margin we
already provided.

12.6.9 (0x89-0000-0890) NIU Time Register, NIU_TIME

This register indicates how long it takes for initial values to shift throughout the
NIU.

NIU time= 8 s

NIU time in cycles= 8,000 ns 5 ns/cycle
= 1,600 cycles

Thus, the initial value for this register is 1.5k + 64 = 1,600.

Note: The Reset Unit must assert rst_mio_pex_reset_l for 15 s,so before Warm Reset,
software must manipulate LOCK_TIME, PROP_TIME, and NIU_TIME to provide at
least this duration of this signal. For example, the Subsystem Reset of the DMU-PEU
makes use of NIU_TIME twice (15 8 + 8 s).The Subsystem Reset of the NIU also
uses NIU_TIME (4 8 s).

TABLE 12-24 NIU Time Register

Field Bit Position Initial Value R/W Description

RSVD 63:16 0 RO Reserved

NIU_TIME 15:0 160010 R/W NIU_TIME
12-44 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

12.7 Power-On Reset Sequence Overview
This section summarizes what the following sections lay out in detail.

TABLE 12-25 shows the major types OpenSPARC T2 structures that hold state (see
Section 3.4). It also shows, after each stage of the Power-On Reset sequence, whether
each structure:

■ holds an unknown value, "X",

■ has been reset to 0,

■ has been initialized from the E-Fuse Unit, "efu",

■ has taken on a value, either 0 or 1, that is deterministic and repeatable, "det".

The only actions required by the system controller are to:

1. assert TRST_ and PWRON_RST_L,

2. start sys_clk and the DMU-PEU and NIU Serdes clocks,

3. deassert TRST_, and then

TABLE 12-25 Structures that Hold State

pwr-
good
= 0

POR
1

EFU
1

BISI
1

POR
2

EFU
2

Pre-WMR
boot code

WMR
1

BIST
2

WMR
2

Post-WMR
boot code

WMR-
protected
flops

X 0 det X 0 det det det det det det

WMR-
exposed
flops

X 0 det X 0 det det 0 det 0 det

SRAM
repair
latches

X X efu efu efu efu efu efu efu efu efu

SRAM
array core
contents

X X X 0 0 0 det det 0 0 det

core
available
flops

X 0 efu efu 0 efu efu efu efu efu efu
Chapter 12 Reset Unit Specification 12-45

4. deassert PWRON_RST_L. (Or, deassert TRST_ and PWRON_RST_L
simultaneously.)

The Reset Unit will automatically take OpenSPARC T2 through the POR1 through
the unpark_thread that fetches the pre-WMR boot code.

The typical OpenSPARC T2 powerup reset sequence is as follows:

1. On powerup of the system (shown in Figure 5 as Off-chip "pwr_good" = 0), the
system controller asserts PWRON_RST_L and RST, assisted by CCU and TCU,
asserts all other reset signals. This causes (1) the internal state of all SunV clusters
to reset, including all control registers and memory refresh state machines, (2)
causes IO outputs to reset, and (3) protects the internal tristate muxes. In
addition, as soon as the system controller applies sys_clk, the Asic clusters will
reset. The Reset Unit will hold in reset the CCU PLL during this time. The other
PLLs, in the NIU SERDES and the PEU SERDES, by contrast, will be locking to
their frequencies as soon as the system controller applies sys_clk.

2. Once power is up in the system (pwr_good = 1), the system controller then
deasserts PWRON_RST_L. The Reset Unit hold most of OpenSPARC T2 in Power-
On Reset (POR1) while the CCU PLL locks, waits while the EFuse Controller
reads out the EFuse Array (EFU1), and waits while the TCU performs BISI (BISI1).
Since the SRAM outputs are enabled during BISI, their initial, unknown state may
transfer to flip-flops that had been reset during POR1. To correct this, the Reset
Unit applies Power-On Reset a second time (POR2). The second POR resets
information in the NCU that had come from the EFuse Array, so the EFuse
Controller reads out the EFuse Array a second time (EFU2). Then the cpu fetches
reset configuration programming code from the boot PROM where configuration
registers (clock ratios, etc.) are programmed (Pre-WMR boot code). RST must
deassert all reset signals simultaneously and synchronously to their respective
clocks.

3. The boot code modifies the frequency ratio register, and then causes a Warm
Reset. The Reset Unit resets most of OpenSPARC T2 (everything except error logs)
while relocking the CCU PLL (WMR1). Then it waits while the TCU performs
BIST (BIST2), performs a second Warm Reset (WMR2), and restarts instruction
fetch of boot code running at the reprogrammed clock ratio (Post-WMR boot
code).

4. Subsequent warm resets may take place later via rst_wmr_, which do not disturb
states which are reset only by PWRON_RST_L. Any of the resets (POR, WMR, or
DBR) may be caused by a write to a RST CSR, CHIP_RESET. Warm resets may
also be generated with a system push-button.

5. After we wrote the above, we added a reset after BISI, and another after BIST.
After POR1, BISI might change some state, so POR2 resets all flops. After WMR1
comes BIST, then WMR2. Note that BISI is required before turning on the cache.
12-46 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

12.7.1 Power-On Reset Duration in a System
TABLE 12-26 sums up the duration of each step of the Power-On Reset sequence, in
which OpenSPARC T2 is in a system:

TABLE 12-26 Power-On Reset Sequence Duration

POR step Who Start End Cycles Clock
period (ns)

Duration (ns)

Strt POR
sequence

Sys
ctlr

- POWER_GOOD - - 0.00

PLL resets Sys
ctlr

POWER_GOOD Deassert
Pwron_Rst_L

- - 2,000.00

por1,
pll locks

rst Deassert
rst_ccu_pll_

Deassert rst_ccu_ LOCK_TIME = 5,000 5.000 25,000.00

sync_stable ccu Deassert rst_ccu_ ccu_rst_sync_stabl
e

5 0.714 3.57

Deassert
Asic
clk_stop

tcu ccu_rst_sync_sta
ble

tcu_rst_flush_stop
_ack

2*128 = 256 0.714 182.86

niu pll rst tcu_rst_flush_sto
p_ack

tcu_rst_flush_stop
_req

NIU_TIME = 1,600 5.000 8,000.00

5.4.8:
Deassert
SunV
clk_stop

tcu tcu_rst_flush_sto
p_req

tcu_rst_flush_stop
_ack

22*128 = 2,816 0.714 2,011.43

5.4.9: efu1 efu tcu_rst_flush_sto
p_ack

tcu_rst_efu_done
64*62 = 3,968

2.857 11,337.14

5.5: bisi1 tcu tcu_rst_efu_done tcu_bisx_done l2d:128k + l2t:8k +
l2vuad: 1k = 140,288

0.714 100,205.71

clk_stop tcu tcu_rst_flush_ini
t_req

tcu_rst_flush_init_
ack

24*128 = 3,072 0.714 2,194.29

por2 rst tcu_rst_flush_ini
t_ack

tcu_rst_flush_stop
_req

PROP_TIME = 3,000 5.000 15,000.00

5.8: Deassert
clk_stop

tcu tcu_rst_flush_sto
p_req

tcu_rst_flush_stop
_ack

24*128 = 3,072 0.714 2,194.29

5.10: efu2 efu tcu_rst_flush_sto
p_ack

tcu_rst_efu_done
64*62 = 3,968

2.857 11,337.14

5.12 ncu rst_ncu_unpark_
thread

core_running 4 2.857 11.43
Chapter 12 Reset Unit Specification 12-47

12.7.2 Power-On Reset Duration on a Tester
Second, we consider the case in which the part is on the tester, not in a system, so
there is no need for an external PLL to synchronize to the SSI.

TABLE 12-27 sums up the duration of each step of this minimal-delay Power-On Reset
sequence:

spc core_running Request from spc
to ncu

10-15 0.714 10.71

SSI pll locks ncu - - 3FFFF = 256k =
262,144

11.428 2,995,931.42

5.12 + ncu Request from spc
to ncu

Data on SSI bus 7 2.857 20.00

End POR
sequence

- - - - - 3,175,439.98

TABLE 12-27 Power-On Reset Duration on Tester

POR step Who Start End Cycles Clock
period (ns)

Duration (ns)

Strt POR
sequence

Sys
ctlr

- POWER_GOOD - - 0.00

PLL resets Sys
ctlr

POWER_GOOD Deassert
Pwron_Rst_L

- - 2,000.00

por1,
pll locks

rst Deassert
rst_ccu_pll_

Deassert rst_ccu_ LOCK_TIME = 5,000 5.000 25,000.00

sync_stable ccu Deassert rst_ccu_ ccu_rst_sync_stabl
e

5 0.714 3.57

Deassert
Asic
clk_stop

tcu ccu_rst_sync_sta
ble

tcu_rst_flush_stop
_ack

2*128 = 256 0.714 182.86

niu pll rst ccu_rst_sync_sta
ble

tcu_rst_flush_stop
_req

NIU_TIME = 1,600 5.000 8,000.00

5.4.8:
Deassert
SunV
clk_stop

tcu tcu_rst_flush_sto
p_req

tcu_rst_flush_stop
_ack

22*128 = 2,816 0.714 2,011.43

5.4.9: efu1 efu tcu_rst_flush_sto
p_ack

tcu_rst_efu_done
64*62 = 3,968

2.857 11,337.14

TABLE 12-26 Power-On Reset Sequence Duration (Continued)
12-48 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

12.7.3 Warm Reset Duration in a System
We now consider the case in which OpenSPARC T2 is in a system, and software has:

1. Configured the MBIST engines to perform MBIST, and

2. Configured the Clock Control Unit to change to a new frequency.

TABLE 12-28 sums up the duration of each step of this maximum-delay Warm Reset
sequence:

5.5: bisi1 tcu tcu_rst_efu_done tcu_bisx_done l2d:128k + l2t:8k +
l2vuad: 1k = 140,288

0.714 100,205.71

clk_stop tcu tcu_rst_flush_ini
t_req

tcu_rst_flush_init_
ack

24*128 = 3,072 0.714 2,194.29

por2 rst tcu_rst_flush_ini
t_ack

tcu_rst_flush_stop
_req

PROP_TIME = 3,000 5.000 15,000.00

5.8: Deassert
clk_stop

tcu tcu_rst_flush_sto
p_req

tcu_rst_flush_stop
_ack

24*128 = 3,072 0.714 2,194.29

5.10: efu2 efu tcu_rst_flush_sto
p_ack

tcu_rst_efu_done
64*62 = 3,968

2.857 11,337.14

5.12 ncu rst_ncu_unpark_
thread

core_running 4 2.857 11.43

spc core_running Request from spc
to ncu

10-15 0.714 10.71

SSI pll locks ncu - - 0 11.428 0.00

5.12 + ncu Request from spc
to ncu

Data on SSI bus 7 2.857 20.00

End POR
sequence

- - - - - 179,508.56

TABLE 12-28 Maximum Delay Warm Reset Sequence

WMR step Who Start End Cycles Clock
period (ns)

Duration (ns)

Start WMR
sequence

soft
ware

WMR_GEN bit tcu_rst_flush_init_
req

- - 0.00

clk_stop tcu tcu_rst_flush_ini
t_req

tcu_rst_flush_init_
ack

24*128 = 3,072 0.714 2,194.29

TABLE 12-27 Power-On Reset Duration on Tester (Continued)
Chapter 12 Reset Unit Specification 12-49

12.7.4 Warm Reset Duration on a Tester
Finally, we consider the case in which the part is on the tester, not in a system, so
there is no need for an external PLL to synchronize to the SSI. Also, software has:

1. Configured the MBIST engines to skip MBIST, and

2. Configured the Clock Control Unit to retain the same frequency.

wmr1, reset
pll

rst Assert
rst_ccu_pll_

Deassert
rst_ccu_pll_

PROP_TIME = 3,000 5.000 15,000.00

pll locks rst Deassert
rst_ccu_pll_

Deassert rst_ccu_ LOCK_TIME = 5,000 5.000 25,000.00

sync_stable ccu Deassert rst_ccu_ ccu_rst_sync_stabl
e

5 0.714 3.57

9.2: Deassert
clk_stop

tcu tcu_rst_flush_sto
p_req

tcu_rst_flush_stop
_ack

24*128 = 3,072 0.714 2,194.29

9.5:
bist2

tcu tcu_rst_efu_done tcu_bisx_done (128k + 8k +
1k)*8*21 = 23,568,384

0.714 16,834,560.00

9.6: clk_stop tcu tcu_rst_flush_ini
t_req

tcu_rst_flush_init_
ack

24*128 = 3,072 0.714 2,194.29

wmr2 rst tcu_rst_flush_ini
t_ack

tcu_rst_flush_stop
_req

PROP_TIME = 3,000 5.000 15,000.00

9.8: Deassert
clk_stop

tcu tcu_rst_flush_sto
p_req

tcu_rst_flush_stop
_ack

24*128 = 3,072 0.714 2,194.29

9.12 ncu rst_ncu_unpark_
thread

core_running 4 2.857 11.43

spc core_running Request from spc
to ncu

10-15 0.714 10.71

SSI PLL
locks

ncu - - 3FFFF = 256k =
262,144

11.428 2,995,931.42

5.12 + ncu Request from spc
to ncu

Data on SSI bus 7 2.857 20.00

End WMR
sequence

- - - - - 19,894,314.27

TABLE 12-28 Maximum Delay Warm Reset Sequence
12-50 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

TABLE 12-29 sums up the duration of each step of this minimal-delay Warm Reset
sequence:

TABLE 12-29 Minimum Warm Reset Duration

WMR step Who Start End Cycles Clock
period (ns)

Duration (ns)

Start WMR
sequence

soft
ware

WMR_GEN bit tcu_rst_flush_init_
req

- - 0.00

clk_stop tcu tcu_rst_flush_ini
t_req

tcu_rst_flush_init_
ack

24*128 = 3,072 0.714 2,194.29

wmr1, reset
pll

rst Assert
rst_ccu_pll_

Deassert
rst_ccu_pll_

PROP_TIME = 3,000 5.000 15,000.00

pll locks rst Deassert
rst_ccu_pll_

Deassert rst_ccu_ LOCK_TIME = 0 5.000 0.00

sync_stable ccu Deassert rst_ccu_ ccu_rst_sync_stabl
e

5 0.714 3.57

9.2: Deassert
clk_stop

tcu tcu_rst_flush_sto
p_req

tcu_rst_flush_stop
_ack

24*128 = 3,072 0.714 2,194.29

9.5:
bist2

tcu tcu_rst_efu_done tcu_bisx_done 0 0.714 0.00

9.6: clk_stop tcu tcu_rst_flush_ini
t_req

tcu_rst_flush_init_
ack

24*128 = 3,072 0.714 2,194.29

wmr2 rst tcu_rst_flush_ini
t_ack

tcu_rst_flush_stop
_req

PROP_TIME = 3,000 5.000 15,000.00

9.8: Deassert
clk_stop

tcu tcu_rst_flush_sto
p_req

tcu_rst_flush_stop
_ack

24*128 = 3,072 0.714 2,194.29

9.12 ncu rst_ncu_unpark_
thread

core_running 4 2.857 11.43

spc core_running Request from spc
to ncu

10-15 0.714 10.71

SSI PLL
locks

ncu - - 0 11.428 0.00

5.12 + ncu Request from spc
to ncu

Data on SSI bus 7 2.857 20.00

End WMR
sequence

- - - - - 38,822.85
Chapter 12 Reset Unit Specification 12-51

12.8 Deterministic Behavior
We require that any sequence of actions on OpenSPARC T2 be deterministic, and so
repeatable. Thus, the relative alignment of the Ratioed Synchronous Clocks, cmp, dr,
io, and io2x, must be identical following any two identical resets.

The RSCs follow a pattern that repeats with a period equal to or less than the period
of the reference clock. The system clock drives the input to the divider D1 (divide by
2), which in turn drives ref_clk. Since ref_clk has a period twice that of sys_clk, the
RSCs also repeat during every sys_clk cycle.

FIGURE 12-6 Clock Cycles

The alignment of the RSCs will be the same if the Reset Unit drives its outputs at the
same time relative to ref_clk. The outputs of the Reset Unit will be the same, relative
to ref_clk, if the inputs are the same, relative to ref_clk.

The events that can initiate a reset are:

1. The FPGA (asserts and) deasserts the PWRON_RST_L chip input pin.

2. The FPGA asserts the PB_RST_L chip input pin.

3. L2 asserts an l20_rst_fatal_error-l27_rst_fatal_error signal.

4. NCU asserts ncu_rst_fatal_error signal.

5. Software sets the WMR_GEN bit in the RESET_GEN register.

6. Software sets the DBR_GEN bit in the RESET_GEN register.

7. Software sets the NIU bit in the SSYS_RESET register (only resets NIU).

8. Software sets the PIU bit in the SSYS_RESET register (only resets PIU).

For Power-On Reset, the Reset Unit deasserts rst_ccu_pll_ on the rising edge of
sys_clk. This signal will release the PLL's D1 flop from reset. That will determine the
relative phase relationship between the sys_clk and ref_clk, and in turn, between

 sys_clk D1 ref_clk PLL vco_cmp_clk
12-52 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

sys_clk and the RSCs, so every Power-On Reset will be deterministic. By the way,
this sequence of events will also occur during a Warm Reset in which the frequency
changes.

The l20_rst_fatal_error-l27_rst_fatal_error signals originate in the cmp_clk domain.
ncu_rst_fatal_error comes from the io_clk domain. Software sets each CSR bit
through the UCB interface to the NCU, running at io_clk. Thus, all the other events
that can initiate a reset, except for PB_RST_L, come across a Clock Domain Crossing.
The ccu asserts each sync_en signal only once during each ref_clk period, so every
reset, except for PB_RST_L, will be deterministic.

The FPGA might assert PB_RST_L in time for the synchronizer to register it on a
sys_clk during the first half of a ref_clk cycle, or it might assert it during the second
half. These two cases would cause the Reset Unit to drives its outputs at different
times relative to the RSCs. To eliminate this possibility, after synchronizing
PB_RST_L to sys_clk, the Reset Unit retimes it to the cmp_clk domain, then retimes
it back to sys_clk again. Since the ccu asserts each sync_en signal only once during
each ref_clk period, every reset due to PB_RST_L will be deterministic.

12.9 Power-On Reset Sequence
This is the sequence we envision a machine in normal use would follow. During
debug, an engineer may choose to forgo some steps, such as the Warm Reset.

FIGURE 12-7, FIGURE 12-8, FIGURE 12-9, and FIGURE 12-10 show the entire Power-On
Reset sequence. A number, 1 through 9.8, indicates a step in the sequence and
corresponds to the description of a step in this section. A solid arrow from one step
to another indicates that the completion of the first step causes the second to begin.
By contrast, there are three dashed arrows:

1. From the assertion of POWER_GOOD to step 5

2. From step 5 to step 5.4

3. From step 5.2 to step 5.4, via step 5.3

These indicate not cause and effect, but rather the ordering of these steps that the
System Processor will impose.

There are five headings at the top of the figure:

1. During PWRON_RST_L (including POR 1)

2. After PWRON_RST_L (including POR 2)

3. Pre-WMR boot code
Chapter 12 Reset Unit Specification 12-53

4. During WMR WMR 1

5. After WMR 2

6. Post-WMR boot code

12.9.1 During PWRON_RST_L (including POR1)
1. Service processor asserts TRST_ and PWRON_RST_L.
12-54 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 12-7 Power-On Reset Sequence - Start of POR1

a. “A TRST_ event will initialize the PLL config. register to a default setting.”
“Note that the TCU BIST config. registers as well as the TCU BIST result
register will not be reset by the flush reset function; these registers will be reset
only by a TRST_ event.” The default setting is for a divisor of 11 [now 8], the
lowest supported divisor, corresponding to the lowest supported frequency.
For pll_sys_clk = 133.33 MHz, the cmp_freq is 733.33 MHz, for 166.67 it is
916.67, and for 400 it is 1100.

b. “L2 Directory (of L1 tags) is marked invalid on [Power-On] Reset.” A “flash
clear” signal”with one or two clocks” clears the directory valid bits.

Off-chip “pwr-gd”

Asic se X

2

Asic clk_stop X

X
SunV clk_stop X

SunV se (flush)

TRST_ 5 jtagX

X

PWRON_RST_L X sync
as

yn
c

rst_ccu_pll_ X

3gclk X

cluster_arst_l X

async

ock_time, niu_time lock_
time

rst_ccu_ X
cu_rst_sync_stable X

niu_
time

3niu_pll(esr) X
t_dmu_async_por_ X (direct multi-cycle path)

_asicflush_stop_req X

u_rst_flush_init_ack

_asicflush_stop_ack X

X

X

(see ne

_tcu_flush_init_req

rst_dmu_peu_por_ X (via flops in global clock module)

_tcu_flush_stop_req X

_rst_flush_stop_ack X
Chapter 12 Reset Unit Specification 12-55

c. POR 1: RST asserts rst_por_, rst_wmr_, dbg_init_, rst_niu_, and
PCI_EXPRESS_RESET_. These signals will directly reset the NIU, DMU, and
PEU. Except for the Jtag registers and registers in the RST itself, the RST, in
cooperation with the TCU, will flush-reset all flip-flops in the rest of the chip.
RST and TCU cause reset “by asserting both the scan_in_clk and scan_out_clk
simultaneously while driving logic 0 onto the scan_in_data of every scan
chain.” Figure 5 shows this as TCU asserting se, scan enable, during the
interval labelled “POR 1”.
The NIU has at least two PLLs. They will start oscillating when (1) power is
applied and (2) rst_niu_ clears a bit in a control register. Once locked, they will
stay locked, even if the NIU is subsequently reset again.

d. TCU needs to come out of POR1 with clk_stop asserted.

2. Power ramps up.(

3. PLLs start up, and clock tree = RClk (Regional Clock) = l2clk, iol2clk, and enl2clk
start toggling.

4. For debugging, service processor may supply JTag portion of TCU with its own
clock, TCK. This is not needed in production systems.

5. Service processor deasserts TRST_. “Once TRST_ is deasserted, registers in [the
JTag portion of] the TCU may be accessed via the JTag TAP” while the service
processor holds the rest of the chip in reset.

a. Steps 5.2-5.10 below correspond to steps 9.2-9.10 in “During WMR” and “After
WMR”, below, starting with “PLLs lock.” An exception is that the portions of
step 5.4 which involve the EFU only occur during the POR portion.

b. PLLs lock.

c. CCU asserts ccu_pll_locked and dr_pll_locked. These are analog signals,
derived from l2clk, and independent of any reset signal and all other clock
signals. Despite the existence of these signals, OpenSPARC T2 ignores them.
Instead, we rely on the external signals PWRON_RST_L and PB_RST_L, or
counting down the lock_time register, so that the chip's behavior is repeatable.
OpenSPARC T2 does, however, provide ccu_pll_locked and dr_pll_locked as
external output pins. We can use these pins to determine if it is safe to decrease
lock_time
“Upon power-up, the system must assert POR for a period of time sufficient to
guarantee that power has stabilized and the on-chip PLL has locked.”
The interval from the time the system asserts the Tomatillo pwr_ok input, to
the time Tomatillo deasserts J_POR_L, is 5 ms.
The NIU needs 10 sfor its PLLs to lock.
12-56 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

12.9.2 After PWRON_RST_L (including POR2)
d. Service processor deasserts PWRON_RST_L. Note that it must deassert

PWRON_RST_L at the same time as, or after, deasserting TRST_.
Chapter 12 Reset Unit Specification 12-57

FIGURE 12-8 Power-On Reset Sequence - End of POR1

i. RST deasserts rst_por_ synchronous with the various clocks.

ii. TCU deasserts se. Deassertion of rst_por_ and se propagates.

iii. niu_pll locks. This must occur before the NIU starts.

iv. Optionally, on OpenSPARC T1, the service processor had asserted
PB_RST_L, synchronous with PWRON_RST_L. If it did, then it now
deasserts PB_RST_L synchronous with the reference clock. On OpenSPARC
T2, this forces an alignment of the rising edges of the cmpclk, ioclk, and

XL2 dir of
L1 tags

1.3 clr valid

tcu_rst_
efu_done

tcu_bisx
_done

tcu_rst_flush_
stop_ack

5.65.5 Bisi1

efu1

SunV
se (flush)

1.4 POR 1

SunV
clk_stop

5.4.8 (stag

5.4.7

5.4.2

5.4.9

rst_tcu_flush_
stop_req

rst_l2_
por_

rst_tcu_flush_
init_req

Xefu_{blk}
_clr

8cyc
dly

(To unavail
cores.)

ered)g
12-58 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

ddrclk clocks. Since OpenSPARC T2 has two PLLs, there is no way to
instantaneously force their outputs to align. The best we can do is to force a
reset to the IO_d1 and IO2X_d1 logic, which generate io_r, io_f, io2x_r, and
io2x_f in the CCU. In conclusion, deassert PB_RST_L upon power-up.

v. The Reset Unit waits for a number of cycles of the sys_clk. The Lock Time
register holds that number. (This could be done by the service processor.)
This allows the signals that had caused flush reset, such as se, time to
propagate. When Lock Time has passed, the Reset Unit deasserts
rst_wmr_, dbg_init_, and PCI_EXPRESS_RESET_L.

vi. TCU deasserts clock_stop to each of the 17 clock-stop domains in sequence.
This deasserting in a staggered fashion minimizes di/dt. TCU must deassert
clock_stop, even to a domain that will eventually have its bit in
ASI_CORE_ENABLE set to zero, because the E-Fuse Unit needs its
recipient's clocks enabled in order to communicate with it.
The valid bits in the L2 directory of L1 tags, the NIU, DMU, and PEU all
require a clock edge to reset. The TCU asserts tcu_rst_flush_stop_ack to
signal the Reset Unit that it has deasserted clk_stop. (The TCU will continue
with the last two POR1 sequence steps, EFU1 and BISI1.) Now that L2T,
NIU, DMU, and PEU have clocks, the Reset Unit has reset them and is able
to deassert rst_niu_, rst_dmu_, and rst_peu_. It must do so before EFU1
starts, so that L2T and other SRAM headers can receive EFU data. The
dotted line in Figure 5, from rst_l2t_ to efu1, represents this sequence
requirement.

vii. EFU 1: E-Fuse Unit, EFU, scans out E-Fuse Array, EFA. EFU asserts
efu_done after 700 [2816] io_clk clock cycles. EFU takes 44 io_clk cycles to
scan out each of the 64 locations, so it takes:
44 cycles/location * 64 locations= 2816 io_clk cycles
2816 cycles * 2.857 ns/cycle= 8045.7 ns

e. BISI 1: “If at-[default-]speed [BISI or] BIST is desired,” controlled by the service
processor setting the TCU BISI or BIST registers in Step 5, then “TCU launches
[BISI or] BIST on caches.”
“L2 Tag, Data, and VUAD arrays, when BISTed to zeros, are initialized to
empty with good parity and good ECC.”
“L1 I-cache, L1 D-cache, when BISTed to zeros, initialized to good parity”
l2dtakes 128k (131,072)cmp_clk cycles
l2ttakes 8k (8,192)cmp_clk cycles
VUADtakes 256cmp_clk cycles
“When BIST is complete, the part will store the BIST results and flush reset the
part in preparation to begin code execution.”

f. TCU asserts tcu_bisx_done.
Chapter 12 Reset Unit Specification 12-59

g. POR 2: BISI or BIST may have changed the state of some flip-flops connected to
SRAM outputs. RST causes a second POR to reset those flops. Figure 5 shows
this sequence as “POR 2”. RST asserts rst_por_ and rst_wmr_, and TCU asserts
se.

h. After lock_time clock cycles, TCU deasserts se.

i. After a further lock_time clock cycles, RST deasserts rst_por_ and rst_wmr_.
This allows the signals that had caused flush reset, such as se, time to
propagate. See Section 7.6, "Propagation Time Register, PROP_TIME".
The valid bits in the L2 directory of L1 tags, the NIU, DMU, and PEU all
require a clock edge to reset. The TCU asserts tcu_rst_flush_stop_ack to signal
the Reset Unit that it has deasserted clk_stop. (The TCU will continue with the
last two POR sequence step, EFU2.) Now that L2T, NIU, DMU, and PEU have
clocks, the Reset Unit has reset them and is able to deassert rst_l2b_l2t_,
rst_niu_, rst_dmu_peu_por_, and rst_dmu_peu_wmr_. It must do so before
EFU2 starts, so that L2T and other SRAM headers can receive EFU data. The
dotted line in Figure 5, from rst_l2t_ to efu2, represents this sequence
requirement. The Reset Unit knows that EFU2 is done by tcu_rst_efu_done.

j. EFU 2: E-Fuse Unit, EFU, scans out E-Fuse Array, EFA. EFU asserts efu_done.
This restores values that POR 2 cleared. Now that the E-Fuse Unit has
communicated with its recipients, TCU can stop the clock in a clock-stop
domain that has its bit in ASI_CORE_ENABLE set to zero. TCU conditionally
reasserts clock_stop to each of the 17 clock-stop domains in sequence. This
reasserting in a staggered fashion minimizes di/dt.
The EFA sets first the Core Available register, then the NCU copies this to the
Core Enable register.

k. RST sets the POR bit of the RSET_STATUS register.

l. RST asserts rst_unpark_thread to NCU. NCU asserts core_running to Trap Unit
of lowest-numbered available SPC (which will be the same as the lowest-
numbered running SPC).

12.9.3 Pre-WMR Boot Code
m. The lowest-numbered available SPC begins fetching and executing

instructions at RSTVaddr || 0x20.The MMUs are turned off, in bypass mode,
with default mapping. At first, only PROM working. Software has to enable
everything else.
12-60 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 12-9 Power-On Reset Sequence - POR2

n. Pre-WMR boot code starts by reading RSET_STAT register, which indicates
POR (as opposed to WMR).

6. ASI instructions “set up master configuration registers such as PLL config., BIST
program config, and I/O drive strength.”
“The new configuration will take effect when the CR [WMR] state is exited.”

tcu_rst_
efu_done

tcu_bisx
_done

RSET_
STATUS

unpark_
thread

5.12

SunV se
(flush)

SunV
clk_stop

por 2

efu2

10.2 After PWRON_RST_L (cont'd)

5.8

5.10

(To unavail cores. See TCU Spec.)

rst_tcu_flush_
init_req

tcu_rst_flush_
init_ack

rst_tcu_flush_
stop_req

tcu_rst_flush_
stop_ack

10.4
during
WMR1

10.3
pre-WMR
boot code

WMR_
GEN

mstr pll
config.

6 New freq

8

POR bit

prop_time prop_
time

rst_l2_por_

Jtag POR access window
for efu overwrite

8cyc
dly
Chapter 12 Reset Unit Specification 12-61

7. Pre-WMR boot code “clears error logs. (Alternately, this could be moved to
later.)”

8. Pre-WMR boot code finishes by writing a 1 to the WMR_GEN bit of the Reset
Generation Register, RESET_GEN. NCU deasserts core_running. RST deasserts
rst_soc_run.

12.9.4 During WMR1
9. WMR 1: RST asserts rst_wmr_, dbg_init_, and PCI_EXPRESS_RESET_. The RST,

in cooperation with the TCU, will flush-reset all WMR flip-flops in the chip. RST
and TCU cause reset “by asserting both the scan_in_clk and scan_out_clk
simultaneously while driving logic 0 onto the scan_in_data of every scan chain.”
Figure 5 shows this as TCU asserting se, scan enable, during the interval labelled
“wmr 1”.
The NIU has at least two PLLs. Once locked, they will stay locked, even if the
NIU is subsequently reset again.
“The TCU contains a PLL config register accessible by ASI instructions. New PLL
configurations will take effect at the next [warm reset] event. That event must
persist sufficiently long for the PLL to stabilize at its new setting.... The assertion
of [rst_wmr_] will cause the part to load configuration registers such as PLL
config, BIST program config, and I/O drive strength.” Warm reset “will also
flush... other flip-flops in the part.”
12-62 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

FIGURE 12-10 Power-On Reset Sequence - Warm Reset: WMR1+WMR2

a. Steps 9.2-9.10 below correspond to steps 5.2-5.10 in “During PWRON_RST_L”,
above, starting with “PLLs lock.”

b. PLLs lock.

c. CCU asserts ccu_pll_locked. This is an analog signal, derived from l2clk, and
independent of any reset signal and all other clock signals. Despite the
existence of this signal, OpenSPARC T2 ignores it. Instead, we rely on the

wmr1
SunV clk_stop

SunV se (flush)

rst_ccu_pll_

9gclk

cluster_arst_l

_time, niu_time lck
tim

rst_ccu_

_rst_sync_stable

niu_pll (esr)

rst_mac_wmr_

_flush_stop_req

prp
tim

slave pll config. 9 New freq

u_flush_init_req

_flush_init_ack

tcu_bisx_done

_flush_stop_ack

rst_l2_wmr_

unpark_thread

RSET_STATUS

9

9.5
bist2 9.6

9.11 WMR bit + Freq bitPOR bit

dmu_peu_wmr_dmu_peu_wmr_

Asic clk_stop (omit if DBR)

Asic se

prop_
time

wmr2

(omit if DBR)

rst_tcu_clk_stop
8cyc
dly

ccu
tim

ccu
tim

(omit if MAC_PROTECT)

niu
tim
Chapter 12 Reset Unit Specification 12-63

external signals PWRON_RST_L and PB_RST_L, or counting down the
lock_time register, so that the chip's behavior is repeatable.
The NIU needs 10 sfor its PLL to lock.

12.9.5 After WMR
d. Optionally, the service processor had asserted PB_RST_L. If it did assert it, then

it now deasserts PB_RST_L synchronous with the reference clock. This forces
an alignment of the rising edges of the cmpclk, ioclk, and ddrclk clocks.

i. The Reset Unit waits for a number of cycles of the reference clock. The Lock
Time register holds that number.

ii. When both (1) the service processor has deasserted PB_RST_L and (2) Lock
Time has passed, then RST deasserts rst_wmr_, dbg_init_, and
PCI_EXPRESS_RESET_L.

e. BIST 2: “If at-speed [BISI or] BIST is desired,” by pre-WMR boot code setting
the TCU BISI and BIST registers, then “TCU launches [BISI or] BIST on
caches.”
“L2 Tag, Data, and VUAD arrays, when BISTed to zeros, are initialized to
empty with good parity and good ECC.”
“L1 I-cache, L1 D-cache, when BISTed to zeros, initialized to good parity”
l2dtakes 128k*8= 1,048,576cmp_clk cycles
l2ttakes 8k*8= 65,536cmp_clk cycles
VUADtakes 256*8= 2,048cmp_clk cycles
Total= 1,116,160cmp_clk cycles
“When BIST is complete, the part will store the BIST results and flush reset the
part in preparation to begin code execution.”

f. TCU asserts tcu_bisx_done.

g. WMR 2: BISI or BIST may have changed the state of some flip-flops connected
to SRAM outputs. RST causes a second flush WMR to reset those flops. Figure
7 shows this sequence as “WMR 2”. RST asserts rst_niu_, and
rst_dmu_peu_wmr_, and TCU asserts se.

h. After lock_time clock cycles, TCU deasserts se.

i. After a further lock_time clock cycles, RST deasserts rst_niu_, and
rst_dmu_peu_wmr_. This allows the signals that had caused flush reset, such
as se, time to propagate.

j. (E-Fuse Unit, EFU, remains idle during WMR.)

k. RST sets the WMR bit of the RSET_STATUS register. Since the frequency
changed, it also sets the FREQ bit.
12-64 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

l. RST asserts rst_unpark_thread to NCU. NCU asserts core_running to Trap Unit
of lowest-numbered enabled SPC.

12.9.6 Post-WMR boot code
m. The lowest-numbered enabled SPC begins fetching and executing instructions

at RSTVaddr || 0x20.
The MMUs are turned off, in bypass mode, with default mapping. At first, only
PROM working. Software has to enable everything else.
“Come out of warm reset, again at reset vector.”

n. Post-WMR boot code starts by reading RSET_STAT register, which indicates
WMR, with clock change.

10. [TCU already launched BIST on caches, in step 9.5.]

11. Initialize the L1 tags of the lowest-numbered available processor core. [Not
necessary since TCU did BISI or BIST.]
“L1 I-tags, L1 D-tags need to be explicitly ASI written to invalid, with good
parity”.

12. [This step moved in sequence to be before WMR. Was:
“9. Wait for BIST_DONE indications.”]

13. Enable error detection on L1 and L2 caches.

14. Enable L1 and L2 caches.

15. Post-WMR boot code continues as outlined in Programmer’s Reference Manual.

12.10 Warm Reset Sequence
Since the entire Power-On Reset sequence includes a warm reset, a warm reset that
is not caused by POR is similar. In fact, if the clock divider register is changed, it is
identical to the WMR step of the POR sequence.

12.10.1 Before rst_mwr_
Three agents can cause a Warm Reset, as follows:

1. The user presses the Warm Reset pushbutton, or the external system processor
asserts the PB_RST_L input pin.
Chapter 12 Reset Unit Specification 12-65

2. Software writes a 1 to the WMR_GEN bit of the RESET_GEN register, as in Step 8
of the “Reset sequence for POR”, above.

3. NCU or the L2 cache detects a Fatal Error and asserts ncu_rst_fatal,
l2t0_rst_fatal,..., or l2t7_rst_fatal.

NCU deasserts core_running. RST deasserts rst_soc_run.

12.10.2 During rst_wmr_
RST asserts rst_wmr_, dbg_init_, and PCI_EXPRESS_RESET_L.
The RST, in cooperation with the TCU, will flush-reset all WMR flip-flops in the

chip. RST and TCU cause reset “by asserting both the scan_in_clk and scan_out_clk
simultaneously while driving logic 0 onto the scan_in_data of every scan chain.”
Figure 5 shows this as TCU asserting se, scan enable, during the interval labelled
“wmr 1”.
The NIU has at least two PLLs. Once locked, they will stay locked, even if the NIU is
subsequently reset again.
“The TCU contains a PLL config register accessible by ASI instructions. New PLL
configurations will take effect at the next [warm reset] event. That event must persist
sufficiently long for the PLL to stabilize at its new setting.... The assertion of
[rst_wmr_] will cause the part to load configuration registers such as PLL config,
BIST program config, and I/O drive strength.” Warm reset “will also flush all other
flip-flops in the part.”

PLLs lock.

CCU asserts pll_locked. This is an analog signal, derived from l2clk, and
independent of any reset signal and all other clock signals. Despite the existence of
this signal, OpenSPARC T2 ignores it. Instead, we rely on the external signal
PB_RST_L, or counting down the lock_time register, so that the chip's behavior is
repeatable.

Optionally, the service processor had asserted PB_RST_L. If it did, then it now
deasserts PB_RST_L synchronous with the reference clock. This forces an alignment
of the rising edges of the cmpclk, ioclk, and ddrclk clocks.

The Reset Unit waits for a number of cycles of the reference clock. The Lock Time
register holds that number.

12.10.3 After rst_wmr_
When both (1) the service processor has deasserted PB_RST_L and (2) Lock Time has
passed, then RST deasserts rst_wmr_, dbg_init_, and PCI_EXPRESS_RESET_L.
12-66 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

“If at-speed [BISI or] BIST is desired,” by pre-WMR code setting the TCU BISI and
BIST registers, then “TCU launches [BISI or] BIST on caches.”
“L2 Tag, Data, and VUAD arrays, when BISTed to zeros, are initialized to empty
with good parity and good ECC.”
“L1 I-cache, L1 D-cache, when BISTed to zeros, initialized to good parity”
“When BIST is complete, the part will store the BIST results and flush reset the part
in preparation to begin code execution.”

TCU asserts tcu_bisx_done.

BISI or BIST may have changed the state of some flip-flops connected to SRAM
outputs. RST causes a second WMR to reset those flops. Figure 7 shows this
sequence as “WMR 2”. RST asserts rst_wmr_, and TCU asserts se.

After lock_time clock cycles, TCU deasserts se.

After a further lock_time clock cycles, RST deasserts rst_wmr_. This allows the
signals that had caused flush reset, such as se, time to propagate.

(E-Fuse Unit, EFU, remains idle during WMR.)

RST sets the WMR bit of the RSET_STATUS register. In addition, if the frequency
changed, it also sets the FREQ bit.

RST asserts rst_unpark_thread to NCU. NCU asserts core_running to Trap Unit of
lowest-numbered enabled SPC.

12.10.4 Post-WMR boot code
The lowest-numbered enabled SPC begins fetching and executing instructions at
RSTVaddr || 0x20.)
The MMUs are turned off, in bypass mode, with default mapping. At first, only
PROM working. Software has to enable everything else.

Post-WMR boot code starts by reading RSET_STAT register, which indicates WMR.)
(If RSET_STAT register indicates WMR, with clock change, go to the step, circa Step
9.10, with that condition in “POR Reset Sequence, after WMR”, above.)

Check local error logs.

Post-WMR boot code continues as outlined in Programmer’s Reference Manual.
Chapter 12 Reset Unit Specification 12-67

12.11 Reset Sequence for DBG
DBG is the same as WMR, except that the Reset Unit does not reset DMU, PEU, nor
NIU.

12.12 Reset Sequence for NIU
1. Software makes sure that all outstanding transactions are complete.

2. Software writes to the NIU bit of the SSYS_RESET register.

3. RST asserts rst_niu_.

4. The NIU needs 10 sfor its PLL to lock. RST waits the number of system clock
(pll_sys_clkp, soon to be ccu_rst_sys_clk+) cycles specified in the LOCK_TIME
register.

5. RST deasserts rst_niu_. RST clears the NIU bit of the SSYS_RESET register.

12.13 Reset Sequence for XIR
1. Software writes a 1 to the XIR_GEN bit of the RESET_GEN register, or the user

presses the BUTTON_XIR_ pushbutton.

2. RST does not need to debounce BUTTON_XIR_ input pin.

3. RST asserts rst_ncu_xir_.

4. NCU asserts ncu_rst_xir_done.

5. RST deasserts rst_ncu_xir_.

6. RST clears the XIR_GEN bit of the RESET_GEN register.
12-68 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

12.14 Reset and Scan of the Reset Unit
Three clocks drive the four blocks in the Reset Unit:

The sys clock drives rst_fsm_ctl directly, with no cluster header. The Reset Unit gates
the.tcu_clk_stop input port of the cmp cluster header, but not that of the io cluster
header, as described below.

12.14.1 tcu_rst_clk_stop
module rst...

Guided by suggestions from the TCU designers, the Reset
Unit

gates tcu_rst_clk_stop with tcu_rst_scan_mode, as follows:

clkgen_rst_cmp clkgen_rst_cmp (
.tcu_clk_stop (tcu_clk_stop_scan_mode),// =

tcu_rst_scan_mode ?
// rst_clk_stop : 1'b0;

...
rst_fsm_ctl rst_fsm_ctl (
.rst_clk_stop (tcu_rst_clk_stop),// Assign stmt.

module rst_fsm_ctl ...
assign tcu_clk_stop = tcu_rst_scan_mode ? rst_clk_stop :

1'b0;
assign tcu_clk_stop_scan_mode = tcu_clk_stop;

Thus, in scan mode, the Reset Unit passes tcu_rst_clk_stop to the.tcu_clk_stop input
port of clkgen_rst_cmp, so the TCU can scan the Reset Unit. Otherwise, it passes
1'b0, so the cmp clock runs whenever the PLL is running.

1 cmp clock rst_cmp_ctl

2 sys clock rst_fsm_ctl

3 io clock rst_io_ctl

4 io clock rst_ucbflow_ctl
Chapter 12 Reset Unit Specification 12-69

Since the rst_cmp_ctl block consist only of sync_en flops, it is possible to reset that
block by simply allowing values from upstream flops to shift through it in the first
few cycles after they are reset.

12.14.2 tcu_rst_io_clk_stop
The Reset Unit does not gate the.tcu_clk_stop (tcu_rst_io_clk_stop) input port of the
other cluster header, clkgen_rst_io. The TCU is free to stop the io clock as it sees fit.
The two Reset Unit blocks that operate on the io clock, the sync_en block rst_io_ctl
and the UCB block rst_ucbflow_ctl, are reset by synchronous reset. The Reset Unit
asserts ucb_clr_io_ for a longer period of time than just the flush reset time, allowing
the io clock to run again and reset those two blocks. Since the rst_io_ctl block consist
only of sync_en flops, it is possible to reset that block by simply allowing values
from upstream flops to shift through it in the first few cycles after they are reset.

12.15 Reset Unit Ports

12.15.1 Input Ports
We consider these inputs to be asynchronous to the system clock:

1. PWRON_RST_L(mio_rst_pwron_rst_l)

2. PB_RST_L(mio_rst_pb_rst_l)

3. BUTTON_XIR_L(mio_rst_button_xir_l)

For each of these signals, to ensure that OpenSPARC T2 reliably captures it, the
FPGA must assert it for a minimum of either:

1. the system clock period plus the set-up time of cl_sc1_clksyncff_4x, the
synchronizer cell, or

2. the system clock period plus the hold time of cl_sc1_clksyncff_4x,

whichever is longer.

In addition, the Reset Unit requires that any input signal that crosses to the sys_clk
domain must be held steady for at least two sys_clk cycles. This is because the CCU
asserts the sync_en signals only once every ref_clk cycle, and ref_clk has a period of
12-70 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

two sys_clk cycles. This applies to all inputs except the sync_en pulses themselves,
and the UCB signals ncu_rst_vld, ncu_rst_data[3:0], and ncu_rst_stall. The NCU
launches them on io_clk, and the Reset Unit captures them on the same clock.

TABLE 12-30 Inport Ports Clocks

Source Clock Input port

FPGA sys ccu_rst_sys_clk

ccu gclk gclk

ccu io ccu_io_out

tcu - tcu_div_bypass

tcu cmp scan_in tcu_soc6_scan_out

tcu_rst_clk_stop Not used.

tcu_rst_io_clk_stop Not used.

tcu_pce_ov

tcu_aclk

tcu_bclk

tcu_scan_en

tcu_rst_scan_mode

tcu_atpg_mode (Reset Unit ignores.)

ccu cmp ccu_io_cmp_sync_en

ccu cmp ccu_cmp_io_sync_en

ccu cmp ccu_sys_cmp_sync_en Synchronization pulse for each signal that
crosses between synchronous clock domains.

ccu cmp ccu_cmp_sys_sync_en

FPGA async mio_rst_pwron_rst_l Assert for at least 2 sys_clk cycles.

FPGA async mio_rst_button_xir_l Assert for at least 2 sys_clk cycles.

FPGA async mio_rst_pb_rst_l Assert for at least 2 sys_clk cycles.

tcu cmp tcu_rst_flush_init_ack

tcu cmp tcu_rst_flush_stop_ack

tcu cmp tcu_rst_asicflush_stop_ack
Chapter 12 Reset Unit Specification 12-71

tcu io tcu_test_protect During mbist, lbist, jtag scan, trans test may
want to block tcu, rst and ccu from seeing
random activity from ucb (NCU), SPC's, etc.
This signal synched to ioclk, and set via jtag
id for blocking.

ccu io ccu_rst_change Only assert rst_ccu_ and rst_ccu_pll_, and
wait LOCK_TIME, when ccu holds
ccu_freq_change high.

ccu cmp ccu_rst_sync_stable Not used.

tcu cmp tcu_bisx_done

tcu cmp tcu_rst_efu_done

l2t io l2t0_rst_fatal_error
Asserted for one clock cycle.

l2t1_rst_fatal_error

l2t2_rst_fatal_error

l2t3_rst_fatal_error

l2t4_rst_fatal_error

l2t5_rst_fatal_error

l2t6_rst_fatal_error

l2t7_rst_fatal_error

ncu io ncu_rst_fatal_error
Asserted for one clock cycle.

ncu_rst_xir_done

ncu_rst_vld

ncu_rst_data[3:0]

ncu_rst_stall

TABLE 12-30 Inport Ports Clocks (Continued)
12-72 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

12.15.2 Output Ports
TABLE 12-31 lists the output ports of the Reset Unit.

TABLE 12-31 Output Ports Clocks

Sink Clock Ultimat
e clock

Output port

tcu - - scan_out rst_scan_out. Untimed.

efu,
l2b, l2t

cmp cmp rst_l2_por_ Vestige of OpenSPARC T I heritage of
L2 cache.

cmp cmp rst_l2_wmr_ Vestige of OpenSPARC T I heritage of
L2 cache.

fc sys asyn rst_wmr_protect

mcu io(was
cmp)

dr rst_mcu_selfrsh Equal to MCU_SELFRSH bit of
SSL_RESET register.

tcu cmp cmp rst_tcu_flush_init_req

cmp cmp rst_tcu_flush_stop_req

cmp cmp rst_tcu_asicflush_stop_req

cmp cmp rst_tcu_dbr_gen

cmp cmp rst_tcu_clk_stop See Figure 8.

cmp cmp rst_tcu_pwron_rst_l

niu cmp cmp rst_niu_mac_ Goes to mac. The Reset Unit will reset
mac on POR, and also on WMR1 if
ccu_rst_change == 1, unless
MAC_PROTECT is set.

niu cmp cmp rst_niu_wmr_ Goes to the other niu clusters, rtx, tds,
and rdp. The Reset Unit will reset them
on both POR and WMR

dmu,
peu

cmp io, pc rst_dmu_peu_por_ Assert for 15 s.

cmp io, pc rst_dmu_peu_wmr_ Assert for 15 s.

async,
sys

async,
cmp

rst_dmu_async_por_

ncu io io rst_ncu_unpark_thread

io io rst_ncu_xir_
Chapter 12 Reset Unit Specification 12-73

17 total clock_stop domains (increased to 24):

1. 8 sparc cores

2. 4 mmu + l2 pair

3. 1 ddr

4. 1 IO (ncu)

5. 1 pci express

6. 1 niu

7. 1 ccx, tags

mio sys asyn rst_mio_pex_reset_l (Follows rst_dmu_peu_wmr_.) Assert
for 15 us. .

sys fpga
(asyn)

rst_mio_ssi_sync_l Assert for 50-100 s.
Assert duringWMR.

(Was rst_mio_fatal_error.)

sys sys rst_mio_rst_state[5:0] Reset Unit state machine state

ncu io io rst_ncu_stall UCB

io io rst_ncu_vld

io io rst_ncu_data[3:0]

ccu sys cmp rst_ccu_

sys cmp rst_ccu_pll_

sys asyn cluster_arst_l

TABLE 12-31 Output Ports Clocks (Continued)
12-74 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

12.16 Appendices

12.16.1 Appendix I: Glossary

12.16.2 Appendix II: Glossary of shadow terms
Master configuration register

Holds the value that will be placed in the slave version of the register, sometimes
called the shadow register, when the next WMR occurs. The slave register then
supplies the value to operational logic. Examples are PLL clock divider and I-O
drive strength.

Shadow scan configuration register

Used to control the scanning of the shadow scan registers.

Shadow scan register

"A number of internal states can be captured and scanned out without stopping
the clocks using the shadow scan instruction. The state of the target nodes is
captured when the JTag state machine enters the Capture-DR state and the scan
occurs in the Scan-DR state. A great many internal states are available for
observation but a limited number of shadow scan flops are dedicated to the task
of capturing and scanning those states. The shadow scan configuration register
controls which internal nodes will be captured into the shadow scan chain. The
shadow scan config. register can be accessed with a JTag DR scan operation."

Shadow status bits of RSET_STATUS register

“HW will copy the current reset status into a shadow status whenever a reset
occurs.”

ASI Address Space Identifier

ASR Ancillary State Register

MISR Multiple-Input Signature Register. Used in LBIST

RClk Regional Clock
Chapter 12 Reset Unit Specification 12-75

12.16.3 Appendix III: Promotion among Core Available,
Enable, and Status registers
Before the first instruction executes, TABLE 12-32 shows registers that must contain
their correct values:

TABLE 12-33 shows the sequence of events during Power-On Reset. The NCU accepts
the initial, and only, value from the E-Fuse Unit into CA during EFU1 and then
again during EFU2. The NCU then transfers that value into CE and CES during
times labeled NCU1 and NCU2. The NCU controls NCU1, NCU2, and NCU pre-
compute.

TABLE 12-34 shows the sequence of events during Warm Reset. Warm Reset skips the
EFU1 and EFU2 steps shown in the previous table, so the corresponding columns in
this table are blank.

TABLE 12-32 Register Abbreviations

Register ASI name Abbreviation in this appendix

ASI_CORE_AVAILABLE CA

ASI_CORE_ENABLE CE

ASI_CORE_ENABLE_STATUS CES

TABLE 12-33 Power-On Reset sequence of Events

POR1 EFU1 NCU1 MBisi1 POR2 EFU2 NCU2 Soft
ware

NCU pre-
compute

CA 0 EFU1 CA CA CA 0 EFU2 CA CA CA CA

CE 0 0 CA
CE1

CE1 0 0 CA
CE1

CE2 CE2

CES 0 0 CA
CES1

CES1 0 0 CA
CES1

CES1 CES1

CESpre - - - - - - - - f(CE2,
CES1)
12-76 OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification • December 2007

TABLE 12-34 Warm reset Sequence of Events

WMR1 NCU1 MBist2 WMR2 NCU2

CA CA

CE CE2

CES CESpre
-> CES2

CE2
-> CES2

CES2 CES2 CE2
-> CES2
Chapter 12 Reset Unit Specification 12-77

	OpenSPARC™ T2 System-On-Chip (SOC) Microarchitecture Specification
	Contents
	Figures
	Tables
	Preface
	OpenSPARC T2 Basics
	1.1 Background
	1.2 OpenSPARC T2 Overview
	1.3 OpenSPARC T2 Components
	1.3.1 SPARC Physical Core
	1.3.2 SPARC System-On Chip (SoC)
	1.3.3 L2 Cache
	1.3.4 Memory Control Unit (MCU)
	1.3.5 Test Control Unit (TCU)
	1.3.6 Clock Control Unit (CCU)
	1.3.7 System Interface Unit (SIU)
	1.3.8 Non-Cacheable Unit (NCU)
	1.3.9 Data Management Unit (DMU)
	1.3.10 Miscellaneous Input/Output (MIO)
	1.3.10.1 Network Interface Unit (NIU)
	1.3.10.2 SSI ROM Interface (SSI)

	1.3.11 Debug
	1.3.12 eFuse
	1.3.13 Reset

	Level 2 Cache
	2.1 L2-Cache Functional Description
	2.1.1 L2-Cache Overview
	2.1.2 L2-Cache Block Functional Description
	2.1.2.1 L2 Cache Interface Description
	2.1.2.2 MCU Interface:

	2.1.3 L2 Pipeline
	2.1.4 L2 Interactions with Core
	2.1.4.1 Load Hit
	2.1.4.2 Store Hit
	2.1.4.3 Partial Store
	2.1.4.4 Ifetch Hit
	2.1.4.5 Miss
	2.1.4.6 Eviction (Clean or Dirty)
	2.1.4.7 Fill
	2.1.4.8 Atomics LDSTUB/SWAP 1st Pass
	2.1.4.9 Atomics CAS
	2.1.4.10 Prefetch Invalidate Cache Entry (ICE)
	2.1.4.11 L2 Interactions with SIU (System Interface Unit)
	2.1.4.12 L2 Pipeline Stalls

	2.1.5 Functional Description of Sub-blocks
	2.1.5.1 L2 Tags
	2.1.5.2 L2 VUAD
	2.1.5.3 L2 VUAD ECC
	2.1.5.4 L2 Data
	2.1.5.5 L2 Directory
	2.1.5.6 Directory Organization
	2.1.5.7 SIU Queue (SIUQ)
	2.1.5.8 Input Queue (IQ)
	2.1.5.9 Output Queue (OQ)
	2.1.5.10 Arbiter
	2.1.5.11 Miss Buffer (MB)
	2.1.5.12 Fill Buffer (FB)
	2.1.5.13 Writeback Buffer (WBB)
	2.1.5.14 I/O Write Buffer (IOWB)

	2.1.6 Unit-level Interface Signals
	2.1.7 RAS
	2.1.7.1 General Overview
	2.1.7.2 RAS support in L2 sub-blocks
	2.1.7.3 NotDATA in L2 (new feature in OpenSPARC T2)
	2.1.7.4 Error reporting by L2

	2.1.8 VDFT Features
	2.1.9 Critical Path Analysis
	2.1.10 Performance

	2.2 Appendix
	2.2.1 Debug mode/initialization mode
	2.2.2 Reset sequence for L2 cache

	Memory Control Unit (MCU)
	3.1 Overview
	3.1.1 Changes from OpenSPARC T1 MCU design
	3.1.2 Changes to OpenSPARC T2 MCU to support FBD

	3.2 Terminology and Configuration
	3.2.1 DRAM Terminology
	3.2.2 FBD Terminology
	3.2.3 DDR Branch Configuration
	3.2.3.1 Physical Address Mapping

	3.2.4 FBD Channel Configuration

	3.3 DDR2 FBD Usage
	3.3.1 FBD Channel Initialization
	3.3.2 FBD Commands
	3.3.2.1 FBD Frame Formats

	3.3.3 SDRAM Initialization
	3.3.4 DDR2 SDRAM Commands

	3.4 MCU-L2 Cache Interface
	3.4.1 MCU Read Transaction
	3.4.2 MCU Write Transaction

	3.5 DDR2 SDRAM Transaction Timing
	3.5.1 Memory Read
	3.5.2 Memory Write
	3.5.3 SERDES (I/O) Timing
	3.5.3.1 Single Lane Symbol Alignment Logic
	3.5.3.2 Frame Lane Alignment Logic across all 14 Northbound Lanes
	3.5.3.3 Channel Alignment Logic across all Two FBDIMM Channels.

	3.6 Memory Latencies
	3.6.1 Read Latency
	3.6.2 Write Latency

	3.7 Multiple Clock Domains
	3.8 Functional Description
	3.8.1 MCU Datapaths
	3.8.1.1 Request Address Datapath
	3.8.1.2 Read and Write Data Datapaths
	3.8.1.3 FBD Write and Read Datapaths (FBDWR_DP, FBDRD_DP)
	3.8.1.4 FSR to MCU Cross-Domain FIFO (FBD_DP)

	3.8.2 MCU Control Logic
	3.8.2.1 MCU - L2 Cache Interface Control (L2IF_CTL)
	3.8.2.2 MCU Request Queue Control (DRQ_CTL)
	3.8.2.3 Write Ordering Queue (WOQ)
	3.8.2.4 MCU - DDR2 Interface Control (DRIF_CTL)
	3.8.2.5 FBD Interface Control (FBDIC_CTL)
	3.8.2.6 MCU Read Datapath Control (RDPCTL_CTL)
	3.8.2.7 MCU Read Data Control (RDATA_CTL)

	3.8.3 UCB CSR Interface

	3.9 SDRAM Power Reduction and Reduced- Configuration Operating Modes
	3.9.1 Single Channel Mode
	3.9.2 MCU Programmable Power Throttle
	3.9.3 SDRAM Self-Refresh Mode
	3.9.4 FBD L0s State
	3.9.5 Power Down Mode
	3.9.6 Partial Bank Mode

	3.10 RAS Features
	3.10.1 SDRAM ECC
	3.10.2 Memory Scrubbing
	3.10.3 Data Poisoning
	3.10.4 ECC Error Handling
	3.10.5 FBD Channel Errors
	3.10.6 Interrupts

	3.11 Test Features
	3.11.1 DFT Features
	3.11.1.1 Debug Reset

	3.11.2 Deterministic Test Mode (DTM)
	3.11.2.1 Debug Signals
	3.11.2.2 Initialization for Testing

	3.11.3 SERDES Blunt-End Loopback

	3.12 MCU Level I/O
	3.13 MCU Registers
	3.13.1 Control and Status Registers
	3.13.1.1 Changes to DIMM Initialization Register- 0x84_0000_01A0
	3.13.1.2 Single Channel Mode Regiser - 0x84_0000_0148
	3.13.1.3 Four Activate Window Register

	3.13.2 Error Registers
	3.13.2.1 Changes to Error Status Regiser - 0x84_0000_0280
	3.13.2.2 Error Retry Register - 0x84_0000_02a8

	3.13.3 Power Management Registers
	3.13.3.1 Power Down Mode Register - 0x84_0000_0238

	3.13.4 Performance Registers
	3.13.5 Changes to Debug Trigger Enable Register
	3.13.6 State Registers for FBD Branch
	3.13.6.1 Channel State Register - 0x84_0000_0800
	3.13.6.2 Fast Reset Flag - 0x84_0000_0808
	3.13.6.3 Channel Reset (Initialization) Flag - 0x84_0000_0810
	3.13.6.4 TS1 Southbound to Northbound Mapping Register - 0x84_0000_0818
	3.13.6.5 TS1 Test Paramater Register - 0x84_0000_0820
	3.13.6.6 TS3 Failover Configuration Register - 0x84_0000_0828
	3.13.6.7 Electical Idle Detected Register - 0x84_0000_0830
	3.13.6.8 Disable State Period Register - 0x84_0000_0838
	3.13.6.9 Disable State Period Done Register - 0x84_0000_0840
	3.13.6.10 Calibrate State Period Register - 0x84_0000_0848
	3.13.6.11 Calibrate State Period Done Register - 0x84_0000_0850
	3.13.6.12 Training State Minimum Time Register - 0x84_0000_0858
	3.13.6.13 Training State Done Register - 0x84_0000_0860
	3.13.6.14 Training State Timeout Register - 0x84_0000_0868
	3.13.6.15 Testing State Done Register - 0x84_0000_0870
	3.13.6.16 Testing State Timeout Register - 0x84_0000_0878
	3.13.6.17 Polling State Done Register - 0x84_0000_0880
	3.13.6.18 Polling State Timeout Register - 0x84_0000_0888
	3.13.6.19 Config State Done Register - 0x84_0000_0890
	3.13.6.20 Config State Timeout Period Register - 0x84_0000_0898
	3.13.6.21 Per Rank CKE Register - 0x84_0000_08A0
	3.13.6.22 L0s Duration - 0x84_0000_08A8
	3.13.6.23 Sync Frame Frequency Register - 0x84_0000_08B0
	3.13.6.24 Channel Read Latency Register - 0x84_0000_08B8
	3.13.6.25 Channel Capability Register - 0x84_0000_08C0
	3.13.6.26 Loopback Mode Control Register - 0x84_0000_08C8
	3.13.6.27 SERDES Configuration Bus Register - 0x84_0000_08D0
	3.13.6.28 SERDES Tranmitter and Receiver Differential Pair Inversion Register - 0x84_0000_08D8
	3.13.6.29 SERDES Test Configuration Bus Register - 0x84_0000_08E0
	3.13.6.30 SERDES PLL Status Register - 0x84_0000_08E8
	3.13.6.31 SERDES Test Status Register - 0x84_0000_08F0
	3.13.6.32 Configuration Register Access Address Register - 0x84_0000_0900
	3.13.6.33 Configuration Register Access Data Register - 0x84_0000_0908
	3.13.6.34 FBD Thermal Trip Status Register - 0x84_0000_0A00
	3.13.6.35 MCU Syndrome Register - 0x84_0000_0C0
	3.13.6.36 Injected Error Source Register - 0x84_0000_0C08
	3.13.6.37 MCU FBR Count Register - 0x84_0000_0C10

	3.14 Other Registers
	3.14.1 Self-Refresh Registers

	Test Control Unit (TCU)
	4.1 Introduction
	4.1.1 Features

	4.2 JTAG
	4.2.1 Instruction Register
	4.2.2 Reset State and TRST_L
	4.2.3 Instruction Summary
	4.2.4 Data Registers
	4.2.4.1 Boundary Scan
	4.2.4.2 Bypass Register
	4.2.4.3 ID Code Register
	4.2.4.4 CMP Data Registers

	4.2.5 JTAG SCK Bypass
	4.2.6 JTAG Access to SerDes STCI
	4.2.7 JTAG Errata

	4.3 UCB Interface
	4.3.1 UCB Simple Block Diagram
	4.3.2 JTAG Instructions used to Access the UCB
	4.3.3 Expected Data and Address Format
	4.3.4 TCU as a Slave for UCB
	4.3.5 UCB Erratum

	4.4 L2 Access via SIU
	4.4.1 JTAG L2 Access Registers
	4.4.2 Write
	4.4.3 Read
	4.4.4 Diagram

	4.5 Scan
	4.5.1 Manufacturing Scan
	4.5.2 MacroTest Scan
	4.5.3 Serial Scan
	4.5.3.1 Chain Select Register
	4.5.3.2 Logic Included in JTAG Serial Scan
	4.5.3.3 Protecting TCU During Serial Scan: Test Protect Mode

	4.5.4 SerDes Scan

	4.6 Clock Stop
	4.6.1 Serial and Parallel Clock Stop Modes
	4.6.2 Hard Clock Stop
	4.6.3 Soft Clock Stop
	4.6.4 Stop Domains
	4.6.5 FBD Logic in MCU
	4.6.6 Clock Stopping and Core/L2 Available and Disable Controls
	4.6.6.1 Core and L2 Available Control
	4.6.6.2 Core and L2 Disabling Control

	4.7 Transition Testing
	4.7.1 Operation and Constraints During Transition Test
	4.7.2 Procedure for Entering Transition Test
	4.7.3 SerDes Transition Test

	4.8 Boundary Scan
	4.9 TCU Debug Interface to SPC Cores
	4.9.1 Clock Interface
	4.9.1.1 Tcu_spc_clk_stop
	4.9.1.2 Core_available & Core_enabled
	4.9.1.3 Core_running & Core_running_status
	4.9.1.4 Scan_enable
	4.9.1.5 Hardstop_request & Softstop_request

	4.9.2 Debug Event Interface
	4.9.2.1 Trigger_event

	4.9.3 Scan Interface
	4.9.3.1 Scan_in & Scan_out
	4.9.3.2 Shadow_scan_in
	4.9.3.3 Shadow_scan_cntrl[n:0]
	4.9.3.4 Shadow_scan_out

	4.9.4 Single Step Mode
	4.9.5 Disable Overlap Mode
	4.9.6 Cycle Step Mode
	4.9.7 JTAG Priority for Debug

	4.10 TCU Debug Interface to SOC Logic
	4.10.1 Clock Interface
	4.10.2 Debug Event Interface

	4.11 TCU Debug Registers
	4.11.1 Cycle Counter
	4.11.2 Debug Event Counter
	4.11.3 TCU Debug Control Register
	4.11.3.1 Watchpoint
	4.11.3.2 Hard Stop
	4.11.3.3 Clock Stretch
	4.11.3.4 Clock Stretch then Hard Stop

	4.11.4 Erratum #34 TRIGOUT (Watchpoint) Events

	4.12 Memory BIST Control
	4.12.1 Overview
	4.12.2 Memory BIST Operation
	4.12.3 Serial Mode
	4.12.4 Parallel Mode
	4.12.5 Diagnostic Mode
	4.12.6 Abort Mode
	4.12.7 MBIST Engine Ordering
	4.12.8 Notes
	4.12.9 JTAG MBIST Data Registers
	4.12.10 MBIST Clock Stop and Scan Dump
	4.12.11 MBIST DMO - Direct Memory Observe
	4.12.11.1 MBIST Done and Fail Observability at Pins

	4.12.12 Scanning of MBIST Engines via JTAG
	4.12.13 Effect of Unavailable or Disabled Cores and Banks
	4.12.14 BIST During Reset

	4.13 Logic BIST Control
	4.13.1 JTAG Logic BIST Instructions
	4.13.2 Accessing Pass/Fail Signature
	4.13.3 Logic BIST Interface

	4.14 Shadow Scan
	4.14.1 Core Shadow Scan
	4.14.2 SOC Shadow Scan
	4.14.3 Shadow Scan Operation

	4.15 Array Guidelines to Support Scan Test
	4.15.1 Flop (Clock) Headers
	4.15.2 Write Inhibit and Bypass
	4.15.3 Scan Modes
	4.15.4 Scan Cell Ordering Guidelines
	4.15.5 Reset

	4.16 Reset Sequencing
	4.16.1 JTAG Access During POR
	4.16.2 ASIC Reset

	4.17 EFuse
	4.17.1 POR Mode
	4.17.2 JTAG Read Access
	4.17.3 Program Mode
	4.17.4 Bypass Mode
	4.17.5 Sample Mode
	4.17.6 Redundancy Value Clear

	4.18 TCU Local CSR Assignments
	4.18.1 Memory BIST Registers
	4.18.2 Logic BIST Registers
	4.18.3 Debug Control Registers

	Clock Control Unit (CCU)
	5.1 Overview
	5.1.1 System Block Diagram
	5.1.2 CCU Block Diagram and Description

	5.2 CCU Port List
	5.2.1 Clock Generation and Distribution
	5.2.1.1 Generation

	5.2.2 PLL Programming
	5.2.3 PLL Mux Control
	5.2.4 Distribution

	5.3 Clock and Reset Inside CCU
	5.3.1 Clock Domains
	5.3.2 Reset Scheme
	5.3.3 Initialization Sequence

	5.4 SYNC Pulses
	5.4.1 Proposed Scheme
	5.4.2 Sync Pulse Distribution
	5.4.3 CMP to IO/IO2X Waveforms
	5.4.4 CMP/DR Pulses
	5.4.5 CMP/SYS Pulses

	5.5 RNG Description
	5.6 CSR Block
	5.6.1 PLL_CTL (0x83_0000_0000)
	5.6.2 RNG_CTL (0x83_0000_0020)
	5.6.3 RNG_DATA (0x83_0000_0030)

	5.7 CCU TESTABILITY
	5.7.1 CCU ATPG

	5.8 Full Chip Testability
	5.8.1 Full Chip ATPG
	5.8.2 Transition Fault Test
	5.8.3 Clock Stretch
	5.8.3.1 Clock Stretch Requirements
	5.8.3.2 PLL Support for Pulse Stretching
	5.8.3.3 Timing Diagrams
	5.8.3.4 Programmability

	5.8.4 SerDes Deterministic Test Mode (DTM)
	5.8.4.1 Basic Requirements
	5.8.4.2 Supported Clock Frequencies
	5.8.4.3 Clocking Scheme
	5.8.4.4 Programmation and Sequencing

	5.9 Appendix A.1 - Sync Pulse Design Procedure
	5.10 Appendix A.2 - Sync Pulse Timing Analysis
	5.10.1 Fast to Slow Clock Synchronization
	5.10.2 Slow to Fast Clock Synchronization
	5.10.3 Modifications for Non-Ideal Scenario
	5.10.4 Computation and Selection of Sync Pulses

	System Interface Unit (SIU)
	6.1 Overview
	6.2 Terminology
	6.3 SIU Top Level Logical Block Diagram
	6.4 Logical Subblocks
	6.4.1 Clocks
	6.4.2 Interface Datapath Access Mechanism
	6.4.3 Inbound
	6.4.4 Interface Timing Diagrams and Protocols
	6.4.4.1 From NIU to SIU
	6.4.4.2 From a Fire-PCI Express-DMU to SIU
	6.4.4.3 From SIU to L2
	6.4.4.4 From SIU to NCU
	6.4.4.5 From TCU to SIU

	6.4.5 SIU's Inbound Pipeline
	6.4.5.1 Major Pipeline Stages

	6.4.6 Block Diagrams of SIU Inbound
	6.4.6.1 Top
	6.4.6.2 Sub-Blocks - ILD
	6.4.6.3 Sub-Block - IND
	6.4.6.4 Sub-Block Descriptions
	6.4.6.5 RAS

	6.5 Outbound
	6.5.1 Interface Timing Diagrams
	6.5.1.1 From L2 to SIU
	6.5.1.2 From SIU to NIU
	6.5.1.3 From SIU to DMU
	6.5.1.4 From SIO to TCU

	6.5.2 Outbound Pipeline
	6.5.2.1 From L2

	6.5.3 SIU Outbound Block Diagram
	6.5.3.1 OPD : Outbound Packet Datapath
	6.5.3.2 OLD : Outbound L2 Datapath

	6.5.4 SIU Out bou nd Sub unit Des crip tion s
	6.5.4.1 Datapath
	6.5.4.2 Control Path

	6.6 Packet Formats
	6.6.1 Inbound To L2
	6.6.1.1 WRI Packet
	6.6.1.2 WR8 Packet
	6.6.1.3 RDD Packet

	6.6.2 Outbound from L2
	6.6.2.1 RDD Response Packet
	6.6.2.2 Write Invalidate Response Packet
	6.6.2.3 Write 8 Response Packet
	6.6.2.4 DMA Read Request Packet from NIU to SIU
	6.6.2.5 DMA Write Request Packet from NIU to SIU

	6.6.3 Outbound to NIU
	6.6.3.1 DMA Write Response Packet from SIU to NIU
	6.6.3.2 DMA Read Response packet from SIU to NIU

	6.6.4 Inbound from DMU
	6.6.4.1 Packet from =Fire-DMU to SIU

	6.6.5 Outbound to DMU
	6.6.5.1 Packet from SIU to Fire-DMU

	6.6.6 Inbound to NCU
	6.6.6.1 Packet from SIU to NCU

	6.7 CSR
	6.8 Unit Level Signals
	6.8.1 SIU-L2 Interface List
	6.8.2 SIU-NCU Interface List
	6.8.3 SIU-NIU Interface List
	6.8.4 SIU-DMU Interface List
	6.8.5 SIU-TCU Interface List

	Non-Cacheable Unit (NCU)
	7.1 Overview
	7.1.1 Changes from OpenSPARC T1 IOB

	7.2 Clock Domains
	7.3 Data Flow
	7.3.1 Downstream Path Block Diagrams
	7.3.2 Upstream Path Block Diagrams

	7.4 Interface Signals, Protocols, and Timing Diagrams
	7.4.1 XBAR Interface
	7.4.1.1 NCU / XBAR PCX Interface (Downstream)
	7.4.1.2 NCU / XBAR CPX Interface (Upstream)

	7.4.2 NCU / MCU Interface
	7.4.3 Boot ROM Interface (NCU/SSI))
	7.4.4 NCU / CCU Interface
	7.4.5 NCU / RST Interface
	7.4.6 NCU / DMUCSR Interface
	7.4.7 NCU / DBG Interface
	7.4.8 NCU / TCU Interface
	7.4.9 NCU / DMUPIO Interface
	7.4.10 NCU / DMU Mondo Response Interface
	7.4.11 NCU / SII Interface
	7.4.12 EFUSE Interface
	7.4.13 Packet Format
	7.4.13.1 UCB (Unit Control Block) Data Packet Format
	7.4.13.2 UCB (Unit Control Block) Interrupt Packet Format
	7.4.13.3 SII to NCU Header Format
	7.4.13.4 NCU to DMUPIO Header Format
	7.4.13.5 DMUPIO Read Request Address and Data Format
	7.4.13.6 DMUPIO Write Request Address and Data Format

	7.5 Interrupts
	7.5.1 Mondo Interrupt Path (External Interrupts)
	7.5.2 Non Mondo Interrupt (On Chip Interrupt)

	7.6 NCU Global Physical Address (PA) Assignments
	7.6.1 Global Physical Address Assignments
	7.6.2 NCU Local CSR Assignments
	7.6.2.1 NCU Management
	7.6.2.2 RAS Related Registers
	7.6.2.3 Mondo Table Access

	7.6.3 ASI Registers
	7.6.3.1 Core Available Register - ASI_CORE_AVAILABLE (0x90_0104_0000)
	7.6.3.2 Core Enable Status Register - ASI_CORE_ENABLE STATUS (0x90_0104_0010)
	7.6.3.3 Core Enable Register - ASI_CORE_ENABLE (0x90_0104_0020)
	7.6.3.4 XIR Steering Register - ASI_XIR_STEERING (0x90_0104_0030)
	7.6.3.5 Core Running RW Register - ASI_CORE_RUNNING_RW(0x90_0104_0050)
	7.6.3.6 Core Running Status Register - ASI_CORE_RUNNING_STATUS (0x90_0104_0058)
	7.6.3.7 Core Running W1S Register - ASI_CORE_RUNNING_W1S (0x90_0104_0060)
	7.6.3.8 Core Running W1C Register - ASI_CORE_RUNNING_W1C (0x90_0104_0068)
	7.6.3.9 Interrupt Vector Dispatch Register - INT_VEC_DISP (0x90_01CC_0000)
	7.6.3.10 RAS Error Steering Register - RAS_ERR_STEERING (0x90_0104_1000)
	7.6.3.11 ASI CMP Tick Enable Register - ASI_CMP_TICK_ENABLE(0x90_0140_0038)
	7.6.3.12 ASI Warm Reset Vector Mask Register - ASI_WMR_VEC_MASK(0x90_0114_0018)

	7.7 Appendix A
	7.8 Appendix B

	Data Management Unit (DMU)
	8.1 Overview
	8.1.1 DMC Block Diagram
	8.1.2 Abbreviation
	8.1.3 General DMC IP Ingress Pipeline Operations
	8.1.4 General Egress Pipeline Operations

	8.2 Functional Description of DMC Sub- blocks
	8.3 Transaction Manager Unit (TMU)
	8.3.1 TMU Function Description:
	8.3.1.1 Data Ingress Manager (DIM)
	8.3.1.2 Data Egress Manager (DEM)
	8.3.1.3 MSI-X Support:

	8.4 Interrupt Message Unit (IMU)
	8.4.1 IMU Function Description:
	8.4.1.1 Definition of Terms
	8.4.1.2 IMU Functional Descriptions
	8.4.1.3 IMU Mondo State Machine
	8.4.1.4 PCI-Express/PCI-X/PCI MSI Capability Structure
	8.4.1.5 IMU Mondo INO Mapping Table
	8.4.1.6 IMU CSRs Change List

	8.5 Record Management Unit
	8.5.1 RMU Function Description
	8.5.1.1 Link Receive Manger (LRM)
	8.5.1.2 Schedule Records Manager (SRM)
	8.5.1.3 Retire Record Manager (RRM)

	8.6 Transaction Scoreboard Unit (TSB)
	8.6.1 TSB Function Description

	8.7 Memory Management Unit (MMU)
	8.7.1 IOMMU Description
	8.7.1.1 Required - IOMMU Bounds Check for Bypass Mode
	8.7.1.2 Required - Customized Virtual Tag Buffer Design
	8.7.1.3 Required - Customized Physical Tag Buffer Design
	8.7.1.4 Required - Add a SUN4V Mode to support the hypervisor features:

	8.8 Context Manager Unit (CMU)
	8.8.1 CMU Function Description
	8.8.1.1 Receive Context Manager (RCM)
	8.8.1.2 Receive Context Entries
	8.8.1.3 Transmit Context Manager (TCM)
	8.8.1.4 Transmit Context Entries
	8.8.1.5 Context Block (CTX)

	8.9 Packet Manager Unit (PMU)
	8.9.1 PMU Function Description
	8.9.1.1 Packet Receive Manager (PRM)

	8.10 Packet Scoreboard (PSB)
	8.10.0.1 Required, add jtag to thread id

	8.11 Cache Line Unit (CLU)
	8.11.1 CLU Function Description
	8.11.1.1 Cacheline Transmit Manager (CTM)
	8.11.1.2 Cacheline Receive Manager (CRM)
	8.11.1.3 Mondo Interrupt -> One Data Beat

	8.12 Data In Unit (DIU)
	8.12.1 DIU Function Description

	8.13 Data Out Unit (DOU)
	8.13.1 DOU Function Description
	8.13.2 SRAM
	8.13.2.1 Adding Test Features

	8.14 DSN Overview
	8.15 DSN Block Diagrams
	8.16 DSN Detailed Block Diagram
	8.17 DSN Interface Descriptions
	8.17.1 DSN-SIU Interface
	8.17.1.1 DSN-SIU Interface List
	8.17.1.2 SIU to DSN Egress Commands
	8.17.1.3 SIU to DSN Outbound Header sent by SIU (DMA rd cpl’s only)
	8.17.1.4 Bit Mapping from DSN to SII for DMA rd/wrt Requests
	8.17.1.5 Bit Mapping from NCU/SIU Header to DMC for DMA/Int ack/nack
	8.17.1.6 DMC to SIU Ingress Commands
	8.17.1.7 DSN to SII Header as sent by DSN
	8.17.1.8 DSN-SII Header RAS
	8.17.1.9 DSN-SII Interface Timing Diagrams

	8.17.2 DSN-NCU Interface
	8.17.2.1 DSN-NCU Interface Description
	8.17.2.2 DSN-NCU Interface Pin List
	8.17.2.3 NCU-DSN Egress PIO Commands
	8.17.2.4 Bit Mapping from NCU Header to DMC for PIO rd/wrts
	8.17.2.5 NCU-DSN Timing Diagram
	8.17.2.6 NCU to DSN Command Header Info
	8.17.2.7 NCU to DSN Header for MMU Invalidates

	8.17.3 DSN-DMU Interface

	8.18 Pin Mapping
	8.19 RAS
	8.19.1 DSN/SII-SIO RAS Interface
	8.19.2 DSN/NCU RAS Interface
	8.19.3 DMC Internal RAS
	8.19.4 RAS Interface Signals
	8.19.5 Error Cases
	8.19.6 IOMMU RAS
	8.19.7 Why is there no Syndrome Register in DSN?

	8.20 Resets
	8.21 CSR’s
	8.21.1 CSR Address Decoding
	8.21.2 CSR Related Pins
	8.21.3 CSR Block Diagram

	8.22 Transaction Ordering
	8.23 DEBUG Features
	8.23.1 Quiescing DMU/SII/SIO Interface
	8.23.2 Debug Busses
	8.23.3 All PCI-Ex Error Output
	8.23.4 Debug Interface Signals
	8.23.5 DSN Debug Signals

	Miscellaneous I/O (MIO) Specification
	9.1 Overview
	9.1.1 MIO Interface with System and Rest of OpenSPARC T2
	9.1.2 Internal Pullups/Pulldowns in MIO for Inputs
	9.1.3 MIO Floorplan in OpenSPARC T2
	9.1.4 MIO Clocking
	9.1.5 DFT Support for MIO

	9.2 Debug Port
	9.2.1 DTM Support in MIO
	9.2.2 Timing Spec for Debug Port Signals for Reliable LA Sampling

	9.3 MIO RTL Hierarchy

	Debug
	10.1 Overview
	10.1.1 Additional Relevant Documents

	10.2 OpenSPARC T2 Debug Features
	10.2.1 Observability
	10.2.1.1 CLK/PLL Observability
	10.2.1.2 Debug Port

	10.2.2 Repeatability
	10.2.2.1 FBDIMM Link training after Debug Reset
	10.2.2.2 I/O Quiescing in OpenSPARC T2 During Checkpoint

	10.2.3 Debug Events
	10.2.3.1 Debug Events in SPARC Cores
	10.2.3.2 Debug Events in SOC

	10.2.4 JTAG Access
	10.2.4.1 JTAG Scan out
	10.2.4.2 JTAG Shadow Scan
	10.2.4.3 JTAG Boundary Scan
	10.2.4.4 JTAG CREG/UCB Access
	10.2.4.5 Clock Stretch
	10.2.4.6 Clock Stop
	10.2.4.7 Single Stepping,Disable Overlap,Cycle Step, Run N Instructions :

	10.2.5 Fatal Error Indication on Pin
	10.2.6 TRIGIN and TRIGOUT pins
	10.2.7 DTM Support in DB1,MIO modules
	10.2.7.1 MCU DTM Mode Signals

	10.3 OpenSPARC T2 Core Debug Features
	10.3.1 Basic Features
	10.3.2 Enhanced Features
	10.3.3 Details of the OpenSPARC T2 Core Debug Features
	10.3.3.1 Instruction Breakpoints
	10.3.3.2 Instruction and Data Address Watchpoints
	10.3.3.3 Trap on Taken Control Transfer
	10.3.3.4 Single Instruction Step
	10.3.3.5 Disable Overlap
	10.3.3.6 Soft-Stop Request from TCU to Core
	10.3.3.7 Shadow Scan
	10.3.3.8 Debug Event Control Register

	10.4 Core Interface with the TCU
	10.4.1 Clock Interface
	10.4.1.1 Tcu_spc_clk_stop
	10.4.1.2 Core_available & Core_enabled
	10.4.1.3 Core_running[7:0] & Core_running_status[7:0]
	10.4.1.4 Scan_enable
	10.4.1.5 Spc_hardstop_request[7:0] & Spc_softstop_request[7:0]

	10.4.2 Debug Event Interface
	10.4.2.1 spc_trigger_pulse[7:0]

	10.4.3 Scan Interface
	10.4.3.1 Scan_in
	10.4.3.2 Scan_out
	10.4.3.3 Shadow_scan_in
	10.4.3.4 Shadow_scan_cntrl[n:0]
	10.4.3.5 Shadow_scan_out

	10.4.4 Single Step Mode Signals (and Single Step Usage Model)
	10.4.5 Disable Overlap Mode Signals (and Usage Model)

	10.5 Debug Block Interface Signals
	10.6 Debug Blocks (dbg0.v and dbg1.v)
	10.6.1 OpenSPARC T2 Debug Port
	10.6.2 CSR Block in debug.v

	10.7 APPENDIX
	10.7.1 Checkpoint Sequence (SW-HW interaction)
	10.7.2 SW Visible State Lost on Debug Reset
	10.7.3 Registers to Support Debug
	10.7.3.1 Debug Port Configuration Register
	10.7.3.2 RESET_GEN Register
	10.7.3.3 RESET_SOURCE Register
	10.7.3.4 ASI_WMR_VEC_MASK Register
	10.7.3.5 MCU Channel Read Latency Register
	10.7.3.6 MCU Sync Frame Frequency Register
	10.7.3.7 Subsystem Reset Register
	10.7.3.8 I/O Quiesce Control Register
	10.7.3.9 Core DECR Register
	10.7.3.10 SOC DECR Register
	10.7.3.11 L2 Mask Register
	10.7.3.12 L2 Compare Register
	10.7.3.13 DMC Core and Block Interrupt Enable Register
	10.7.3.14 DRAM Debug Trigger Enable Register
	10.7.3.15 NCU Debug Trigger Enable Register
	10.7.3.16 L2 Error Enable Register
	10.7.3.17 ASI_OVERLAP_MODE Register
	10.7.3.18 PEU Debug Select A Register
	10.7.3.19 PEU Debug Select B Register
	10.7.3.20 DMU Debug Select Register for DMU Debug Bus A
	10.7.3.21 DMU Debug Select Register for DMU Debug Bus B

	Electronic Fuse Unit (EFU)
	11.1 Overview
	11.1.1 Definitions of Terms Used

	11.2 EFU Block Diagram
	11.2.1 Unit Functional Description of EFU
	11.2.1.1 Efuse Array (EFA)
	11.2.1.2 Efuse Controller (FCT)
	11.2.1.3 TCU Interface

	11.3 EFU Logical Implementation
	11.3.1 Efuse Modes of Operations
	11.3.1.1 Power On Reset Read Mode
	11.3.1.2 JTAG Read Access
	11.3.1.3 Fuse Programming Mode
	11.3.1.4 JTAG Fuse Bypass Mode
	11.3.1.5 Fuse Sample Mode

	11.3.2 Interface with NCU, SRAM Header Flops and TCU Destinations
	11.3.2.1 EFU to SRAM Header Flops
	11.3.2.2 SRAM to EFU Interface :
	11.3.2.3 EFU to NCU Interface :
	11.3.2.4 TCU to EFU Transfers
	11.3.2.5 EFU to TCU :

	11.3.3 Register Formats
	11.3.3.1 RV REGISTER CLEAR ID
	11.3.3.2 Block ID
	11.3.3.3 SRAM Redundancy Register Formats :
	11.3.3.4 L2 Data Array EFA Entry Definition
	11.3.3.5 L1 INSTRUCTION CACHE (ICD) EFA Entry Definition
	11.3.3.6 L1 data cache array redundancy register (DCD) definition
	11.3.3.7 Core Available
	11.3.3.8 L2 Bank Available
	11.3.3.9 FSR SERDES Trimming Registers
	11.3.3.10 DMU DATA Registers
	11.3.3.11 SER_NUM Programming

	11.4 Unit-Level Interface Signals
	11.5 Misc/Multiple Clock Domains
	11.6 Efuse Array Specification
	11.6.1 Efuse Array Organization
	11.6.2 Efuse Array Functions
	11.6.3 Timing Diagrams
	11.6.4 Interface Table

	Reset Unit Specification
	12.1 OpenSPARC T1 and OpenSPARC T2 Partitioning
	12.2 Reset Overview
	12.2.1 Goals
	12.2.2 Nomenclature
	12.2.3 Priority
	12.2.4 OpenSPARC T2 Structures that Hold State
	12.2.5 E-Fuse destination Flops and Latches
	12.2.6 Latches
	12.2.7 Flip-flops Outside of SRAMs
	12.2.8 SRAM Input flops
	12.2.9 SRAM Output Flops
	12.2.10 Core Array Contents
	12.2.11 NIU, DMU-PEU, RST, and TAP Reset Implementations Differ
	12.2.12 Eliminating Clock Contention
	12.2.12.1 Before gclk starts
	12.2.12.2 After gclk starts, Asic SE deasserts, and Asic clk_ctop deasserts
	12.2.12.3 Two Signals RequireAsynchronous Assert, Synchronous Deassert.

	12.3 Types of Reset
	12.3.1 TRST_
	12.3.2 POR
	12.3.3 DBR
	12.3.4 WMR
	12.3.4.1 A Fatal Error causes a WMR
	12.3.4.2 Conflicting Demands placed on WMR

	12.3.5 WMR Trap and SPARC-V9 POR Trap
	12.3.5.1 How OpenSPARC T1 Starts its Virtual Cores at Reset
	12.3.5.2 How OpenSPARC T2 Starts its Virtual Cores at Reset

	12.3.6 XIR
	12.3.6.1 JTag can cause XIR

	12.3.7 WDR
	12.3.7.1 Tomatillo SouthBridge System_watchdog Timer Signal
	12.3.7.2 CMP Watchdog Reset, WDR

	12.3.8 XIR, WDR, and SIR Perform No Reset

	12.4 Machine State after Each Kind of Reset
	12.4.1 Venn Diagram
	12.4.2 Reset Signals Asserted for each Kind of Reset
	12.4.3 POR Clears the Valid Bits in the L2T Directory of L1 Tags CAM

	12.5 OpenSPARC T2 is a System On a Chip
	12.5.1 System On a Board
	12.5.2 System On a Chip
	12.5.3 Serial System Interface, SSI
	12.5.4 Connections between RST and Other Clusters

	12.6 Registers
	12.6.1 (0x89-0000-0808) Reset Generation Register, RESET_GEN
	12.6.2 (0x89-0000-0818) Reset Source Register, RESET_SOURCE
	12.6.3 (0x89-0000-0838) Subsystem Reset Register, SSYS_RESET
	12.6.4 (0x89-0000-0810) Reset Status Register, RSET_STAT
	12.6.5 (0x89-0000-0820) Fatal Error Enable Register, RESET_FEE
	12.6.6 (0x89-0000-0860) Clock Control Unit Time Register, CCU_TIME
	12.6.7 (0x89-0000-0870) Lock Time Register, LOCK_TIME
	12.6.8 (0x89-0000-0880) Propagation Time Register, PROP_TIME
	12.6.9 (0x89-0000-0890) NIU Time Register, NIU_TIME

	12.7 Power-On Reset Sequence Overview
	12.7.1 Power-On Reset Duration in a System
	12.7.2 Power-On Reset Duration on a Tester
	12.7.3 Warm Reset Duration in a System
	12.7.4 Warm Reset Duration on a Tester

	12.8 Deterministic Behavior
	12.9 Power-On Reset Sequence
	12.9.1 During PWRON_RST_L (including POR1)
	12.9.2 After PWRON_RST_L (including POR2)
	12.9.3 Pre-WMR Boot Code
	12.9.4 During WMR1
	12.9.5 After WMR
	12.9.6 Post-WMR boot code

	12.10 Warm Reset Sequence
	12.10.1 Before rst_mwr_
	12.10.2 During rst_wmr_
	12.10.3 After rst_wmr_
	12.10.4 Post-WMR boot code

	12.11 Reset Sequence for DBG
	12.12 Reset Sequence for NIU
	12.13 Reset Sequence for XIR
	12.14 Reset and Scan of the Reset Unit
	12.14.1 tcu_rst_clk_stop
	12.14.2 tcu_rst_io_clk_stop

	12.15 Reset Unit Ports
	12.15.1 Input Ports
	12.15.2 Output Ports

	12.16 Appendices
	12.16.1 Appendix I: Glossary
	12.16.2 Appendix II: Glossary of shadow terms
	12.16.3 Appendix III: Promotion among Core Available, Enable, and Status registers

